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Abstract

This thesis presents a framework for the automatic strategy synthesis from
quantitative specifications, in order to control autonomous systems. We
model systems as turn-based two-player zero-sum stochastic games, which
are able to express both stochastic and nondeterministic environmental
uncertainty. Given a system model and a specification, we define the
strategy synthesis problem as that of finding a strategy for the system
that is winning against every environment. Since large, complex systems
are typically built from multiple components, we consider synthesis of
strategies for the individual components separately, which can then be
composed to a winning strategy for the full system. Modelling interaction
between components is facilitated using assume-guarantee rules, which
can express contracts such as “maintain the room temperature of at least
20 �C, as long as the windows are closed at least 30% of the time.” For the
synthesis of strategies for the individual components, we develop synthesis
algorithms for Boolean combinations of long-run objectives, specifically,
maintaining above a threshold (i) a mean-payoff, almost surely; (ii) an
expected mean-payoff; (iii) a ratio of rewards, almost surely; or (iv) a
ratio of expected rewards. We implement our algorithms in the PRISM-
games 2.0 tool and demonstrate their viability on four case studies.
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Chapter 1
Introduction

At the heart of every successful endeavour is a strategy: acting in the presence of an
adapting, unpredictable environment requires a determined and structured approach.
In virtually every undertaking, we rely on a strategy to achieve our objectives, and the
advent of computers opened up the possibility of refining our strategies to unprece-
dented sophistication. The usefulness of strategies extends well beyond their tradi-
tional areas of application, such as in economics or in the military. Since the premise
of a strategy is to ensure that an objective is met irrespective of the environment
behaviour, the same requirement is shared by controllers for systems traditionally in
the domain of control engineering, such as robots, electric power generators, or trans-
port. These applications exemplify that the configurations of a system have to obey
predetermined criteria, that the system is affected by its independent environment,
and that the strategy can only influence a limited set of variables. Thus, controlling
a system becomes a question of finding a winning strategy in a game, where the con-
troller plays against the environment. The appeal of posing control questions in a
game-theoretic setting is that we can greatly extend the versatility of controllers that
we can design, while maintaining provable correctness with respect to specifications
that can be understood at a higher, abstract level.

The need to include the influence of the uncontrollable environment on the sys-
tem state is a consequence of not considering the systems in isolation. However, often
the environment does not behave completely arbitrarily, and so we are interested in
achieving a control objective G under some assumption A on the environment, which
gives rise to a winning condition of the form A ! G, where we write ! for logical
implication. We can take this idea of placing assumptions on the environment further,
and establish contracts between subsystems of a larger system. This approach is par-

1



2 CHAPTER 1. INTRODUCTION

ticularly relevant if the system is designed as a composition of multiple components,
for example, to manage the design complexity or to increase reliability due to physical
separation and by ensuring that components interact in a controlled way. Contracts
between components permit one to consider each component in isolation, and to per-
form analysis under the assumption that all components obey their contracts. This
leads us to the development of a framework of assume-guarantee strategy synthesis,
in which a strategy for the composed system, guaranteeing a global specification, can
be derived by synthesising strategies only for the individual components, assuming
adherence to the contracts. A key benefit of assume-guarantee synthesis is the im-
proved scalability of the algorithms, resulting from only having to analyse several
smaller systems, albeit, in our case, at the cost of restricting the class of strategies
under consideration.

Aims. The main aim of the presented research is the development of algorithms and
tools for the automatic synthesis of controllers for autonomous systems from quan-
titative specifications, that make the controllers more reliable and more convenient
to configure and maintain. We provide a comprehensive framework for the assume-
guarantee synthesis of strategies for systems that exhibit both stochastic and non-
deterministic behaviour, aimed at improving scalability of strategy synthesis. Thus,
we need to formalise the compositional design of stochastic systems operating in an
uncontrollable environment, and provide a framework for the synthesis of strategies.

Approach. This thesis focuses on the development of controllers for autonomous sys-
tems via strategy synthesis for turn-based zero-sum stochastic games [121]. Stochastic
games can be seen as an extension of Segala’s probabilistic automata (PAs) [118], with
the difference that the nondeterministic choice of transitions is controlled by sepa-
rate players that may compete against each other. Since stochastic games can model
probabilistic behaviour, they are particularly attractive for the analysis of systems
that exhibit uncertainty quantifiable by probability distributions.

Considering a large system as a collection of interacting subsystems has been
widely employed for assume-guarantee verification of systems, which can be modelled,
for example, as PAs, with the desired behaviours expressed via temporal logic, or via
maximisation of rewards or minimisations of costs. While verification is useful to
check whether or not a given design satisfies a specification, it does not automate the
design process of the controlled system. To this end, automated synthesis of strate-
gies in a monolithic (non-compositional) setting has been applied to controller design
using a variety of formal models and specifications. Towards an assume-guarantee
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framework for strategy synthesis, we define a composition operator for stochastic
games, which is closely related to the parallel composition of PAs due to Segala [118]
and to that of interface automata [54], where interaction between subsystems is mod-
elled via synchronisation on common actions. By applying a strategy to a stochastic
game to resolve the controllable nondeterminism, one obtains a PA, where only un-
controllable nondeterminism remains. This observation allows us to utilise rules for
assume-guarantee PA verification in order to derive synthesis rules for games.

When designing control systems, one is often interested in trade-offs between ob-
jectives (for example, minimising time to arrival and fuel consumption at the same
time), and hence we consider multi-objective specifications expressed as Boolean com-
binations of objectives. We develop a series of transformations of the objectives, and
so our primary problem reduces to that of synthesising strategies that maintain a vec-
tor of mean-payoffs almost surely above a threshold. We solve this strategy synthesis
problem via a multi-dimensional dynamic programming characterisation, which is a
popular method in optimal control.

Finally, to evaluate the effectiveness of our methods, we implement our assume-
guarantee synthesis framework as an extension of the PRISM-games tool, adding
multi-component and multi-objective strategy synthesis functionality. Using our tool,
we subsequently study a collection of case studies relevant to controller design for
autonomous systems.

Contributions

We develop a framework for the assume-guarantee synthesis of strategies for turn-
based two-player zero-sum stochastic games, and focus on providing novel algorithms
and tools for the design of controllers for autonomous systems. We are interested in
strategies that satisfy quantitative multi-objective properties, which are defined using
rewards accumulated during system execution. The main contributions are presented
in Chapters 4–8, which we briefly summarise.

• In Chapter 4, we introduce our assume-guarantee framework. We define a syn-
chronising composition of stochastic games, which is based on the composition
operations of PAs and interface automata [54]. A fundamental property of our
game composition is that strategies of the individual components can be com-
posed to a strategy of the composed game, while preserving the winning condi-
tions. More concretely, we develop a set of assume-guarantee strategy synthesis
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rules, which deduce global winning conditions of the composed game under the
assumption that local winning conditions are satisfied in the component games.
Our framework is independent of the synthesis methods used for the individual
components, and is applicable to general winning conditions that are invariant
under interleaving of actions, such as ratio or total rewards.

• In Chapter 5, we discuss the properties of multi-objective queries for stochas-
tic games, where we focus on long-run objectives, specifically, maintaining the
mean-payoff or the ratio of rewards above a threshold almost surely, or main-
taining the expected mean-payoff or the ratio of expectations above a threshold.
For expectation objectives we consider arbitrary Boolean combinations, while
for satisfaction objectives we consider conjunctions, and we develop a set of
transformations of these multi-objective queries to conjunctions of almost sure
mean-payoff objectives. We further discuss the approximation of Pareto sets,
which is instrumental in our framework to derive the local specifications.

• In Chapter 6, we develop a synthesis method for strategies achieving conjunc-
tions of almost sure mean-payoff objectives, and we establish that the corre-
sponding achievability problem, that is, deciding whether a winning strategy
exists, is in co-NP. To synthesise strategies, we show that the mean-payoff is al-
most surely non-negative if the strategy ensures at every step that the expected
total reward is above a finite shortfall. We characterise these shortfall vectors
via a Bellman operator, and from its fixpoint we can then construct strategies;
while infinite memory is necessary in general, we can obtain finite strategies
that are "-optimal. Further, the strategies we construct use internal memory
that is stochastically updated, enabling a more compact representation.

• In Chapter 7, we present our implementation of the framework, an extension
of the PRISM-games tool. We explain the extensions required for modelling
of multi-component stochastic games, discuss the data structures that we use
in our algorithms, highlight heuristics and approximations we use to increase
efficiency of our implementation, and explain the graphical user interface.

• In Chapter 8, we apply our methods to a set of case studies, demonstrating the
viability of our framework and tool implementation for synthesising controllers
for autonomous systems modelled as stochastic games. Particularly in order to
illustrate the modelling paradigms of stochastic games for controller synthesis,
we study the problem of safely steering an autonomous car in an urban context,
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and path planning for an unmanned aerial vehicle (UAV) interacting with a
human operator. We use conjunctions of total expected rewards based on prior
work in these two case studies, which can also be synthesised with our tool.
We then employ our assume-guarantee synthesis framework in order to find
strategies for the control of electrical power distribution on an aircraft, and for
regulating the temperature in a building with multiple rooms. To reflect the
continual nature of the modelled processes, we use long-run (ratio) rewards in
these latter two case studies.

Thesis Outline

In Chapter 2 we review the related work of this thesis, and in Chapter 3 we give
the technical background and known results. We present the main theoretical contri-
butions in Chapters 4–6. We describe the tool implementing our assume-guarantee
framework in Chapter 7, and give four case studies in Chapter 8. We conclude
with Chapter 9 summarising our work and highlighting possible future directions.

Publications

Some of the work presented in this thesis has been previously published in jointly
authored papers. In [11] the assume-guarantee strategy synthesis framework was in-
troduced, which forms the basis of Chapter 4. I developed the game composition
framework using PA rules, and the compositional Pareto set computation. Nicolas
Basset contributed the proof via functional simulations and helped in formalising the
results. The main synthesis results for long-run properties are published in [10], and
presented here in Chapter 6. I contributed the strategy construction via the reduction
to expected energy, and Nicolas Basset contributed the completeness proofs. I also
developed the aircraft control case study, featured in Section 8.3, while visiting Ufuk
Topcu at the University of Pennsylvania (UPenn), who provided the key direction.
The reductions in Chapter 5 are developed in collaboration with Nicolas Basset, and
are part of a journal paper in preparation [12]. While at UPenn, I collaborated on the
study of controller synthesis for human-UAV interaction published in [63]. The study
was led by Lu Feng, who performed the main modelling task using Markov decision
processes. I contributed the extension to stochastic games, which is the focus of Sec-
tion 8.2. Earlier in my doctoral study, I was part of the collaboration [41] concerning
stochastic games with multiple total expected rewards. I was the main driver of the
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reduction theorem from Boolean combinations of objectives to conjunctions, as this is
a key component for contracts between components, see Section 4.2. The complexity
results were contributed by my collaborators. In [43] we present strategy synthesis
for total expected rewards. I implemented the Pareto set computations and strategy
synthesis algorithm. I also authored the autonomous urban driving case study, fea-
tured in Section 8.1. The strategy construction and reduction from linear temporal
logic objectives was contributed by Aistis Šimaitis.

In [10, 11, 43, 63], the experimental results are obtained via my implementa-
tion of the synthesis algorithms, presented in Chapter 7, which extends the PRISM-
games tool [39] to allow compositional modelling and analysis. The tool, devel-
oped with support from David Parker, is released as PRISM-games 2.0 at http:

//www.prismmodelchecker.org/games/, and is described as a tool paper [86].
This research was supported by ERC Advanced Grant VERIWARE and EPSRC.
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Games have found versatile applications in areas ranging from artificial intelli-
gence, through modelling and analysis of financial markets, to control system design
and verification. The game model intuitively consists of an arena with a number of
positions, and two or more players that move a token between positions. The rules of
the game determine the allowed moves between positions, and a player’s winning con-
dition captures which positions or sequences of positions are desirable for the player.
The rigorous treatment of games as an independent field began with the seminal work
of John von Neumann on zero-sum games [100], and the characterisation of equilibria
and their existence in non-zero-sum games goes back to John Nash [99], who defined
the eponymous Nash equilibrium, which prescribes a strategy for each player such
that no player can improve its outcome by unilaterally changing its strategy. Solving
non-zero-sum games is beyond the scope of this thesis, and we give a brief discussion
of their relation to the winning conditions we consider in Section 3.7. Solution con-
cepts for games vary depending on the types of games and specifications used, and
we give in this chapter an overview of the research that is related to this thesis.

We start by exploring, in Section 2.1, the strategy synthesis problem and tradi-
tional synthesis techniques, focusing on strategies that optimise a single quantita-
tive objective. In Section 2.2, we discuss existing work on extensions toward multi-

7
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objective verification and synthesis, which is a key element in our assume-guarantee
framework. In Section 2.3, we review formalisms for the compositional modelling
of systems, as well as existing methods for compositional verification and synthesis.
Finally, in Section 2.4, we summarise applications of strategy synthesis to the design
and control of autonomous systems, and existing tools developed for this purpose.

2.1 Strategy Synthesis

Strategy synthesis for a system is an automatic process to construct a strategy, which
is a mapping from past observations about the system state to decisions about the
next state, such that the behaviour of the system satisfies a given specification when
the strategy is implemented. Thus, a strategy controls nondeterministic choices in a
system, and, since the systems we consider are modelled as games with two players,
each player is responsible for controlling its own nondeterministic choices and has its
own strategy. We consider stochastic games, introduced by Shapley [121] (sometimes
called Markov games or competitive Markov decision processes), whose behaviours are
determined not just by the strategies but also by probability distributions on certain
transitions between states. Thus, strategy synthesis for Player 1 in a stochastic game
amounts to finding a strategy against all strategies of Player 2, so that the resulting
probability distribution over behaviours satisfies the specification. Specifically, we are
interested in turn-based two-player games, where Player 1 and Player 2 take turns in
making choices. If there is only one player present in a stochastic game, the system is
a Markov decision process (MDP) [110]. We make these concepts precise in Chapter 3.
We remark that robust MDPs [101] are an alternative stochastic model that allows
controllable and uncontrollabe nondeterminism, where the environment can choose
from a compact set of transition probabilities; each choice represents Player 2 selecting
a distribution in a stochastic game, similar to the approach discussed in Section 8.4.4.
Stochastic games allow more structure than robust MDPs since the choices of Player 2

can be discrete, but since we consider stochastic games with finite branching only, we
cannot encode, for example, elliptically constrained sets of distributions for Player 2.

Qualitative Specifications. In non-stochastic systems, a qualitative specification
can be seen as a mapping � : ⌦! {true, false} from behaviours ⌦ to truth values.
For non-stochastic systems, the strategy synthesis problem for qualitative specifica-
tions expressed over infinite sequences of events was stated by Church in [47], and
subsequently solved by Büchi and Landweber in 1969 [23], establishing the link be-
tween specification logics and game theory. Synthesis of strategies, represented as
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finite-state automata, was shown to be 2EXPTIME-complete for the temporal logic
CTL⇤ in [83], which is able to express properties on the temporal succession of events
during system execution, for example “all executions have recurring safety checks, and
there is an execution where the task is completed.” For the class of linear temporal
logic (LTL) formulae called GR1, where a guarantee must be satisfied under an as-
sumption, efficient, polynomial-time algorithms were developed [107]. GR1 formulae
are used, for example, to specify autonomous systems [104, 140], and their versa-
tile assume-guarantee format is one motivation to consider Boolean combinations of
objectives in this thesis.

In stochastic systems, qualitative specifications typically require that almost all
behaviours satisfy a property � : ⌦! {true, false}, that is, P(�) = 1, where P is a
measure defined over behaviours ⌦ of the system. The presence of probabilities in the
system means that the specification still holds even if a set of paths with probability
measure zero violates the property. Synthesis in stochastic systems from qualitative
LTL and CTL⇤ specifications was studied in [117], and for parity objectives in [32].
For qualitative specifications, it is only relevant which states are accessible from each
other, while the precise probability distributions in the system do not change the
outcome for finite systems. For the results in this thesis, strategies that reach a set
of states with probability one (that is, almost surely), are particularly relevant, as we
use such strategies in our completeness proof for expectation objectives.

Quantitative Specifications. Attaching rewards and probabilities to transitions
allows one to evaluate the strategies not just according to whether they achieve an
objective or not, but also by how well they achieve an objective [16]. The traditional
objectives in strategy synthesis are for a player to maximise a reward, or payoff, that
it accumulates during the executions of the game, evaluated as total reward or mean-
payoff (average reward). We call such objectives quantitative, since the specification
requires the strategy to optimise a numerical value. Objectives requiring to maintain
a payoff above a given threshold are also considered quantitative.

Our main focus is on properties that are determined entirely by the system be-
haviour in the long run, and are independent of finite prefixes, such as mean-payoff.
The mean-payoff on a path is defined by summing up the rewards along the path,
dividing by the length, and letting the length go to infinity. Hence, two versions
of mean-payoff are studied, depending on whether the limit is defined via the limit
inferior or the limit superior. Games with long-run objectives, such as mean-payoff,
are qualitatively determined [71], that is, either one player has a winning strategy, or
the other player has a strategy to spoil. Qualitative determinacy differs from quan-
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titative determinacy [94], according to which the players may only have strategies to
approach cumulated rewards arbitrarily close.

Strategy synthesis for mean-payoff objectives in non-stochastic games has been
studied in [59, 144], and for MDPs and stochastic games in [64, 95, 110]. A key
characteristic for non-stochastic games with mean-payoff objectives is that strategies
for neither player have to remember the history to win, that is, they are memory-
less [59]. While memoryless strategies are sufficient for single objectives, this is no
longer the case in our multi-objective setting, as we explore in Section 2.2. In [25], it
is shown that a strategy achieves a mean-payoff in a non-stochastic game if and only
if it achieves a corresponding energy objective, requiring that the total cumulative
reward never falls below zero along any path compatible with the strategy. We utilise
this observation to develop strategy synthesis for our mean-payoff objectives.

Further, for stochastic games, quantitative !-regular objectives were studied [33,
56], as well as a reduction from parity to mean-payoff objectives [29]. While these
objectives are relevant for our study of strategy synthesis for autonomous systems,
to our knowledge no such reduction for multiple long-run objectives has been ex-
plored so far. Another instance of long-run objectives are ratio objectives, defined by
assigning to each path the ratio of two total rewards, and taking, for example, expec-
tations [135]. A ratio between rewards r and c in the numerator and denominator,
respectively, expresses a trade-off between maximising r and minimising c, and can
thus be used to evaluate the robustness or efficiency of systems [17]. Specifications
defined using ratios of rewards are particularly applicable to our assume-guarantee
framework, since systems working together (that is, components of a larger system)
can form a consensus on which quantities are averaged over by sharing the same
denominator c.

2.2 Towards Multiple Objectives

Often it is not sufficient to consider a single objective. For example, one may re-
quire a controller for a power plant that maximises power output, minimises wear,
minimises the downtime, maximises economic feasibility, and so on, all at the same
time. To realise trade-offs between potentially conflicting objectives, multi-objective
optimisation has been widely studied in the operations research community [49], with
applications, for example, to engineering [92] and the medical field [130].

Pareto Sets. When optimising several quantitative objectives in a multi-objective
problem, not all objectives can be independently optimised. Rather, we have to
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consider the set of achievable trade-offs, called the Pareto set [105]. Strategy synthesis
for multiple objectives therefore requires to select a realisable trade-off from the Pareto
set, and to construct a strategy specific to this selection. Existing algorithms for
computing Pareto sets include, for example, the weighted sum method [93, 142],
or sandwich algorithms that compute successive under- and over-approximations of
the Pareto set [113]. However, these methods typically rely on properties related to
determinacy in the game-theoretic sense, which limits their applicability in our setting
(as we explain in Section 3.5). Visualising the Pareto front for high-dimensional
settings was studied in [88], and we employ similar ideas in the graphical user interface
of our tool implementation.

MDPs. Multi-objective problems for stochastic systems have been studied mostly in
the context of MDPs. This included expected discounted total rewards [35], !-regular
properties in [60], and undiscounted total rewards combined with !-regular proper-
ties [67, 68]. Mean-payoff in stochastic systems has been studied in two variants,
both for objectives defined using the expected mean-payoff, and objectives requiring
the multi-dimensional mean-payoff to be above a threshold with a given probability
(satisfaction) [18]. A further generalisation of satisfaction objectives are percentile
objectives, where each objective requires the mean-payoff to be above a threshold
with a different probability [112]. Solutions for MDPs are typically based on formu-
lating a linear program (LP) characterising the achievable trade-offs, and extracting
a strategy from the resulting solution.

Non-Stochastic Games. In games, attention has mostly been directed at the study
of conjunctions of objectives. In the case of MDPs, and, more generally, systems
with a single, controllable, type of nondeterminism, strategy synthesis for Boolean
combinations of objectives in disjunctive normal form can be performed as a series
of synthesis problems for conjunctions, by considering each disjunct separately. In
games, however, the universal quantification over the adversary strategies prevents
this transformation, and so the synthesis problem for Boolean combinations is in
general harder than that for conjunctions. Non-stochastic games with conjunctions
of objectives have been studied for total rewards, for example, in [82, 143]. More
recently, conjunctions of mean-payoff and energy objectives were studied in [26] for
finite strategies, and deciding the winner was shown to be co-NP complete; the cor-
responding strategy synthesis problem was subsequently studied in [36], where also
incremental symbolic approaches are investigated. The difference of the definitions
of mean-payoff via the limit inferior and limit superior are discussed in a series of
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papers that establish decidability for subclasses of Boolean combinations in [37, 133],
and undecidability for general Boolean combinations in [132].

Stochastic Games. The problem of precisely achieving an expected total reward
can be expressed as a conjunction of a minimisation and maximisation of the same
expected total reward, and is the subject of [40]. The work in [41, 43, 124] broadens
the discussion to Boolean combinations of expected rewards in stopping games. Non-
zero-sum stochastic games for more than two players, where each player has a single
expected discounted total reward objective, are discussed in [91]. The probabilistic
branching time logic PCTL also gives rise to quantitative specifications, and is the
subject of [6, 19], where non-determinacy as well as several (un-)decidability results
are established. We note that the synthesis problem for reaching multiple target sets
in the class of stopping games is a special case of the synthesis problems for both
expected total rewards and expected mean-payoffs.

For multi-dimensional mean-payoffs, strategies have been studied that ensure that
the value accumulated along the infinite duration the game is played approaches a
given set via some distance metric. This concept was introduced for repeated stochas-
tic games in [15], where it is also established that these games are not determined,
that is, in general, there are targets that neither player can force the value of the
mean-payoff to converge to. Based on this work, [123] defines winning strategies in
stochastic games where at least one state is recurrent under all considered strategies,
but their suggested algorithm does not provide guarantees on the approximate strate-
gies. To the best of our knowledge, multi-dimensional mean-payoff under satisfaction
semantics has received little attention. We note that in [71] a satisfaction objective
is combined with a Büchi condition, both in conjunction and disjunction, where the
qualitative nature of the Büchi condition is exploited, and hence this approach is not
directly applicable to our setting with multiple quantitative objectives.

2.3 Compositional Reasoning

While synthesis is attractive due to its potential to automatically deliver correct-by-
construction controllers, the high computational complexity of even restricted prob-
lem classes has so far prevented application to large-scale systems, where formal
verification has already shown promising results [85, 111]. One approach in verifica-
tion to address the challenge of scalability is that of compositional reasoning, where
a system is considered as a composition of several components, and local properties
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are established for each component, which, using assume-guarantee rules, allow one
to infer properties about the composed system.

Compositional Modelling. Compositional reasoning is based on modelling a sys-
tem as a set of components that may interact according to mechanisms such as variable
sharing, or synchronisation of actions. Composing stochastic systems is studied for
Segala’s probabilistic automata (PAs) in [118], which are labelled probabilistic tran-
sition systems, that generalise MDPs by allowing that at each state several outgoing
moves carry the same label. Composition has also been studied for Interactive Markov
chains (IMCs) in [74], which allow action-labelled transitions as well as random delays
similar to continuous-time Markov chains. However, both PAs and IMCs do not cap-
ture the distinction between players required for composing stochastic games. Several
notions of parallel composition of non-stochastic games have been proposed. In [70]
extensive form games are considered. In [69], the strategies of the components have to
agree in order for the composed game not to deadlock, leading to a complex strategy
composition operation. In [55], probabilistic systems are composed, where variables
are synchronised and partitioned into controllable (internal and interface) variables,
as well as uncontrollable (external) variables, which can be interpreted as Player 1 and
Player 2 actions, respectively. Similarly, Input/Output Automata (IOAs) contain an
input and an output alphabet in order to model interaction between components [90].
Adding probabilities results in probabilistic IOAs (PIOAs) [46, 139], where schedulers
for controlling the inputs and outputs can be seen as strategies in stochastic games.
Scheduling decisions between several composed PIOAs are made locally, with a token
passed between components by an arbiter to maintain a unique active component,
and we adopt a similar scheduling scheme in the game composition that we develop.
A major restriction of (P)IOAs is their reliance on the input-enabledness assump-
tion, requiring that, in each state, every input action must be enabled. Hence, when
scheduling actions, both inputs and outputs may be decided on simultaneously and
independently, which in a game interpretation corresponds to a concurrent game
between the output scheduler (Player 1) and the input scheduler (Player 2). This
assumption is relaxed in Interface Automata (IAs) [54], but at the cost of a more ex-
pensive composition operation that is no longer purely syntactic. In the same paper,
(non-stochastic) single-threaded IAs are defined, where the set of states is partitioned
into running and waiting states, which can be seen as Player 1 and Player 2 states in
a turn-based game. We are not aware of a study of single-threaded IAs with proba-
bilities that would allow an interpretation as turn-based games. Our composition of
games is most closely related to that of PAs, but also draws ideas from IAs.
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Assume-Guarantee Verification. The main body of literature on compositional
reasoning is concerned with verification, that is, checking whether all behaviours of a
componentised system satisfy a specification by just checking all the behaviours of the
subsystems. Early approaches to assume-guarantee reasoning include the temporal
logic based frameworks [48, 109]. More recent work combines the assume-guarantee
paradigm with automated learning of the assumptions [44, 106]. For probabilistic
systems, an early approach to assume-guarantee reasoning has been discussed in [55].
Based on multi-objective model checking, assume-guarantee verification for PAs has
been studied in [85], and learning of assumptions via the L⇤ algorithm has been
applied in this framework [62]. In these frameworks, however, the assume-guarantee
rules are incomplete, which is of particular concern for fully automated approaches,
as then termination is not guaranteed; a complete approach for probabilistic systems
is presented in [80], where properties are specified using a strong simulation relation.

Assume-Guarantee Synthesis. An assume-guarantee framework requires defining
a composition of components, so that composing winning strategies of the compo-
nents yields a winning strategy for the composition. One approach is to synthesise
a specification such as '1 ^ '2 ^ . . . by first considering only '1, then augmenting
the resulting strategy by also taking '2 into account, and so on [8, 65], which can
be seen as iteratively over-approximating the allowable behaviour (to ensure liveness)
and under-approximating the undesirable behaviour (to ensure safety). On the other
hand, rather than considering composition of specifications as in the conjunction
above, another approach is to consider a composition of individual games, synthesise
controllers for each such game, and derive from them a controller for the composition.
In [28], an assume-guarantee rule is discussed for non-stochastic systems, where the
synthesis problem is transformed to solving a 3-player game, where the third player is
considered a fair scheduler. However, this approach is not compositional in the sense
that the synthesis problem can be solved as a series of smaller, local, sub-problems,
but all components of the composed system must be considered at the same time;
scalability is achieved via abstraction refinement, which is beyond the scope of this
thesis and challenging due to our use of multi-objective stochastic games. While [69]
discusses synthesis of a global strategy from local strategies, the strategy composi-
tion requires an additional composer to be computed, which is polynomial in the size
of the full composed game. A further related approach is finding a composition of
components taken from a given library, so that it satisfies a global LTL specifica-
tion [89, 98]. This approach is in contrasts to our setting, where we consider a fixed
parallel composition of components.
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The problem of synthesising strategies for components whose composition ac-
cording to a fixed architecture satisfies a given global LTL specification is undecid-
able [108], since strategies in the components need to accumulate sufficient knowledge
in order to make choices that are consistent globally, while only being able to view the
local history, as discussed in [78]. We expect synthesis of local strategies directly from
a global quantitative specification to also be undecidable. However, in our setting,
each strategy is synthesised on a single component, considering all other components
as black boxes, and hence adversarial. To impose dependencies between components,
assume-guarantee synthesis is a convenient way of encoding assumptions on other
components and the overall environment in the local specifications.

2.4 Applications and Tools

We conclude this chapter by reviewing existing applications of strategy synthesis for
the control of (autonomous) systems, and by discussing existing tools.

Applications. Strategy synthesis for an autonomous system can be interpreted as
finding a controller that maintains the system state in a desirable condition. Inputs
are received from sensors, and the strategy produces commands to control the actua-
tors. Classical control theory is typically concerned with the continuous dynamics (in
time and/or space) of systems, but since we are working with finite-state games we
are mainly concerned with the discrete dynamics. The continuous dynamics can be
discretised and thus approximated in the discrete setting, which has been employed
for the control of autonomous systems, allowing one to synthesise controllers that
satisfy temporal logic specifications in a non-stochastic setting [13, 81], as well as for
stochastic systems [127]. In the spirit of hybrid systems [73], operating in the discrete
domain means that we can model higher-level dynamics such as transitions between
operating regimes. The errors introduced in the discretisation of continuous space
models can be formally bounded, see, for example [126, 128] for stochastic systems,
an approach that we discuss in a case study in Section 8.4.

The use of techniques such as formal verification, validation and synthesis from
specifications for autonomous vehicles has been advocated, for example, in [24, 131],
resulting from observations during the DARPA Urban Challenge 2007 [51]. Formal
analysis, including the automatic synthesis of controllers from formal systems models,
has also attracted interest for industrial applications such as aerospace, energy and
industrial automation, for example in the iCyPhy consortium [66], where a strong case
is made for the compositional design of controllers. In the context of security and
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defence, games with stochasticity have been applied to compute strategies that are
deployed to support decision making procedures, for example in patrol planning [141],
port defence [122], and infrastructure protection [22].

Tools. Several tools for synthesis of strategies have been developed, and we highlight
tools relevant to the topics that we focus on in this thesis. QUASY [31] is a tool
for the synthesis of strategies for MDPs and non-stochastic games with mean-payoff
objectives. An implementation of strategy synthesis methods for single-dimensional
expected ratio reward objectives is presented in [134]. MultiGain synthesises strate-
gies for MDPs from multi-dimensional mean-payoff objectives, both for expectations
and satisfaction semantics [21]. For stochastic games, GIST is a tool synthesising
strategies with qualitative !-regular properties, that is, with almost sure and posi-
tive satisfaction. Moreover, the tool GAVS+ offers algorithms for value- and policy
iteration in stochastic games for reachability objectives [45]. The PRISM-games 1.0
tool implements synthesis of one-dimensional expected total reward and reachabil-
ity objectives for stochastic games [39], and is itself an extension of PRISM [84], a
tool for the verification and synthesis of probabilistic systems. The MOCHA tool
implements model checking and synthesis for alternating-time temporal logic (ATL)
specifications for non-stochastic games (formulated as reactive modules [1]), as well
as automatic checking of assume-guarantee queries formulated using refinement rela-
tions [2]. Finally, the TuLiP toolbox [138] provides synthesis for GR1 specifications
via finite-state abstractions of systems with linear (continuous) dynamics.

2.5 Summary

In this chapter we discussed previous work in the areas of strategy synthesis and com-
positional analysis, which form a foundation upon which we build the contributions of
this thesis. Our work on strategy synthesis for multi-objective stochastic games gen-
eralises three branches in strategy synthesis: it augments the multi-objective MDP
branch, the non-stochastic game branch, and the single-objective stochastic game
branch, and each extension is the source of new challenges. Further, our assume-
guarantee framework encompasses ideas from several compositional frameworks, both
for systems with stochasticity and with uncontrollable environment, but, in order to
provide the capability for assume-guarantee strategy synthesis, we have to fine-tune
the game composition operator. To validate our results, we implement our frame-
work as PRISM-games 2.0, an extension of the PRISM-games tool, and draw on the
previous case studies to justify the models that we analyse.
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In this chapter we introduce the technical background material, including known
results that we employ in this thesis. We first give notations that we use throughout
in Section 3.1. In Section 3.2, we review the models of stochastic systems that we
use (discrete-time Markov chains, probabilistic automata and stochastic games). In
Section 3.3, we define our formulation of strategies, which use stochastically updated
internal memory, and we explain how to apply them in order to control systems.
In Section 3.4, we discuss the specifications that we employ throughout the thesis,
which are Boolean combinations of objectives defined using mean-payoffs and ratios
of rewards under expectation and almost sure satisfaction semantics. Section 3.5
is dedicated to reviewing previously known results on strategy synthesis in relevant
non-stochastic and stochastic systems, as well as approaches to multi-objective opti-
misation problems. Finally, in Section 3.6, we introduce a running example.

3.1 Notation

We first introduce notations that we use throughout.

17
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Tuples and Sequences. Given sets Q1, Q2, . . ., we define the Cartesian product
Q1 ⇥ Q2 ⇥ · · · to be the set of tuples {(q1, q2, . . .) | 8i . qi 2 Qi}. For a tuple q =

(q1, q2, . . .), we write qi for the ith component; sometimes, for clarity, we write [q]i.
Given a set Q, we denote by Q⇤ and Q! the sets of finite and infinite sequences over
Q, respectively. We denote by ✏ the empty sequence (note that ✏ 2 Q⇤ but ✏ 62 Q!).
Concatenation of two sequences  and ⇢ is written ⇢. Given a finite sequence ⇢,
we write ⇢n for the sequence that n times repeats ⇢, and we write ⇢! for the infinite
sequence repeating ⇢ ad infinitum. Given a finite sequence ⇢ = q0q1 . . . qn, we denote
by |⇢| def

= n + 1 its length, and define first(⇢)
def
= q0 and last(⇢)

def
= qn. A prefix of

a sequence ⇢ is a finite sequence  such that ⇢ = ⇢0 for some sequence ⇢0. We
sometimes use the notation (qi)i�0 to abbreviate the sequence q0q1q2 . . . (or simply an
ordered or unordered collection {q0, q1, . . .}).

Relations and Functions. A relation R between sets Q and E is a subset R ✓
Q ⇥ E, and it is a function from Q to E, written f : Q ! E, if no q 2 Q has more
than one e 2 E such that R(q, e). A function is total if f(q) is defined for all q, and it
is partial if there can be unassigned q 2 Q. The notation g ✓ f is defined by recalling
that the functions g and f are relations.

Probability. Denote by P(Q) the powerset of a set Q. A measurable space (Q,Q)

is such that Q ✓ P(Q) is a sigma-algebra of Q, that is, Q 2 Q and Q is closed under
complement and countable unions. Given measurable spaces (Q,Q) and (E, E), a
function f : Q ! E is (Q, E)-measurable (or simply measurable if the context is
clear) if, for all e 2 E , f�1(e) 2 Q, that is, f preserves measurability. A (discrete)
probability space is a tuple (Q,Q,P), where Q is a (countable) set of outcomes, the
event space Q is a sigma-algebra of Q, and P : Q ! [0, 1] is a probability measure,
that is, for any countable collection (Qi)i�0 of disjoint elements of Q, P(

S
i�0 Qi) =P

i�0 P(Qi). Given a (discrete) probability space (Q,Q,P), and a measurable space
(E, E), a (discrete) random variable (RV) is a (Q, E)-measurable function X : Q! E.
Given a discrete RV X, its expectation is E[X]

def
=
R
q2Q X(q)P(q); and we define

the discrete probability distribution (or distribution for short) µ over E by µ(e)
def
=

P(X�1(e)) for all e 2 E. The support of µ is supp(µ)
def
= {e 2 E |µ(e) > 0}. We

denote by D(E) the set of all distributions over E with finite support. A distribution
µ 2 D(E) is Dirac if µ(e) = 1 for some e 2 E, and if the context is clear we just
write e to denote such a distribution. We denote by µ1 ⇥ µ2 2 D(E1 ⇥ E2) the
product distribution of the distributions µ1 2 D(E1) and µ2 2 D(E2), defined by
µ1 ⇥ µ2(e1, e2)

def
= µ1(e1) · µ2(e2) for all e1 2 E1 and e2 2 E2.
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Vector and Matrix Algebra. Synthesis for a multi-objective query with n ob-
jectives can be seen as a maximisation along n dimensions, one for each objective.
Hence, we operate in the vector space Rn. We use the notation [~v]s to refer to the
sth component vs of a vector ~v, and [A]s,t to refer to the sth row and tth column
As,t of a matrix A. We use the standard vector dot product and matrix multiplica-
tion. Further, given vectors ~u,~v with equal dimensions, ~u • ~v is the vector ~w with
[w]i

def
= ui · vi for all i. Given a vector ~x, its Euclidean norm is k~xk def

=
p
~x · ~x,

and its supremum norm is k~xk1 def
= supi xi. Correspondingly, the induced ma-

trix norm of A is kAk1
def
= supi

P
j |Aij|. This norm is sub-multiplicative, that is,

kABk1  kAk1 kBk1 for matrices A and B. Given a vector ~v with entries indexed
by a set S, we denote by ~vE the vector with entries indexed by the subset E ✓ S, such
that [vE]s = vs for all s 2 E. Similarly, given a matrix A with entries indexed by a
set S, we denote by AE the |E|⇥ |E| submatrix of A with entries indexed by E ✓ S,
such that [AE]s,t = As,t for s, t 2 E. We denote by IS the |S|⇥ |S| identity matrix. A
square matrix A with non-negative entries is (right) stochastic if

P
t As,t = 1 for all

rows s of A.

Topology. We recall topological concepts from [114]. A subset X ✓ Rn is open if,
for any ~x 2 X, there is a ✏ > 0 such that, for all ~y 2 Rn with k~x � ~yk < ✏, we have
~y 2 X. A set X is closed if its complement, Rn\X, is open. The closure cl(X) of a
set X is the smallest closed set containing X. A set X is bounded if there is a finite
R 2 R such that k~x � ~yk < R for all ~x, ~y 2 X. A set is compact if it is closed and
bounded. The interior of a set X is the largest open set contained in X, and the
boundary of a set X is the closure of X less its interior. A set X ✓ Rn is convex if,
for all ~x1, ~x2 2 X, and all 0  ↵  1, the convex combination ↵~x1+(1�↵)~x2 is in X.
The convex hull conv(X) of a set X is the intersection of all convex sets containing
X. Given a set X, its downward closure dwc(X) is {~y 2 Rn | 9~x 2 X . ~y  ~x}, and its
upward closure upc(X) is {~y 2 Rn | 9~x 2 X . ~x  ~y}. Let C(X) be the set of extreme
points of dwc(X) for a closed convex set X. A half-space for a given vector ~a 2 Rn

and scalar b 2 R is a set {~x 2 Rn | ~x · ~a  b}, and its boundary is the hyperplane
{~x 2 Rn | ~x · ~a = b}. A convex polytope is an intersection of a finite number of half-
spaces. Given a set X, and a scalar ↵, we denote by ↵ ⇥X the set {↵ · ~x | ~x 2 X}.
Given sets X, Y ✓ Rn, their Minkowski sum is the set X+Y

def
= {~x+~y | ~x 2 X^~y 2 Y };

we also define X + ~x
def
= X + {~x}. Given a vector ~v 2 Rn and tuple Y 2 (P(Rn))S, we

let [Y + ~y]s
def
= Ys + ~y. We define, for v and ✏⌧ v, the rounding bvc✏ def

= bv/✏c · ✏.
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3.2 Stochastic Models

In this section we review the models under consideration in the thesis.

3.2.1 Discrete-Time Markov Chains

The simplest model we are using in this thesis is a discrete-time Markov chain
(DTMC). A DTMC models a system as a set of states, each representing a configu-
ration of the system, together with transitions between states, which are determined
via probability distributions depending only on the current state. We define DTMCs
with labels, which we use later in our assume-guarantee framework to synchronise
components. Action labels A are placed on states, and model observable behaviours.
We additionally introduce a dedicated label ⌧ , which can be seen as internal: it is not
synchronised in the composition, and cannot be used in specifications.

Definition 3.1. A discrete-time Markov chain D is a tuple hS, &,A,�,�i, where

• S is a nonempty, countable set of states;

• & 2 D(S) is an initial distribution;

• A is a set of actions;

• � : S ! A [ {⌧} is a partial labelling function; and

• � : S ⇥ S ! [0, 1] is a transition function, such that
P

t2S �(s, t) = 1 for all
s 2 S.

We use the initial distribution & rather than an initial state as it simplifies some
definitions below. Define the successors of s 2 S as �(s)

def
= {t 2 S |�(s, t) > 0}.

If a label is defined for a state s, that is, �(s) is defined, then we sometimes write
s = (a, µ), where a

def
= �(s) and µ(t)

def
= �(s, t) for all t 2 S. We call such an

action-distribution pair (a, µ) a move. The behaviours of the system modelled by a
DTMC are represented by the executions, or paths, through the DTMC, where a path
� = s0s1s2 . . . is a (possibly infinite) sequence of states S such that, for all i � 0,
�(si, si+1) > 0. We denote the set of finite (infinite) paths of a DTMC D by ⌦fin

D
(⌦D). Note that paths do not have to start in the support of the initial distribution
&. A finite path � 2 ⌦fin

D reaches a subset of states T ✓ S if last(�) 2 T , and we
denote by FT

def
= {� 2 ⌦fin

D | last(�) 2 T} the set of paths reaching T . If there is a path
starting at a state s that reaches T , we say that T is reachable from s. We use the
notion of traces in order to reason about the sequences of actions along executions of
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the DTMC. Given a path � = s0s1s2 . . ., its trace trace(�) is the sequence of actions
a0a1 . . . along � with ⌧ projected out. Formally, we let a0a1a2

def
= �(si

0

)�(si
1

)�(si
2

) . . .

along �, where i0 is the least index such that �(si
0

) is defined and, for all j � 0,
ij+1 is the least index such that �(si

j+1

) is defined, but �(sk) is not defined for all
ij < k < ij+1. Then trace(�)

def
= proj{⌧}(a0a1 . . .), where, for ↵ ✓ A [ {⌧}, proj↵ is the

morphism defined by proj↵(a) = a if a 62 ↵, and ✏ (the empty trace) otherwise. A
trace w 2 A⇤ [A! is also called an A-trace. Given a finite trace w, paths(w) denotes
the set of minimal finite paths with trace w, that is, � 2 paths(w) if trace(�) = w and
there is no path �0 6= � with trace(�0) = w and �0 being a prefix of �.

Probability Measures. To reason about the probabilistic behaviour of a DTMC
D, we define a probability measure over its infinite paths, using the sigma-algebra
generated by the cylinder sets of finite paths ⌦fin

D , where the cylinder set of a finite
path � 2 ⌦fin

D is the set of infinite paths with prefix �. Thus, given a finite path � =

s0s1s2 . . . sk of D, and a distribution # 2 D(S), we define the path distribution PD,#(�),
the measure of its cylinder set, by PD,#(�)

def
= #(s0)

Qk�1
l=0 �(sl, sl+1). We can use #

to evaluate the probability measure starting with an arbitrary initial distribution.
If # = &, we sometimes write just PD, instead of PD,& . We also define the trace
distribution P̃D,#, of D by P̃D,#(w)

def
=
P

�2paths(w) PD,#(�), for traces w 2 A⇤, and
similarly write P̃D

def
= P̃D,& . The path and trace distributions uniquely extend to infinite

paths and traces, respectively, due to Carathéodory’s extension theorem (Theorem
1.53 of [79]). The expectation ED,#[⇢] of a measurable function ⇢ over infinite paths
in a DTMC D is

R
�2⌦D

⇢(�)dPD,#(�). Given a measurable set HD ✓ ⌦D of paths, we
define the conditional expectation ED,#[⇢ |HD] by

R
�2HD

⇢(�)dPD,#(�)/PD,#(HD).
We recall at this point some results from probability theory. First, we state the

following immediate consequence of Markov’s inequality (Lemma 1.7.1 in [115]).

Lemma 3.1. Let X be a bounded RV such that P(X � v) = 1. Then E[X] � v.

We also make use of the Lebesgue dominated convergence theorem.

Lemma 3.2 (Lemma 8.10.5 in [110]). Let µ be a distribution, let (fn)n�0 be mea-
surable functions such that f = limn!1 fn exists, and let g be an integrable function
bounding the absolute value of fn, for all n � 0. Then

R
fdµ = limn!1

R
fndµ.

Bottom Strongly Connected Components. A bottom strongly connected com-
ponent (BSCC) of a DTMC D is a nonempty maximal subset of states B ✓ S such
that every state in B is reachable from any other state in B, and no state outside B
is reachable. A state s 2 S of a DTMC D is called recurrent if it is in some BSCC
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Figure 3.1: Example of a DTMC. The states are shown as circles, labelled by actions, with
probabilities annotating the arrows.

B of D. A state which is not recurrent is called transient. A DTMC hS, &,A,�,�i
is irreducible if S is a BSCC. Conversely, a BSCC endowed with an initial state
and a labelling function can be interpreted as an irreducible DTMC. The station-
ary distribution µB 2 D(S) of a BSCC B is defined as the solution to the equations
P

s2B µB(s)·�(s, t) = µB(t) for all t 2 B, and is characterised by the following lemma.

Lemma 3.3 (Proposition M.2 in [64]). Given a BSCC B, its stationary distribution
µB exists and is unique.

Example 3.1. Consider the DTMC shown in Figure 3.1. It consists of five states
S = {s0, s1, s2, s3, s4}, and the initial distribution is the Dirac distribution s0. The
transition function is given by �(s0, s1) = �(s0, s3) =

1
2
, �(s1, s2) = 1, �(s2, s1) =

1, �(s3, s0) = �(s3, s4) = 1
2
, and �(s4, s3) = �(s4, s1) = 1

2
. The action set is

A = {a}, and the labelling function is given by �(s1) = �(s3) = a. Note that ⌧ is not
in A, and that no labels are assigned to s0, s2 and s4. Since s1 and s3 are labelled,
we have the move s1 = (a, s2), where s2 stands for a Dirac µ1 with µ1(s2) = 1, and
the move s3 = (a, µ3), where µ3(s0) = µ3(s4) =

1
2
.

An example path through the DTMC is �1 = s0(s1s2)!, and its probability is
PD(�1) = 1

2
, which is just the probability of the cylinder set of s0s1. Another example

path is �2 = (s0s3)!, and its probability is PD(�2) = limn!1(1
2
)2⇥n = 0. Yet another

example path is �3 = (s1s2)!, which does not start at s0, but we can evaluate the
probability of �3 when starting at s1, namely PD,s

1

(�3) = 1. The traces trace(�1),
trace(�2) and trace(�3) all evaluate to a

!. Starting at s0, the trace a

! has probability
P̃D(a!) = 1, since all paths from s0 contain a infinitely often. There is one BSCC
in the DTMC, consisting of {s1, s2}. The states {s0s3} do not constitute a BSCC,
since the transitions from s0 to s1 and from s3 to s4 have non-zero probability. We
note that the BSCC {s1, s2} is reached with probability one.
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3.2.2 Probabilistic Automata

To model systems that exhibit both probabilistic and nondeterministic behaviour, we
use probabilistic automata (PAs) as introduced by Segala [118]. The state space S

of a PA is partitioned into S� and S⇤, where the successors are chosen according to
a probability distribution (as in DTMCs) and nondeterministically, respectively. We
mention several interpretations of nondeterminism when modelling systems. Firstly,
we can model that the successor can be determined by a controller that we are in-
terested in finding. Secondly, we can model that the successor is determined by an
environment, and we are interested in the behaviours of the system under any en-
vironment. Finally, we can also model that the successors are determined by some
unknown distribution, which we are not willing, or able, to fix at the time the model
is analysed. In this thesis we consider nondeterminism in PAs arising from an envi-
ronment or unknown distributions, and later, in Section 3.2.3, when defining games,
return to interpreting nondeterminism as controlled by strategies.

Definition 3.2. A probabilistic automaton M is a tuple hS, (S⇤, S�), &,A,�,�i,
where

• S is a nonempty, countable set of states, which is partitioned into the control
states S⇤ and the stochastic states S�;

• & 2 D(S⇤) is an initial distribution;

• A is a set of actions;

• � : S� ! A [ {⌧} is a (total) labelling function; and

• � : S ⇥ S ! [0, 1] is a transition function, such that �(s, t) = 0 for all
s, t 2 S⇤, �(s, t) 2 {0, 1} for all s 2 S⇤ and t 2 S�, and

P
t2S⇤

�(s, t) = 1

for all s 2 S�.

In stochastic states, the transition function assigns probabilities in the same way
as in a DTMC. For control states, however, the transition relation merely indicates
which successors are available to choose from. Paths through a PA M are defined
as for DTMCs, and are sequences alternating between control states and stochastic
states. We denote by ⌦fin

M (⌦M) the sets of finite (infinite) paths of M. In order to
define a probability measure for a PA, we have to first resolve the nondeterministic
choices at control states, which is done by applying a strategy to the PA to induce a
DTMC. We defer the discussion of strategies and their application to Section 3.3. A
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PA hS, (S⇤, S�), &,A,�,�i where |�(s)| = 1 for all s 2 S⇤ can be seen as a DTMC
hS, &,A,�,�i, where the control states of the PA are seen as stochastic states of the
DTMC with Dirac distributions, and the labelling function � is the partial function
assigning the same labels to S� ✓ S as in the PA, and no labels to S⇤ ✓ S. In
the rest of the thesis, if not explicitly stated otherwise, we assume that PAs have no
deadlocks, that is, |�(s)| � 1 for all s 2 S.

As in DTMCs, we sometimes write a stochastic state s 2 S� as a move (a, µ),
where a = �(s) and µ(t) = �(s, t) for all t 2 S⇤. Since the labelling function of a
PA is total, each stochastic state corresponds to a move. If �(s, (a, µ)) > 0, we write
s

a�! µ for the transition labelled by a 2 A[ {⌧}, called an a-transition. Conversely,
if s a�! µ, we have �(s, (a, µ)) > 0 and �(a, µ) = a. A move (a, µ) is incoming to
a control state t if µ(t) > 0, and is outgoing from a control state s if s a�! µ. An
action is enabled in a control state s if there is an outgoing a-transition from s.

We note that several moves with the same label might be outgoing at a control
state. A Markov decision process (MDP) is a special case of a PA, where in each state,
all outgoing moves have distinct labels, but PAs allow more flexible development
of compositional models due to the relaxation of this requirement. However, since
strategies in PAs can select moves, not just actions, properties for PAs and MDPs
are equivalent in our case.

End Components. An end component (EC) is a substructure of a PA that is closed
under the transition relation and strongly connected, and thus analogous to BSCCs
for DTMCs [7]. Formally, an EC E of a PA M is a pair (SE ,�E) with ; 6= SE ✓ S

and ; 6= �E ✓ �, such that (i) for all s 2 SE \ S�,
P

t2S⇤
�E(s, t) = 1; (ii) for all

s 2 SE , �E(s, t) > 0 only if t 2 SE ; and (iii) for all s, t 2 SE , there is a finite path
s0s1 . . . sl 2 ⌦fin

M within E (that is, si 2 SE for all 0  i  l), such that s0 = s and
sl = t. An end component is a maximal end component (MEC) if it is maximal with
respect to the pointwise subset ordering. A PA hS, (S⇤, S�), &,A,�,�i is irreducible
if (S,�) is a MEC. Conversely, a MEC endowed with an initial distribution and a
labelling function can be interpreted as an irreducible PA. States of a PA that are in
some MEC are called recurrent, otherwise they are called transient.

Example 3.2. Consider the PA M shown in Figure 3.2. It consists of six states
S = {s0, s1, s2, s3, s4, s5}, which are partitioned into control states S⇤ = {s0, s2, s4}
and stochastic states {s1, s3, s5}. The initial distribution is the Dirac distribution
s0, and the transition function is given by �(s0, s1) = �(s0, s3) = 1, �(s1, s2) = 1,
�(s2, s1) = �(s2, s5) = 1, �(s3, s0) = �(s3, s4) =

1
2
, �(s4, s1) = �(s4, s3) = 1, and
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Figure 3.2: Example of a PA. Stochastic states and control states are shown as circles
and squares, respectively. Probabilities are attached to the arrows, and labels annotate the
stochastic states.

�(s5, s2) = 1, and so alternates between control and stochastic states. The action
set is A = {a}, and the (total) labelling function is given by �(s1) = �(s3) = a

and �(s5) = ⌧ . Note that from s0 there are two moves with the same action label,
s1 = (a, s2) and s3 = (a, µ3) with µ3(s0) = µ3(s4) =

1
2
.

The states s0, s2 and s4 exhibit nondeterminism, which can be resolved by a
strategy. The DTMC D in Figure 3.1 can be derived from M by applying a strat-
egy that picks s1 and s3 with uniform probability 1

2
at s0 and s4, and picks s1 with

probability one at s2. The probability measure of M under this strategy is pre-
cisely the probability measure of D. Note that D does not contain all states of M,
since not all states are reachable under this strategy. M has two maximal end com-
ponents, namely E1 = ({s0, s3, s4}, {(s0, s3, 1), (s3, s0, 12), (s3, s4,

1
2
), (s4, s3, 1)}) and

E2 = ({s1, s2, s5}, {(s1, s2, 1), (s2, s1, 1), (s2, s5, 1), (s5, s2, 1)}). We note that ({s1, s2},
{(s1, s2, 1), (s2, s2, 1)}) and ({s2, s5}, {(s2, s5, 1), (s5, s2, 1)}) are also end components,
but not maximal, since they are subsumed by E2. In contrast to BSCCs, end com-
ponents may have outgoing transitions, as long as these are originating from control
states, as is the case in s0 and s4 in E2. The PA M is not irreducible. If we change
the initial distribution to the Dirac & = s1, M becomes irreducible, since it consists
entirely of the MEC E2 (under this modification s0, s3 and s4 become unreachable).

3.2.3 Stochastic Games

The model of primary interest in this thesis is that of stochastic games. A stochastic
game, in contrast to a PA, can differentiate between more than one type of nonde-
terminism, each controlled by a separate player. We are concerned with turn-based
two-player games, where at each state, at most one player can make a choice, and
where Player 1 represents the controllable part for which we want to synthesise a
strategy, while Player 2 represents an uncontrollable environment.
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Definition 3.3. A turn-based two-player stochastic game G (henceforth simply
called game) is a tuple hS, (S⌃, S⇤, S�), &,A,�,�i, where

• S is a nonempty, countable set of states, which is partitioned into the Player 1

states S⌃, Player 2 states S⇤, and stochastic states S�;

• & 2 D(S⌃ [ S⇤) is an initial distribution;

• A is a set of actions;

• � : S� ! A [ {⌧} is a (total) labelling function; and

• � : S ⇥ S ! [0, 1] is a transition function, such that �(s, t) = 0 for all s, t 2
S⌃[S⇤, �(s, t) 2 {0, 1} for all s 2 S⌃[S⇤ and t 2 S�, and

P
t2S⌃[S⇤

�(s, t) =

1 for all s 2 S�.

We call S⌃ [ S⇤ the player states. The transition function assigns probabilities at
stochastic states, as for DTMCs, and at player states the transition function defines
the available choices, as for PAs. However, the Player 1 and Player 2 states are
controlled by separate players, and hence the nondeterminism is resolved by separate
strategies, as we explain in Section 3.3 below. A game is non-stochastic if �(s, t) 2
{0, 1} for all s, t 2 S. The set of terminal states Term contains all states s 2 S whose
only outgoing transitions are self-loops s a�! s. A game is stopping if Term is reached
with probability one under any strategy pair.

Paths through a game G are defined as for PAs, and we denote by ⌦fin

G (⌦G) the
sets of finite (infinite) paths of G. Note that paths of games alternate between player
states and stochastic states. All definitions and properties of games carry over to
PAs, since a game without Player 1 states, that is, S⌃ = ;, is equivalent to the PA
hS, (S⇤, S�), &,A,�,�i. To enable this equivalence, Definition 3.3 allows a countable
state space and a distribution over initial states, but throughout we assume that
games with both types of nondeterminism present, that is, S⌃ 6= ; and S⇤ 6= ;, are
finite, and have a single initial state s

init

, that is, &(s
init

) = 1. Assuming a single initial
state is without loss of generality, since we can always add an initial state and a single
outgoing move with the initial distribution. Further, a game where |�(s)| = 1 for all
player states s 2 S⌃ [ S⇤ can be seen as a DTMC hS, &,A,�,�i, where the player
states of the game are seen as stochastic states of the DTMC. As for PAs, in the
rest of the thesis, if not explicitly stated otherwise, we assume that games have no
deadlocks, that is, |�(s)| � 1 for all s 2 S.
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Figure 3.3: Example of a stochastic game. Stochastic states, and states of Player 1 and
Player 2, are shown as �, ⌃ and ⇤, respectively.

Example 3.3. Consider the game G in Figure 3.3. It consists of six states {s0, s1, s2,
s3, s4, s5}, partitioned into Player 1 states S⌃ = {s0}, Player 2 states S⇤ = {s2, s4},
and stochastic states S� = {s1, s3, s5}. Note that, apart from this state partition,
the game G is identical to the PA M in Figure 3.2. The Player 2 states s2 and s4

represent uncontrollable nondeterminism, while the Player 1 state s0 is controllable.

3.3 Strategies

Nondeterminism in a game G is resolved by strategies, one for each player; hence, for
PAs, a single strategy is sufficient. A strategy maps the states along a path seen so far
(the history) to a distribution over available moves. We represent a strategy as a state
machine with a (possibly infinite) state space M representing the memory elements,
where transitions between memory elements, triggered by transitions in the game,
can be stochastic. This formulation is also known as the stochastic policy graph [96].

Definition 3.4. A strategy ⇡ of Player 1 is a tuple hM, ⇡c, ⇡u, ⇡di, where

• M is a nonempty, countable set of memory elements;

• ⇡c : S⌃ ⇥M ! D(S) is a choice function such that ⇡c(s,m)(t) > 0 only if
t 2 �(s);

• ⇡u : M⇥ S ! D(M) is a memory update function; and

• ⇡d : S ! D(M) is an initial distribution on the memory.

A strategy � = hN, �c, �u, �di of Player 2 is defined symmetrically.

As the game proceeds, in a Player 1 state s 2 S⌃, the next move (a, µ) is picked
according to the distribution ⇡

c

(s,m), based on the current memory m 2M of Player 1

at state s. Symmetrically, in Player 2 states s 2 S⇤, the next move is picked according
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to the distribution �
c

(s, n), based on the memory n 2 N of Player 2 at s. Then both
players update their memory based on the current memory and the selected move
(a, µ), that is Player 1 picks the next memory m

0 with probability ⇡
u

(m, (a, µ))(m0),
and symmetrically for Player 2. The successor t of the move (a, µ) is then sampled
from µ, and both players again update their memory, that is, Player 1 picks the next
memory m

00 with probability ⇡
u

(m0, t)(m00), and symmetrically for Player 2.
The memory of a strategy is internal to the player owning the strategy, and cannot

be observed directly by the other player. In our two-player game setting, Player 1

applies its strategy before Player 2, and so Player 2 can only infer the distribution
over the memory of Player 1 given the history, which is observed by both players.
The strategy of Player 2 is fixed after Player 1 already fixed a strategy, so the memory
of Player 2 is never visible to Player 1. Stochastically updated memory is therefore only
beneficial to Player 1; however, in games with more than two players, a player can infer
the memory distribution of all other players that pick their strategies beforehand, and
so stochastic memory update is beneficial for all but the last player to pick its strategy.
We explain more about stochastic memory update in Sections 3.3.1 and 5.1.1.

A strategy is deterministic (memory) update (DU) if its memory update functions
map to Dirac distributions. DU strategies can be thought of as keeping the prefixes
of paths ⌦G as their memory, and we sometimes write a DU strategy ⇡ for Player 1

as a function ⇡ : ⌦fin

G ! D(S�), where ⇡(�)(t) > 0 only if t 2 �(last(s)) and
last(s) 2 S⌃ (and symmetrically for Player 2). To highlight that memory might
not be deterministically updated, we sometimes speak of stochastic (memory) update
(SU) strategies. If a strategy can be represented without updating memory, that is,
⇡

u

(m, s) = m for all s 2 S, it is called memoryless. If the choice functions of a DU
strategy are Dirac distributions, that is, ⇡

c

(s,m) = t for some t 2 S, the strategy is
called deterministic. A memoryless deterministic strategy is called MD.

3.3.1 Applying Strategies Consecutively

Applying a strategy for a given player in a game resolves the nondeterminism con-
trolled by that player. When applying strategies one after the other, from a two-player
game we obtain a PA by applying the Player 1 strategy, and from a PA we obtain a
DTMC by applying the Player 2 strategy. Applying a SU strategy ⇡ for Player 1 in
a game yields a partially observable system for Player 2, since the internal memory
of the applied Player 1 strategy is hidden from Player 2 [75]. Hence, given a strategy
⇡ and a path �, we let the belief d

⇡
� be the distribution of Player 1 memory seen by
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Player 2 after �; formally, we inductively define

d

⇡
s (m)

def
= ⇡

d

(s)(m) d

⇡
�s(m)

def
=
X

n2M
d

⇡
�(n) · ⇡u

(n, s)(m),

for all memory elements m 2M and all paths �s 2 ⌦fin

G (note that s can be a player
state or a move). If the strategy ⇡ is clear from context, we write d� = d

⇡
�. We call

the set {d⇡� |� 2 ⌦fin

G } of possible distributions over memory elements the belief space
from ⇡. Note that the belief space can be infinite even if M is finite.

The PA G⇡ induced by a Player 1 strategy ⇡ does not contain memory elements but
distributions over memory in the states, which are the most Player 2 is allowed to ob-
serve about Player 1. The induced PA has states of the form (s, d�) and (s, (a, µ), d�),
where the belief from the strategy is d�. A state (s, d�) means that the game is in
the Player 2 state s, which remains in control of Player 2 in the induced PA. A state
(s, (a, µ), d�) means that the game is in the Player 1 state s, and the next move, (a, µ)
is already decided by the Player 1 strategy. We observe that, if the belief space from
the applied strategy is finite, then the induced PA is finite. In order to induce the
PA G⇡, we derive the transition function of the PA from the transition function of
the game, which we do by defining the distributions that occur in the moves of G⇡.
Given a move (a, µ) 2 S� in G, and a path �(a, µ) 2 ⌦fin

G , we define the distribution
µ⇡
d

�(a,µ)

, which we use below to define the moves (a, µ⇡
d

�(a,µ)

) in the induced PA G⇡, by

µ⇡
d

�(a,µ)

(t, d�(a,µ)t)
def
= µ(t) if t 62 S⌃

µ⇡
d

�(a,µ)

(t, (b, ⌫),d�(a,µ)t)
def
= µ(t) ·

X

m2M
d�(a,µ)t(m) · ⇡

c

(t,m)(b, ⌫) if t 2 S⌃,

for all t 2 S⌃ [S⇤ and (b, ⌫) 2 S�. For the initial distribution of the induced PA, we
define µ⇡ def

= µ⇡
d

✏

in the same way, where we use the empty path ✏ instead of �(a, µ).

Definition 3.5. Let ⇡ be a Player 1 strategy, and let G = hS, (S⌃, S⇤, S�), &,A,�,�i
be a game. The induced PA G⇡ is hS 0, (S 0

⇤, S
0
�), &⇡,A,�0,�0i, where S 0

⇤ ✓ (S [ S ⇥
S�) ⇥ D(M) is defined inductively as the reachable control states, where �0 and �0

are such that, for each finite path �(a, µ) 2 ⌦fin
G , we have the transitions

(last(�), d�)
a�!0µ⇡

d

�(a,µ)

(last(�), (a, µ), d�)
a�!0µ⇡

d

�(a,µ)

.

After applying a Player 1 strategy to a game to induce a PA, we need to apply
a Player 2 strategy to the PA to obtain an induced DTMC. Applying a Player 2
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strategy � to a PA M = hS, (S⇤, S�), &,A,�,�i is defined symmetrically, namely,
we apply � to the equivalent game hS, (;, S⇤, S�), &,A,�,�i, yielding an induced
PA M� = hS 0, (S 0

⇤, S
0
�), &�,A,�0,�0i with |�0(s)| = 1 for all s 2 S 0, and so we get

the induced DTMC hS 0, &�,A,�0,�0i. If no deadlocks are in M, |�0(s)| = 1 holds,
and otherwise imposing a fairness condition on � is sufficient, as we explain below
in Section 4.2.3. Note that applying a Player 2 strategy resolves all nondeterminism,
and so we can include the actual memory of Player 2 in the states of the DTMC, and
do not have to use the belief. Thus, for a Player 2 strategy �, we assume without loss
of generality that the belief d�� for any path � is a Dirac for some memory element of
�.

To recover a path for G from a path in G⇡, we define the mapping pathG : ⌦fin

G⇡

!
⌦fin

G inductively by

pathG((s, d))
def
= s, pathG((s, d)(a, µ

⇡
d

0)�)
def
= s(a, µ)pathG(�),

pathG((s, (a, µ), d))
def
= s, pathG((s, (a, µ), d)(a, µ

⇡
d

0)�)
def
= s(a, µ)pathG(�).

To apply strategies of both players one after the other, we need to define the strategy
�0 of Player 2 for the PA G⇡ induced by a Player 1 strategy ⇡, given a strategy �

of Player 2 for the game G: we define �0(�) = (a, µ⇡
(a,µ)), where (a, µ) = �(), for

any path � 2 ⌦fin

G⇡

with  = pathG(�) and last() 2 S⇤. Then, given a game G
and strategies ⇡ and �, we define the induced DTMC G⇡,� def

= (G⇡)�
0 , where �0 is �

mapped to G⇡ as defined above. We also define the path mapping for � 2 G⇡,� by
pathG(�) = pathG(pathG⇡

(�)). We then define the probability measure for a PA M
under strategy � by P�

M(�)
def
=
P

{PM�(�0) | pathM(�0) = �} for any path � 2 ⌦fin

M, and
for a game G under a strategies ⇡ and � by P⇡,�

G (�)
def
=
P

{PG⇡,�(�0) | pathG(�
0) = �}

for any path � 2 ⌦fin

G .

Example 3.4. We illustrate strategy application in Figure 3.4. Consider the game
on the left, which consists of one Player 1 state, one Player 2 state, and two stochastic
states. We apply the following Player 1 strategy ⇡: the memory is M = {m0,m1}, the
choice function is defined as ⇡c(s2,m0) = s3 and ⇡c(s2,m1) = s1; the memory update
function is defined as ⇡u(m0, s0)(m1) = 1 (going from s1 to s0), ⇡u(m1, s0)(m1) = 1

(going from s2 to s0), ⇡u(m0, s1)(m0) = ⇡u(m1, s1)(m0) = 1 (going from s0 or s2 to
s1), ⇡u(m0, s2)(m0) = ⇡u(m0, s2)(m1) =

1
2

(going from s1 to s2), ⇡u(m1, s2)(m1) = 1

(going from s3 to s2), and ⇡u(m0, s3)(m1) = ⇡u(m1, s3)(m1) = 1 (going from s0 or
s2 to s3); and the initial distribution is ⇡d(s0) = m1 (we only need to give here
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Figure 3.4: Stochastic game G (left) and PA G⇡ (right), induced by the strategy ⇡ (centre)
of Example 3.4. Distributions are uniform if not otherwise indicated. The labels [p0, p1]
show the belief d 2 D(M), where pi is the probability of mi.

the initial memory for the initial state of the game). The strategy is illustrated in
Figure 3.4 (centre). We note that the correspondence between memory updates and
the transition function of the game is not always possible, since during the update
only the next state and current memory is known. However, we can always augment
the strategy by taking S⇥M as the memory, where the first component is the current
state; we show the original states as dashed shapes in the figure. The solid arrows
between memory elements represent memory updates, where the distribution is shown
as a small unlabelled circle. Note that an update needs to be defined for every outgoing
transition of Player 2 and stochastic states, and so there is nondeterminism in the
memory updates. For Player 1 states, only memory updates for transitions used by
the choice function need to be defined (here both outgoing transitions of s2 are used).
The thick (blue) arrows going from memory elements to states represent the choice
function, which is non-stochastic in this case.

The PA G⇡ induced by the strategy is shown in Figure 3.4 (right). We use the
notation [p0, p1] for the belief d with pi = d(mi) for i 2 {1, 2}. First, note that the
belief space from ⇡ consists of only three elements, since for any path � we have
d�s

0

= d�s
3

= d�s
3

s
2

= [0, 1], d�s
1

= [1, 0], and d�s
1

s
2

= [1
2
, 1
2
]. where [p0, p1] denotes

the distribution assigning probability pi to mi. To determine the transition relation,
we explore the reachable states in the induced PA. First, the initial distribution is
clearly the Dirac to (s0, [0, 1]). From (s0, [0, 1]), we have two outgoing moves. One
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move is (a, µ
d

�s

1

), where

µ
d

�s

1

(s0,

[0,1]z }| {
d�s

1

s
0

) =
1

2
, µ

d

�s

1

(s2, s1,

[ 1
2

, 1
2

]
z }| {
d�s

1

s
2

) =
1

4
, µ

d

�s

1

(s2, s3,

[ 1
2

, 1
2

]
z }| {
d�s

1

s
2

) =
1

4
,

which we write in the figure as (s1, [1, 0]) to capture that the memory is d�s
1

= [1, 0].
The other move is (a, µ

d

�s

3

), where

µ
d

�s

3

(s0,

[0,1]z }| {
d�s

3

s
0

) =
1

2
, µ

d

�s

3

(s2, s1,

[0,1]z }| {
d�s

3

s
2

) =
1

2
,

which we write in the figure as (s3, [0, 1]). The new states accessed from the state
(s0, [0, 1]) are thus (s2, s1, [

1
2
, 1
2
]) and (s2, s3, [

1
2
, 1
2
]) via histories ending in s1, and

(s2, s1, [0, 1]) via histories ending in s3. In each of these states, there is only one out-
going move, already determined by the strategy, and so (s2, s1, [

1
2
, 1
2
]) and (s2, s1, [0, 1])

go to (s1, [1, 0]), while (s2, s1, [
1
2
, 1
2
]) goes to (s3, [0, 1]). Both these states are already

added, and so we have added all states reachable from the initial state.

3.3.2 Applying Strategies Simultaneously

An alternative, equivalent, way of inducing a DTMC from a game when given both
strategies is to apply the strategies at the same time, see [40]. We use this formulation
in some of our proofs, since, for a pair of finite SU strategies applied to a finite game,
this definition yields a finite induced DTMC. Note that, when both strategies are
applied at the same time, no player is able to see the other player’s memory, and so
we do not have to employ the belief to emulate memory hiding.

Definition 3.6. Given a game G = hS, (S⌃, S⇤, S�), sinit,A,�,�i, a strategy pair
(⇡, �) induces a DTMC G(⇡,�) = hS 0, & 0,A [ S,�0,�0i, where S 0 ✓ S ⇥M ⇥ N is
defined as the set of reachable states, & 0(sinit,m, n) = ⇡d(sinit)(m) · �d(sinit)(n), and
�0 and �0 are such that, for each s

a�! µ in G, we have both (s,m, n)
s�!0⌫ 0s and

((a, µ),m, n)
a�!0⌫ 0(a,µ) in G(⇡,�), where, for all m̃ 2M, ñ 2 N, and t 2 S⌃ [ S⇤,

⌫ 0s ((a, µ), m̃, ñ)
def
= ⇡c(s,m )(a, µ) · ⇡u(m, (a, µ))(m̃)· �u(n, (a, µ))(ñ) if s 2 S⌃

⌫ 0s ((a, µ), m̃, ñ)
def
= �c(s, n )(a, µ) · ⇡u(m, (a, µ))(m̃)· �u(n, (a, µ))(ñ) if s 2 S⇤

⌫ 0(a,µ)(t, m̃, ñ)
def
= µ(t) · ⇡u(m, t )(m̃)· �u(n, t )(ñ).
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Figure 3.5: The induced DTMC G(⇡,�) obtained from the game G from Figure 3.4 by
simultaneously applying the Player 1 strategy ⇡ (from Figure 3.4) and the Player 2 strategy
� randomising uniformly at s0.

We define the mapping pathG : ⌦fin

G(⇡,�)

! ⌦fin

G inductively by pathG((s,m, n))
def
= s, and

pathG((s,m, n)(a, ⌫)�)
def
= s pathG(�) for s 2 S. Given a path � 2 ⌦fin

G in a game G, we
define P(⇡,�)

G (�)
def
=
P

{PG(⇡,�)

(�0) | pathG(�
0) = �}.

Example 3.5. Consider again, in Figure 3.4, the game G (left) and corresponding
Player 1 strategy ⇡ (right). We additionally consider a Player 2 strategy � that has
a single memory element n0, and randomises uniformly in s0. The induced DTMC
G(⇡,�) is shown in Figure 3.5.

The path distributions of the two ways of inducing DTMCs are equivalent. The
proof of the following lemma is technical and given in Appendix A.1.

Lemma 3.4. Given a game G with strategies ⇡ and �, it holds that P⇡,�
G = P(⇡,�)

G .

3.4 Specifications

To synthesise a strategy for a model, a specification is used to define the desirable
behaviours. We consider specifications based on rewards that annotate states. During
an execution of a game, rewards are accumulated, and we study properties based on
mean-payoffs and ratio rewards, and recall some results for total rewards.

Specifications. A specification ' is a predicate on the path distribution of a DTMC.
We write D |= ' if '(PD) holds for a DTMC D, and write M |= ' for a PA M if, for
all �, M� |= '. We call ⇡ winning for ' in a game G, if G⇡ |= ', and say that ' is
achievable if such a winning strategy exists, written G |= '. In the assume-guarantee
framework, we use specifications defined on traces, since the actions abstract from the
states that are specific to the components, and hence can be synchronised. Formally,
DTMCs D and D0, with respective action alphabets AD and AD0 , are A-trace equiv-
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alent if A ✓ AD \AD0 and P̃D(w) = P̃D0(w) for all A-traces w 2 A⇤. A specification
' is defined on A-traces if '(P̃D) = '(P̃D0) for all A-trace equivalent DTMCs D and
D0; if A is clear from context, we just say ' is defined on traces.

3.4.1 Rewards

We introduce reward structures, and the three types of rewards on paths that we
consider in this thesis. A reward structure of a game G with state space S is a
function r : S ! R, and we let r(s) = r(pathG(s)) for states s of an induced PA or
induced DTMC of G. Note that rewards can be negative. A reward structure r is
defined on A if r(a, µ) = r(a, µ0) for all moves (a, µ), (a, µ0) 2 S� such that a 2 A,
and r(s) = 0 otherwise, in which case we sometimes just write r(a) for r(a, µ). Given
reward structures r and r0, define the reward structure r+r0 by (r+r0)(s) def

= r(s)+r0(s)

for all s 2 S; given v 2 R, define r+ v by (r+ v)(s)
def
= r(s) + v for all s 2 S. Given a

reward structure r, N � 0 and a path � = s0s1 . . ., we define rew

N(r)(�)
def
=
PN

i=0 r(si).

Mean-Payoffs. Mean-payoffs allow one to specify how a system behaves in the
long-run. Given a reward structure r, we define the mean-payoff (or average re-
ward) by mp(r)(�)

def
= limN!1

1
N+1

rew

N(r)(�), where lim is the limit inferior defined
by limN!1xN

def
= limN!1(infk�N xk) for any sequence (xk)k�0. The limit inferior

corresponds naturally to our interpretation of Player 1 operating against an adverse
environment in a control scenario. Note that we count both player and stochastic
states of a game in the denominator (N + 1) of the mean-payoff.

We show below, in Lemma 5.2, that, if we operate with finite DTMCs, the limit
inferior can be replaced by the true limit, as it is almost surely defined. We utilise
the following characterisation of the long-run behaviour in finite irreducible DTMCs.

Lemma 3.5 (Theorem 4.16 of [87]). Let D be an irreducible DTMC, where its unique
BSCC B has a stationary distribution µB, and let r be a reward structure. The limit
limN!1 1

N+1
rew

N(r)(�) almost surely converges to
P

s2B µB(s) · r(s), where � 2 ⌦D.

Remark 3.6. From Lemma 3.5, the mean-payoff in a BSCC B is the same at every
state s 2 B, and we define, for a reward structure r, mp(r)(B) def

=
P

s2B r(s)µB(s).

Ratio Rewards. Ratio rewards can express relative performance criteria, such as
the fuel consumed by a car per unit distance driven. Given reward structures r and
c, we define the ratio reward by ratio(r/c)(�)

def
= limN!1rew

N(r)(�)/(1+ rew

N(c)(�)),
where we require that c(s) � 0 for all s 2 S, and, for all ⇡ and �, P⇡,�

G (mp(c) > 0) = 1.
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The condition on c can be checked as a single-objective query in a PA, and is satisfied
in a game G precisely if, for every Player 1 strategy ⇡, for each EC (SE ,�E) of the
induced PA G⇡, there is a state s 2 SE such that c(s) > 0. Ratio rewards ratio(r/c)

generalise average rewards, since, to express mp(r), we can let c(s) = 1 for all s 2 S.

Total Rewards. Total rewards allow us to model the total payoff received or re-
sources consumed over the time horizon of interest. The total reward is defined by
rew(r)(�)

def
= limN!1 rew

N(r)(�), where we require that either r(s)  0 for all S1
G

or r(s)  0 for all S1
G , with S1

G being the set of states occurring infinitely often on
any path of G. This condition on r is natural for stopping games, as it is satisfied if
r(s) = 0 for all s 2 Term. Note that the rewards we are considering are undiscounted
(that is, it is immaterial how many steps back a reward was acquired).

Transient and Long-Run Behaviour. If we model a control scenario with a
distinct start and finish, such as steering a vehicle from one geographical location to
another (see for example Section 8.1), we are interested in the transient behaviour
of the DTMC induced by the players’ strategies. Total rewards and reachability
are examples of objectives typically used to specify transient behaviour. On the
other hand, scenarios where we are interested in the long-term trend, for instance
maintaining the continual safe operation of an aircraft (see Section 8.3), do not have
a start or finish, and so we are interested in the recurrent behaviour of the induced
DTMC. Average rewards and linear temporal logic (LTL) recurrence properties (of the
form “always eventually satisfy a condition”) are typically used in this case. Note that
ratio rewards as defined above also specify long-run behaviour due to the condition
on the denominator c. While temporal logics such as LTL allow one to mix transient
and long-run behaviour in the same specification, we are not aware of any work for
quantitative specifications towards this direction, which permit combinations of, for
example, total and average rewards in one multi-objective specification.

3.4.2 Objectives

An objective is a specification concerned with optimising a one-dimensional reward.

Expectation and Satisfaction Semantics. We consider two types of semantics
for achieving an objective. The satisfaction semantics requires that the paths whose
reward is above a target value together have probability above a threshold. The ex-
pectation semantics requires that the expectation of the reward over all paths is above
a target value. Satisfaction semantics is appropriate if it is sufficient to guarantee a
target with a certain probability, and no condition is required with the residual prob-
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Figure 3.6: Example of objectives for a DTMC. We annotate each state s with (r(s))
(c(s)) to

indicate that we consider ratios with the reward structures r and c.

ability. Expectation semantics is appropriate if we want to make a statement over all
possible executions of a system. An illustration is wanting to position an autonomous
vehicle at a certain location: under satisfaction semantics we may require that with
probability 0.99 the vehicle is at the location, but with probability 0.01 is may be ar-
bitrarily far away; under expectation semantics we may require the expected position
of the vehicle to be at the desired location (and yet the actual position may never be
attained). In this thesis, for satisfaction semantics, we only consider probability one,
and briefly discuss potential extensions towards arbitrary thresholds in Section 6.5.

Objectives. We consider the following objectives, where r and c are reward struc-
tures, and v 2 R is a target.

Semantics Reward Type Symbol Definition
satisfaction average Pmp(r)(v) PD(mp(r) � v) = 1

satisfaction ratio Pratio(r/c)(v) PD(ratio(r/c) � v) = 1

expectation average Emp(r)(v) ED[mp(r)] � v

expectation ratio Eratio(r/c)(v) ED[ratio(r/c)] � v

expectation ratio ratioE(r/c)(v) ED[mp(r)]/ED[mp(c)] � v

expectation total Erew(r)(v) ED[rew(r)] � v

Pmp(�r)(�v) means mp(r) has to be below v almost surely, which we write as
Pmp

(r)(v); similarly for Pratio

, Emp

, Eratio

, ratioE

 and Erew

. Since the con-
dition mp(r) � v is equivalent to mp(r � v) � 0, that is, with the rewards r shifted
by �v, we may assume without loss of generality that mean-payoff objectives have
target 0, and we write Pmp(r)

def
= Pmp(r)(0) and Emp(r)

def
= Emp(r)(0).

Example 3.6 (Objectives). Consider the DTMC D in Figure 3.6, with the two
reward structures r and c annotated on each state s as (r(s))

(c(s))
. Note that c(s4) = 1, in

order to fulfil the condition for ratio rewards. We evaluate the mean-payoff using the
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stationary distributions of the BSCCs, which we formally justify in Lemma 5.2 below.
The expected mean-payoff is ED[mp(r)] = 1

3
· (1

2
· (�1) + 1

2
· 1) + 1

3
· 0+ 1

3
· 1 = 1

3
. The

ratio of expectations is ED[mp(r)]/ED[mp(c)] = 1
3
/(1

3
· (1

2
·2+ 1

2
·1)+ 1

3
· 1+ 1

3
· 1) = 2

7
.

The expected total reward ED[rew(r)] is not defined, due to the oscillating sequence of
rewards 1,�1, 1, . . . on s1 and s2. The highest mean-payoff mp(r) achievable almost
surely is 0, since in the BSCCs {s1, s2} and {s4}, only 0 is achievable. Likewise, the
highest ratio reward ratio(r/c) achievable almost surely is 0: in the BSCC {s3}, we
get 1, in the BSCC {s1, s2}, we get 1

4
but in the BSCC {s4}, we get only 0. Finally,

we can also evaluate the expected ratio reward ED[ratio(r/c)] = 1
3
· (1

2
· �1

2
+ 1

2
· 1
1
) +

1
3
· 0
1
+ 1

3
· 1
1
= 5

12
, which differs from the ratio of expectations, 2

7
.

"-Optimality. An objective with target v is "-achievable if, for all " > 0, it is achiev-
able with target v� " by some strategy, and we call such a strategy "-optimal. In an
"-achievable objective, for example of the form E[mp(r)] � v, we can replace the non-
strict inequality � by a strict inequality >, and retain "-achievability: for example,
if Emp(r)(v) is "-achievable, then, for any " > 0, there exists a strategy ⇡ achieving
Emp(r)(v � "

2
), and so ⇡ achieves Emp(r)(v � "). We hence define ¬Emp(r)(v)

def
=

Emp

(r)(v), ¬Eratio(r/c)(v)
def
= Eratio

(r/c)(v), ¬ratioE(r/c)(v)
def
= ratioE

(r/c)(v),
and ¬Erew(r)(v)

def
= Erew

(r)(v). However, negating almost sure satisfaction requires
positive satisfaction, which we do not consider (see Section 5.6 for a brief discussion).

3.4.3 Multi-Objective Queries

In order to specify trade-offs between objectives, we introduce specifications consisting
of several independent objectives. A multi-objective query (MQ) ' is a Boolean
combination of objectives and its truth value is defined inductively on its syntax.
Our focus is on MQs ' with syntax

' ::=  P | E

satisfaction:  P ::=  P ^  P |Pmp(r)(v) |Pratio(r/c)(v)

expectation:  E ::=  E ^  E | ¬ E |Emp(r)(v) | ratioE(r/c)(v) |Erew(r)(v),

where r and c are reward structures, and v 2 R is a target, and where we allow each
MQ to contain objectives only of one kind. The semantics of an MQ is defined on its
structure using the canonical interpretation of the logical operators ^ (conjunction)
and ¬ (negation). We also use the standard definitions for the operators _ (disjunc-
tion) and ! (implication) for  E. Thus, an MQ can be a conjunction of objectives,
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called a conjunctive query (CQ), or a general Boolean combination of expectation ob-
jectives. Given an MQ ' with targets v1, v2, . . ., we denote by '[~x] the MQ ', where,
for all i, the target vi is replaced by xi. For CQs we sometimes use vector notation,
for example, we write Pmp(~r)(~v) for

Vn
i=1 Pmp(ri)(vi). MQs can be converted into

conjunctive or disjunctive normal form (CNF and DNF, respectively), and so we can
operate on MQs in either form without loss of generality.

Pareto Sets. When interpreting an MQ as a multi-dimensional maximisation, the
optimum in all dimensions at the same time may not be achievable, but only cer-
tain trade-offs. A trade-off is considered optimal if the value in no dimension can be
increased without decreasing the remaining dimensions. Only considering maximisa-
tions is without loss of generality, since we can invert signs to obtain minimisations.

If clear from context, we write " for the vector ~" def
= (", ", . . . , "). Given an MQ '

with n objectives, the vector ~v 2 Rn is a Pareto vector if and only if, for all " > 0,
'[~v � "] is achievable by some finite DU strategy, and '[~v + "] is not achievable by
any finite DU strategy. The set of all Pareto vectors (the optimal trade-offs) of a
specification ' in a game G is the Pareto frontier, and its downward closure is the
Pareto set, written Pareto(G |'). Pareto sets are closed, but need not be convex (see
Example 3.7 below). Any point in the interior of a Pareto set is achievable, but points
on the Pareto frontier itself may not be achievable, see for example Figure 3.7 (d).
We quantify the quality of an approximation to a Pareto set P by defining, for " > 0,
an "-approximation of P to be a set of vectors Q such that for any ~q 2 Q there is a
~p 2 P such that kp�qk  ", and for any ~p 2 Q there is a ~q 2 P such that kp�qk  ".
Note that the "-approximation of a Pareto set is not necessarily unique.

Example 3.7 (Pareto Sets). We show four games with their corresponding specifi-
cations and Pareto sets in Figure 3.7. For game (a), we consider the conjunction of
expectations Emp(r1)(v1) ^ Emp(r2)(v2), and obtain a convex Pareto set. For game
(b), we consider the disjunction of expectations Emp(r1)(v1)_Emp(r2)(v2), for which
the Pareto set is not convex, but its complement is. Consider, for example, the point
(v1, v2) = (x, 1

2
) with x 2 R: it is achieved by the strategy that picks s2 at s0, and since

the second objective is satisfied, x can be arbitrary. Below, in Section 5.4, we further
show that, the specifications for games (a) and (b) are equivalent, for "-optimality,
to Pmp(r1)(v1) ^ Pmp(r2)(v2) and Pmp(r1)(v1) _ Pmp(r2)(v2), respectively.

Game (c) comes with the CQ Pmp(r1)(v1)^Pmp(r2)(v2), and the Pareto set is the
non-convex set shown below. Note that also its complement is non-convex, and the
specification is not equivalent to Emp(r1)(v1)^Emp(r2)(v2). Game (d) comes with the
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Figure 3.7: Games with corresponding specifications and Pareto sets, shown in the grey
shaded areas. Points on the boundary of the Pareto set may not be achievable.

specification Pmp

(r1)(v1) ! Pmp(r2)(v2), and its Pareto set is shown below. Note
that this specification is equivalent to requiring the existence of a strategy ⇡ such that,
for all �, P⇡,�

G (mp(r1) > v1) > 0_P⇡,�
G (mp(r2) � v2) = 1; we express the specification

in this way here to emphasise that we compute Pareto sets by maximising in several
dimensions. The Pareto set is closed by definition, but we indicate in the figure
by a dashed line and the hollow circle points that cannot be achieved by finite DU
strategies, and yet belong to the Pareto set.

3.5 Approaches to Synthesis

The main focus of this thesis is on automated strategy synthesis, which we can sepa-
rate into three problems. Firstly, deciding whether a Player 1 strategy ⇡ exists, such
that, for all Player 2 strategies �, a specification ' is satisfied, is called the achiev-
ability problem. Secondly, constructing a winning strategy, if it exists, is called the
synthesis problem. Thirdly, computing the set of targets ~v such that a Player 1 strat-
egy ⇡ exists that achieves '[~v] is called the Pareto set problem. We treat in this thesis
variants of these general problems under various restrictions of memory, and in the
context of "-optimality for strategies. We next review results from [71, 75, 110] for
models and specifications related to those we consider in this thesis.

Player 1 Strategies in PAs. Synthesising a strategy in a PA or game achieving a
single objective has received considerable attention in the past. A key concern is to
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classify the types of strategies that are sufficient for the respective players to achieve
an objective. For one-dimensional Emp objectives in PAs, MD strategies suffice.

Lemma 3.7 (Theorem 9.1.8 in [110]). In finite PAs, MD strategies suffice to achieve
one-dimensional Emp objectives.

For reachability in games, we obtain a similar result, as a consequence of the
attractor properties of Section 2.1.1 of [75].

Lemma 3.8. In a game G with state space S, the set of states from which Player 1

can reach a set T ✓ S of states almost surely is computable in polynomial time,
together with corresponding MD witness strategies.

Proof. Let G = hS, (S⌃, S⇤, S�), &,A,�,�i be a game. Let T ✓ S. Define the
attractor Attr⌃(A) for Player 1 to A ✓ S as the limit of the non-decreasing sequence
of sets A0, A1, . . . defined recursively by A0 = A and Ai+1 = Ai [ {s 2 S⇤ | �(s) ✓
Ai} [ {s 2 S� [ S⌃ | �(s) \ Ai 6= ;}; define the attractor Attr⇤(A) for Player 2

symmetrically. Note that attractors can be computed in polynomial time. From
Section 2.1.1 of [75] we have that S \ Attr⇤(S \ Attr⌃(T )) is the set of states from
with Player 1 has a MD strategy to reach T almost surely.

Determinacy. Given a game G and a specification ', a spoiling strategy � for Player 2

is such that, for all Player 1 strategies ⇡, G⇡,� |= ¬'. A game G with specification
' is qualitatively determined if either Player 1 has a winning strategy, or Player 2

has a spoiling strategy. A tail condition � ✓ ⌦D is a Borel set of paths (closed
under countable unions, countable intersections and relative complement), such that
8 2 ⌦fin

D . 8� 2 ⌦D .� 2 �, � 2 �, and defines an objective PD(�) = 1.

Lemma 3.9 (Theorem 7 of [71]). Stochastic games with tail winning conditions are
qualitatively determined.

In particular, satisfaction semantics for mp and ratio defines tail conditions, and
so games are qualitatively determined for one-dimensional Pmp and Pratio objectives.

3.5.1 Dynamic Programming

A popular method for optimising a function is dynamic programming [14], where
a Bellman operator F characterises the set of optimal achievable targets X⇤ of an
infinite horizon optimisation problem via the Bellman equation X⇤ = F (X⇤). The
typical setting is that of one-dimensional optimisation, which imposes an ordering in



3.5. APPROACHES TO SYNTHESIS 41

which any two strategies can be compared. Dynamic programming for objectives that
are incomparable in terms of importance requires a multi-dimensional value function.
As we are concerned with multi-dimensional queries, the optimal targets are vectors,
and X⇤ characterises the set of such optimal, incomparable, vectors, one for each state
in the game. The Bellman equation asserts that X⇤ is a fixpoint of the operator F .
We use concepts from dynamic programming to characterise the strategies achieving
Pmp objectives, and thus define background concepts from fixpoint theory.

Fixpoint Theory. We first recall concepts about fixpoints from [52]. A set C
is (partially) ordered if it is endowed with an order �✓ C ⇥ C such that, for all
x, y, z 2 C, (i) x � y (reflexivity); (ii) x � y and y � x imply x = y (antisymmetry);
and (iii) x � y and y � z imply x � z (transitivity). Given an ordered set C and a
set Y ✓ C, an element x 2 C is an upper bound of Y if y � x for all y 2 Y , and the
supremum of Y is its least upper bound, written supY . Given an ordered set C and
a map � : C ! C, we say that x 2 C is a fixpoint of � if �(x) = x. We write fix(�)

for the least fixpoint of �. A nonempty subset D of an ordered set C is directed if,
for every finite subset D0 ✓ D, an upper bound of D0 is in D. An ordered set C is
a complete partially ordered set (CPO) if supD exists for each directed subset D of
C, and if C has a bottom element ?, which is the least element with respect to the
order �. A map � : C ! C over a CPO C is (Scott) continuous if, for every directed
set D in C, �(supD) = sup�(D). By Lemma 3.15 of [52], every continuous map is
order-preserving, meaning that �(x) � �(y) for all x, y 2 C such that x � y. We
make use of the Kleene fixpoint theorem, characterising the fixpoints of a map.

Lemma 3.10 (Theorem 4.5 (ii) in [52]). Let C be a CPO, and let � : C ! C be a
order-preserving map. The least fixpoint fix(�) exists and is equal to supk�0 �

k(?).

3.5.2 Multi-Objective Synthesis in PAs

We discuss strategy synthesis in PAs for multi-objective properties of long-run ob-
jectives. Since we talk about synthesis in PAs, we use Player 1 strategies instead of
Player 2. For PAs, we are interested in evaluating 9⇡ .

Wm
j=1

Vn
i=1 'i,j. Clearly, this

statement can be analysed by pushing the quantification over ⇡ inside the disjunction,
and hence getting, for each j, a conjunction 9⇡ .

Vn
i=1 'i,j. For strategy synthesis in

PAs, it is therefore sufficient to consider conjunctions (see also the discussion in [60]).

Weighted Sum Method. Consider the problem of finding a strategy ⇡ such that

~f(⇡) � ~v, (3.1)
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where ~f maps strategies ⇡ to n-dimensional vectors, and is defined by the PA and the
specification (for example, ~f maps a strategy ⇡ to E⇡

M[mp(~r)]), and where ~v 2 Rn is
the intended target. One way of finding ⇡ in (3.1), and for computing the Pareto set
of achievable targets ~v, is by repeatedly selecting weights ~x 2 Rn and instead solving

max
⇡

~x · ~f(⇡) � ~v, (3.2)

see [93]. This approach can also yield Pareto sets, see Algorithm 4 of [68].
The weighted sum method is justified by observing that, if ⇡ is a solution to (3.2),

then it is also a solution to (3.1). However, this method is incomplete whenever
there are strategies ⇡1 and ⇡2 such that ~x · ~f(⇡1) = ~x · ~f(⇡2), but ~f(⇡1) 6= ~f(⇡2).
For example, for Erew objectives, both single- and multi-objective queries in PAs are
solved by MD strategies [110], and so the weighted sum method is complete. When
applying this method to multi-objective games, we note that MD strategies suffice for
single-objective properties, but not for MQs, where memory is required in general,
and so the weighted sum method is incomplete in this case. Yet, we can make use of
a similar idea when converting MQs to CQs in Section 5.4.

Linear Programming. In PAs, the strategies for both Pmp CQs and Emp CQs
can be constructed from the solutions to a linear program (LP), see for example the
formulation in [18]. The idea is to split the PA into its MECs, and compute, for
each state s, the frequency ys that s is visited. In the linear program, the constraints
maintain that the frequency of entering a state is the same as the frequency of exiting a
state, and so the feasible solutions are those in which the frequencies ys are equivalent
to the stationary distribution. An additional constraint

P
s ys · ~r(s) � ~v ensures the

specification is achieved. The strategy can be derived from ys, giving the probabilities
of choosing a move. For Emp CQs, the strategy consists of two phases: first, the
strategy plays to reach each MEC with some probability, and then plays within the
MECs. Both phases are achieved with memoryless strategies, and a single memory
element is sufficient to keep track of which phase the strategy is in. For Pmp CQs,
"-optimal strategies are constructed similarly. The LP characterisation gives rise to
a polynomial time algorithm for the achievability problem of Pmp and Emp CQs, as
well as for the Pareto set problem for Emp CQs.

Lemma 3.11 (A.3, A.5 and B.3 of [18]). In PAs, the achievability and Pareto set
problems for Emp are in P; and the achievability problem for Pmp CQs is in P.
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3.5.3 Multi-Objective Synthesis in Games

In games, algorithms for the analysis of multi-objective queries have to take into
account that, in general, finding a spoiler strategy for Player 2 is not the same problem
as finding a strategy for Player 2 to achieve the negated objective. For Pmp and Pratio

objectives, which are defined via tail conditions, determinacy holds by Lemma 3.9, but
for Emp, Eratio, ratioE and Erew MQs stochastic games are not determined in general,
see for example [41] for Erew objectives. Non-determinacy is also why sandwich
algorithms, which accelerate the computation of the Pareto set by both under- and
over-approximating it, cannot be applied, see [113].

Expected Total Rewards. We summarise our previous work on multi-objective
synthesis for total expected rewards in stochastic games from [41, 42, 43]. We note
at this point that the weighted sum method is incomplete in this case. MD strategies
suffice for single-dimensional Erew objectives [64], and so the weights ~x are the same
for every state. However, for MQs of Erew objectives, memory is required. Switching
between memory elements corresponds to playing with different weights, depending
on the history. During synthesis, the amount of memory needed is not known a-priori,
and so, in the worst case, for every weight at each predecessor, up to n weights may be
required, and this requirement propagates recursively through the game, potentially
requiring an infinite number of weights. To compute the Pareto sets for an Erew CQ
defined by an n-dimensional reward structure ~r, we define in [41] a Bellman operator
F

rew,~r over (P(Rn))|S|, where S = S⌃ [ S⇤ [ S� is the set of states of the game, by

[F
rew,~r(Y )]s

def
=

8
>>><

>>>:

dwc(conv(
S

t2�(s) Yt) + ~r(s)) if s 2 S⌃

dwc(
T

t2�(s) Yt + ~r(s)) if s 2 S⇤

dwc(
P

t2�(s)�(s, t)⇥ Yt + ~r(s)) if s 2 S�.

for all s 2 S. Using the operator F
rew,~r, we can compute the sets of targets for Erew

conjunctions that Player 1 can achieve after N steps.

Lemma 3.12 (Proposition 2 of [42]). Let G be a game, and let ~r be an n-dimensional
reward structure. For all k � 0, and all states s of G, [F k

rew,~r(dwc(~0))]s = {~v 2
Rn | 9⇡ . 8� .E⇡,�

G,s [rew
k(~r)] � ~v}.

Under the stopping game assumption, the operator F
rew,~r computes "-approximations

of the Pareto sets for Erew CQs in a bounded number of steps (Theorem 4 of [41]).
Note that we do not give a fixpoint characterisation for F

rew,~r in [41], since in the
presence of negative rewards the classical subset inclusion order does not make F

rew,~r
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monotonic in the powerset CPO (P(Rn))|S|. In [43] we operate on non-negative
rewards, obtaining a monotone sequence (F k

rew,~r(dwc(~0)))k�0, and in Section 7.2.2 we
demonstrate that by starting the iteration of F

rew,~r at the lowest possible rewards
under any strategies, we obtain a monotone sequence also for negative rewards.

Mean-Payoff in Non-Stochastic Games. We now review previous methods for
multi-objective synthesis in non-stochastic games for long-run properties. Strategies
for sure-satisfaction of mean-payoffs in non-stochastic games are constructed in [36]
by considering energy objectives, which are closely related to the total reward. Given
a reward structure r and an initial credit c0 2 R, a path � satisfies an energy objective
if 8N � 0 . rewN(r)(�) + c0 � 0. For multi-objective rewards ~r, Theorem 3 of [26]
states that, in a non-stochastic game, there is an initial credit vector for which all
paths satisfy the energy objective if and only if mp(~r)(�) � 0 for all paths �. In [36]
a Bellman operator is given for non-stochastic games and integer rewards (called
controllable predecessor operator), which we denote here by F

ens,~r,M , where ~r is an
n-dimensional reward structure defining the objective, and M is a bounded integer.
F

ens,~r,M is a map between discrete sets ({0, 1, . . . ,M}n)|S⌃[S⇤|, defined by

[F
ens,~r,M(X)]s

def
=

8
<

:

S
(a,t)2�(s){~es | 9~et 2 Xt .~es � ~et � ~r(s, (a, t))} if s 2 S⌃

T
(a,t)2�(s){es | 9~et 2 Xt .~es � ~et � ~r(s, (a, t))} if s 2 S⇤,

for all s 2 S⌃ [ S⇤, where ~r(s, (a, t)) def
= ~r(s) + ~r(a, t) is the reward accumulated from

taking the move (s, t) from state s. Note that the sets are implicitly upward closed
up to M , and contain no vectors with negative elements, even if ~et � ~r(s, (a, t)) 6� ~0:
in this case, the negative reward is truncated. We return to the concept of truncation
in Section 6.2.3, where we define a similar Bellman operator for stochastic games.

3.6 Running Example

In this section we introduce a running example that we refer to throughout the thesis,
indicated by the superscript re, as in “Examplere 4.3.” Consider a plant producing
widgets, with the objective to produce the maximum number of widgets, while min-
imising the resource requirements We consider a plant and a supervisor that operate
in parallel, and communicate with each other over a channel. The communication
channel is modelled via synchronisation of actions, and it allows serial communica-
tion, arbitrated by a scheduler. The environment of the plant can be considered as,
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Figure 3.8: Example games G1
re

(left) and G2
re

(right). Distributions in stochastic states are
uniform. The (ratios of) rewards are (1,0,0)

(1) for a, (0,1,1)
(1) for b, and (0,1,0)

(0) for d.

for example, the quality of the raw materials available. The plant and supervisor are
modelled as stochastic games, shown in Figure 3.8, and explained in the following.

We model the plant as G2
re

. In state t1 the plant is producing widgets, since the
action b is enabled. The raw materials might be of imperfect quality, and so, after
a widget is produced, the plant may enter the idle state t2, where additional post-
processing on the widget is performed. With some probability, however, the widget
is ok, and the plant returns to state t1, and is ready to produce the next widget.
The probability of low-quality raw materials is anywhere between 1

2
and 1, and so we

model this by Player 2 choosing a distribution by randomising between the moves in
the t1 state. Once the t2 state is entered, there is a ⌧ -transition present in the model
to allow the scheduler to arbitrate the communication channel. Once the t0 state is
entered, the plant can either decide to resume widget production using the q2 action,
or it can decide to cool down with some probability, using the a action.

The supervisor is modelled as G1
re

. In the s1 state, the protocol for widget pro-
duction is enforced by allowing only certain sequences of cooling and production:
cooling is always allowed, but a sequence of producing n widgets is allowed only with
probability 1

2n
, in order to prevent overheating of the plant. The s2 state has the a

action enabled in order to listen on the communication channel, and the outgoing
⌧ -transition allows channel arbitration by the scheduler. Once in the s0 state, the
supervisor can decide to resume production normally using the q1 action, or boost
production by one widget by simply inserting a widget with the d action.

We define reward structures for our running example, based on the properties
outlined above. The reward structure c used for ratios of rewards advances time
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when cooling and producing, that is, c(a) = c(b) = 1. We define ~r to express the
quantities of interest we want to optimise. To minimise the cooling time, we let
r1(a) = 1; to maximise the number of widgets produced, we let r2(b) = r2(d) = 1;
and to minimise the required resources during production, we let r3(b) = 1. We
use Eratio(r1/c)(v1) in the local specifications, in particular, to establish a contract
between the components. The global specification for G

re

is

'
re

= Eratio(r2/c)(v2) ^ Eratio

(r3/c)(v3),

meaning that we want to maximise the amounts of widgets produced, and minimise
the amount of resources required. Locally, we consider the specifications

'1
re

= Eratio

(r1/c)(v1)! Eratio(r2/c)(v2),

'2
re

= Eratio

(r1/c)(v1) ^ Eratio

(r3/c)(v3),

for G1
re

and G2
re

, respectively, where we use the objective to minimise cooling as a
contract between the components.

3.7 Summary

In this chapter we presented the stochastic models that we discuss in this thesis.
In particular, we reviewed stochastic games and their behaviour under strategies.
Motivated by the need to induce both finite PAs and DTMCs from finite stochastic
memory update (SU) strategies applied to games, we gave two definitions of the
induced DTMC, which allows us to separate the steps of resolving nondeterminism
one player at a time and study related PA problems after a Player 1 strategy has been
fixed. Further, we discussed the specifications that we are interested in: we consider
specifications consisting of Boolean combinations of objectives, which are defined via
mean-payoff and average rewards, both with satisfaction and expectation semantics.

We consider the synthesis problem of strategies for Player 1 to achieve a speci-
fication '1, and we implicitly assume that Player 2 has the specification ¬'1. This
setting is also known as a zero-sum game, since Player 1 wins if and only if Player 2

looses (note that this does not necessarily mean that the players can force a win,
since the games may not be determined.) More generally, in a non-zero-sum game,
one considers (potentially unrelated) specifications '1 and '2 for the respective play-
ers. A Nash equilibrium in this setting is a strategy profile (⇡, �), such that both the
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following conditions are satisfied:

(NZS1) (9⇡0 .G⇡0,� |= '1)) G⇡,� |= '1, and

(NZS2) (9�0 .G�0,⇡ |= '2)) G⇡,� |= '2.

In zero-sum games, where '2 = ¬'1, the problem reduces to deciding whether either
of the following is satisfied:

(ZS1) 9⇡ . 8� .G⇡,� |= '1, or

(ZS2) 9� . 8⇡ .G⇡,� |= ¬'1.

We focus on the first query, (ZS1). For expectation objectives, deciding whether an
"-optimal strategy for (ZS1) exists is equivalent to the problem of deciding the second
query (ZS2), but the same is not the case for satisfaction objectives.

We moreover discussed existing methods for the synthesis of multi-objective queries
in MDPs, as well as non-stochastic and stochastic games. Finally, we introduced a
running example in order to illustrate concepts discussed throughout the thesis.
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Chapter 4
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In this chapter we develop the compositional features of our assume-guarantee
framework for stochastic games. We discuss how to compose stochastic games, de-
velop composition rules for inferring the global specifications that are achievable in
the composed game, and show how to compose strategies so that they satisfy global
specifications. Our assume-guarantee framework is enabled by the capability of syn-
thesising strategies for individual components, which we discuss in Chapters 5 and 6.

Our game composition allows for the development of assume-guarantee rules for
strategy synthesis, according to which winning strategies for individual components
can be composed and are winning for the composition, as long as certain side con-
ditions are satisfied. The main idea for obtaining such rules for synthesis is that
applying strategies to games yields PAs, and hence any sound verification rule for
PAs gives rise to a sound synthesis rule for games, under the same side conditions, for
example, on action alphabets, and, in some cases, fairness conditions. We consider
fairness to be a property guaranteed by the scheduler (that is, Player 2), and hence the
synthesis method for individual, monolithic, components does not have to be mod-
ified. Furthermore, we show how to compute the Pareto set of target vectors that
are achievable compositionally, by composing the Pareto sets computed for individ-
ual components. This allows us to instantiate given specifications for the components
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with achievable targets, based on the required target of the global specification for the
composed game. The compositionally computed Pareto set is, in general, an under-
approximation of the Pareto set of the full system computed monolithically, since not
all strategies are realisable as composed strategies. This is because our synthesis rules
are not complete, even if the underlying PA verification rules are complete.

The game composition that we develop forms the product of the state spaces
of the component games, and synchronises on shared actions, similarly to the PA
composition [118]. However, in the case of the PA composition, no distinction between
players is made, which is necessary for a true game composition, to preserve the
competitive character between players. We hence augment our game composition
with a compatibility condition, which reflects an interleaving semantics controlled by
Player 2, that is, the environment acts like a scheduler between components. One key
feature of our composition is that each Player 1 state (s1, s2, . . .) in the composition
there is exactly one controlling component G◆ such that s◆ is a Player 1 state in
G◆. Since games synchronise on actions, the local specifications we consider in our
framework must allow for the interleaving of paths of one component with the paths
of other components. Hence, we consider specifications defined on traces, formalised
in Section 4.2.1, which only depend on traces over the local action alphabets.

The technical contributions in this chapter are mainly based on our previous work
in [10, 11]. In Section 4.1 we introduce our game and strategy composition. In Sec-
tion 4.2 we develop our synthesis rules by leveraging PA verification rules, and so we
first show that winning in composed induced PAs is sufficient to win in the composed
game with the composed strategy. To aid the system designer (or decision maker) in
selecting achievable targets for the local specifications, in Section 4.3 we show how
to compute Pareto sets compositionally. Finally, in Section 4.4 we summarise our
method, giving a step-by-step recipe for assume-guarantee strategy synthesis.

4.1 Composing Systems

In this section we develop a composition for turn-based two-player stochastic games.
Our composition is inspired by the composition of PAs, which can be considered
as a special case of our composition, and by interface automata [54], which have a
natural interpretation as (concurrent) games. We use superscripts, for example Gi,
to denote components and objects specific to the components, for instance, Si is the
state space of Gi. If we want to explicitly indicate that a control state s is from a
composed game we use vector notation ~s 2 S⇤, and we denote by si the ith element
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of ~s. Furthermore, every probability distribution in the composition is a product
distribution µ1 ⇥ µ2 ⇥ · · · , for which we likewise use vector notation, ~µ. We say that
a transition ~s a�! ~µ involves the ith component if si a�!iµi, where the infix operator
�!i corresponds to the transition function �i of Gi. If a component Gi is not involved
in a transition ~s a�! ~µ, it is required to remain in the same state, that is, µi(si) = 1.
We denote by I the finite index set of component indices. Each component game Gi is
endowed with an alphabet of actions Ai, where synchronisation on shared actions in
T

i2I Ai is viewed as a multi-way blocking communication over ports, as in interface
automata, though for simplicity we do not distinguish inputs and outputs (that is,
an action can label outgoing transitions of either player).

4.1.1 PA Composition

We start by recalling the composition of PAs [119], and develop our game composition
as a generalisation thereof in Section 4.1.2. Given PAs Mi, i 2 I, with respective
state spaces Si, the set of control states S⇤ of their composition is defined as the
Cartesian product

Q
i2I S

i
⇤ of the sets of control states Si

⇤, and the moves of the
composition are derived from synchronising on actions.

Definition 4.1. Given PAs Mi = hSi, (Si
⇤, S

i
�), & i,Ai,�i,�ii, i 2 I, their compo-

sition is the PA ki2I Mi def
= hS, (

Q
i2I S

i
⇤, S�),

Q
i2I &

i,
S

i2I Ai,�,�i, where S�, �,
and � are defined via

• ~s
a�! ~µ for a 6= ⌧ if and only if at least one component is involved and the

involved components are exactly those with a in their action alphabet; and

• ~s
⌧�! ~t if and only if exactly one component Mi is involved.

In Definition 4.1 we make explicit that we do not synchronise on ⌧ , which can be
considered internal, but we could achieve the same effect by renaming ⌧ in compo-
nent Mi to ⌧ i and put ⌧ i in the actions Ai. Within a PA, a strategy picks the moves
outgoing from control states, that is, the strategy choices determine both the action
and distribution by picking a stochastic state. However, when composing PAs, syn-
chronisation is only on actions. Thus, from the point of view of a PA M2 that is
composed with a PA M1, the specific moves chosen in M1 are hidden, and only the
actions are visible, which is in contrast to composing MDPs, where actions uniquely
determine the outgoing moves, and allows greater flexibility when modelling systems.
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4.1.2 Game Composition

We now define our game composition, which generalises the PA composition, since
there are two players and the alternating behaviour of turn-based games must be
preserved. Hence, our game composition is also related to that of single threaded
interface automata, which preserve alternation [54].

Normal Form. Since our games are turn-based, we have to ensure that it is clear
which player controls each state, that is, whose turn it is to play. In particular, we
ensure that actions controlled by Player 1 in the components are controlled by Player 1

in the composition. To this end, we transform games into a normal form, which does
not affect the achievability of specifications defined on traces.

Definition 4.2. A game is in normal form if every ⌧ -transition s
⌧�! µ is from

a Player 2 state s to a Player 1 state t with a Dirac distribution µ = t; and every
Player 1 state s can only be reached by an incoming move (⌧, s).

In particular, every distribution µ of a non-⌧ -transition, as well as the initial
distribution, assigns probability zero to all Player 1 states. Given a game G without
⌧ -transitions, one can construct its normal form by splitting every state s 2 S⌃ into
a Player 2 state s and a Player 1 state s, such that

• the incoming (outgoing) moves of s are precisely the incoming (outgoing) moves
of s, where every move (a, µ) is replaced with (a, µ0), where µ0(t) = µ(t) for all
t 2 S⇤ and µ(t) = µ(t) for all t 2 S⌃; and

• the only incoming move of s, and the only outgoing move of s, is (⌧, s).

Intuitively, at s the game is idle until Player 2 allows Player 1 to choose a move in
s. Hence, any strategy for a game carries over naturally to its normal form, and
for specifications defined on traces we can operate without loss of generality with
normal-form games. Moreover, a specification ' defined on traces is achievable in a
game G if and only if it is also achievable in the corresponding normal form of G.

Example 4.1 (Normal Form of Games). Consider the games in Figure 4.1. The
two games on the left are transformed into normal form, indicated by the dashed
double-arrows. The two games admit the traces (ab)! and (ac)! respectively, and,
since ⌧ is projected out, the normal form transformation leaves the traces unaltered.

Game Composition. We now formally define our game composition. Given games
Gi, i 2 I, in normal form with respective player states Si

⌃[Si
⇤, the set of player states
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Figure 4.1: Example of normal form and scheduling via ⌧ . Dashed double-arrows show
the normal form transformation and game composition operations.

S⌃ [ S⇤ of the composition is a subset of the Cartesian product
Q

i2I S
i
⌃ [ Si

⇤. Due
to the normal form, each state ~s 2 S⌃ [ S⇤ contains either no Player 1 component,
in which case ~s is a Player 2 state of the composition, or ~s contains exactly one
Player 1 component, in which case ~s is a Player 1 state of the composition. Another
consequence of the normal form is that the initial distribution & of the composed game
is such that supp(&) ✓ S⇤. We denote by En(s) the set of enabled actions in s.

Definition 4.3. Given normal-form games Gi = hSi, (Si
⌃, S

i
⇤, S

i
�), & i,Ai,�i,�ii, i 2

I, their composition is the game ki2I Gi def
= hS, (S⌃, S⇤, S�),

Q
i2I &

i,
S

i2I Ai,�,�i,
where the sets of Player 1 and Player 2 states

S⌃ ✓ {~s 2
Y

i2I
(Si
⌃ [ Si

⇤) | 9!◆ . s◆ 2 S◆
⌃} and S⇤ ✓

Y

i2I
Si
⇤,

are defined to contain the reachable states, where S�, �, and � are defined via

• ~s
a�! ~µ for a 6= ⌧ if at least one component is involved and the involved

components are exactly those with a in their action alphabet, and if ~s is a
Player 1 state then its only Player 1 component G◆ is involved; and

• ~s
⌧�! ~t if exactly one component Gi is involved, ~s 2 S⇤, and En(~t) 6= ;.

Our game composition is both associative and commutative, formalised in Propo-
sition 4.1 below, facilitating model development. We define the equivalence ' such
that G ' G 0 means that, for all specifications ' defined on traces, G |= ' if and only
if G 0 |= '.
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Proposition 4.1. Given normal-form games G1, G2 and G3, we have

• G1 k G2 ' G2 k G1 (commutativity); and

• (G1 k G2) k G3 ' G1 k (G2 k G3) (associativity).

Proof. A direct consequence of Definition 4.3.

The identity of the players must be preserved during composition, to enable syn-
thesis. Thus, moves outgoing from Player 1 states in the individual components are
controlled by a single Player 1 in the composition; similarly, the identity of Player 1

in the composition can be seen as the coalition of all the Player 1s in the components.
The ⌧ -transitions are controlled by Player 2, and can be considered as a scheduling
choice. In the transformation to normal form, at most one such scheduling choice is
introduced for each Player 2 state, but in the composition several scheduling choices
may be present at a Player 2 state, so that Player 2 resolves nondeterminism arising
from concurrency. Hence, Player 2 in the composition acts as a scheduler, controlling
which component advances and, in Player 2 states, selecting among available actions,
whether synchronised or not.

Example 4.2 (Scheduling by Player 2). Consider again the games in Figure 4.1. The
game on the right is the composition of the two normal form games in the centre.
In state (s1, t1), Player 2 picks which game to advance via the two ⌧ -transitions.
Hence, the traces are (a(bc|cb))! (using !-regular expression notation), that is, all
interleavings of (ab)! and (ac)! that synchronise on a.

Our game composition is closely related to PA composition (Definition 4.1), with
the added condition that in Player 1 states of the composition the unique Player 1

component must be involved. As PAs are just games without Player 1 states, the
game composition applied to PAs is the same as classical PA composition. The
condition that the states reached by ⌧ -transitions have outgoing moves (En(~t) 6= ;)
ensures that deadlocks introduced by the normal form transformation are not present
in the composed game. Deadlocks that were present before the transformation are
still present. In the composition of normal form games, ⌧ -transitions are only enabled
in Player 2 states, and Player 1 states are only reached by such transitions; hence,
composing normal form games yields a game in normal form.

Examplere 4.3 (Game Composition). We return to our running example from Sec-
tion 3.6. The games in Figure 3.8 are reproduced in Figure 4.2, with G1

re and G2
re
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Figure 4.2: Example normal-form games G1
re

(left) and G2
re

(centre), with their composition
G

re

(right). All distributions are uniform.

on the left and in the centre respectively. Note that G1
re and G2

re are already in nor-
mal form (the self-loop labelled a in s2 indicates that G1

re was not derived via our
automatic normal-form transformation). The game on the right is the composition
Gre = G1

re k G2
re. Actions a and b are synchronised. Player 2 controls b in both s1 and

t1, and so in the composition Player 2 controls b at (s1, t1). Player 2 controls a in s1

and s2, but Player 1 controls a in t0, and so it is controlled by Player 1 in (s1, t0) and
(s2, t0) in the composition. Note that actions are not necessarily exclusive to Player 1

or Player 2, since a is enabled in s1, s2 2 S1
⇤ as well as in t0 2 S2

⌃.

4.1.3 Compatibility

Composition must not disable or add any Player 1 choice, because strategies that are
winning in the components need to make the same choices in the composed game in
order for the composition to be winning. Therefore, for assume-guarantee strategy
synthesis, we require that moves controlled by Player 1 in one game are enabled and
fully controlled by Player 1 in the composition, which is analogous to the composability
condition for single-threaded interface automata [54].

Definition 4.4. Games (Gi)i2I are compatible if, for every Player 1 state ~s 2 S⌃

in the composition with s◆ 2 S◆
⌃, if s◆

a�!◆µ◆ then there is exactly one distribution
~⌫, denoted by hµ◆i~s,a, such that ~s a�! ~⌫ and ⌫◆ = µ◆. (That is, for i 6= ◆ such that
a 2 Ai, there exists exactly one a-transition enabled in si.)
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Figure 4.3: Game-fragments to illustrate the effects of incompatibility.

Example 4.4. Consider the game fragments in Figure 4.3, illustrating the ramifi-
cations on the composed strategy if compatibility is violated. The games G1 and G2

synchronise on actions a and b. In G1, the state s has a transition labelled with b,
which is blocked in the composition at state (s, t). If a Player 1 strategy synthesised
for G1 needs to pick b in order to win, it is no longer able to do so in the composed
game, and so we exclude such cases. Further, in G2, the state t has two transitions
labelled with a that both synchronise with the move (a, µ) at s in G1. The intuition is
that these Player 2 actions in G2 are actually controlled by Player 1 in G1. However, if
a Player 1 strategy in G1 picks (a, µ), it is not clear which of the two moves (a, µ⇥µ0)

or (a, µ⇥µ1) should be picked in the composition, and hence we prohibit this case in
the compatibility condition.

Checking compatibility requires the construction of the product game, whose state
space size is exponential in the number of components. Note, however, that the com-
putational complexity of strategy synthesis typically dominates that of constructing
the product game. The explicit construction of the composition can be avoided by
requiring that only Player 2 actions are synchronised. We make use of this observation
in the case study of Section 8.3. Compatibility is required to ensure that the choices
of local winning strategies are available in the composed game. We do not impose
the input-enabledness condition of, for example, IO automata [46], as this would give
rise to concurrent games.

4.1.4 Strategy Composition

We now show how to compose strategies. We synthesise SU strategies in Chapter 6,
justified by their succinct representation, which is why we compose SU strategies so as
not to sacrifice this succinctness. The memory update function of the composed SU
strategy ensures that the memory in the composition is the same as if the SU strategies
were applied to the games individually. According to the definition of strategies,
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Definition 3.4, only the next state is available to the memory update function, and so,
when moving to a state, it can no longer be recovered which components synchronised,
unless the memory elements are unique for each state or move. We can, however,
always augment the strategy memory M by substituting it with M⇥ S, so that, for
each memory element (m, s), m corresponds to the original memory, and s corresponds
to the current state. We assume, therefore, without loss of generality, that we can
recover the action a that is part of the current move from the current memory element
m, which we denote by act(m)

def
= a. We let �(a,~t) be the set of indices of components

that update their memory during an a-transition of the composed game to the state
~s, formally defined by

�(a,~t)
def
=

8
<

:
{i 2 I | a 2 Ai} if ~t 2 S⇤ or ~t = (a, ~µ) 2 S� such that a 6= ⌧

{◆} if t◆ 2 S◆
⌃ or ~t = (⌧, ~u) 2 S� such that u◆ 2 S◆

⌃.

Thus, if a 6= ⌧ , �(a,~t) yields the components synchronising on the action a, while on
⌧ -transitions �(⌧,~t) yields ◆, the scheduled component, which can be obtained from
~t, the next state, due to the normal form.

Definition 4.5. The composition of Player 1 strategies ⇡i = hMi, ⇡i
c, ⇡

i
u, ⇡

i
di, i 2 I,

for compatible games is ki2I ⇡i def
= h
Q

i2I M
i, ⇡c, ⇡u, ⇡di, where we define

⇡c(~s, ~m)(a, hµ◆i~s,a) def
= ⇡◆

c(s
◆,m◆)(a, µ◆) if s◆ 2 S◆

⌃

⇡u(~m,~t)(~n)
def
=
Q

i2�(act(~m),~t) ⇡
i
u(m

i, ti)(ni) if mi = n

i for i 6= �(act(~m),~t)

⇡d(~s)
def
=
Q

i2I ⇡
i
d(s

i).

From this definition, strategy composition is commutative and associative.

Proposition 4.2. Given compatible normal-form games G1, G2 and G3, with respec-
tive strategies ⇡1, ⇡2 and ⇡3, we have

• (G1 k G2)⇡
1k⇡2 ' (G2 k G1)⇡

2k⇡1 (commutativity); and

• ((G1 k G2) k G3)(⇡
1k⇡2)k⇡3 ' (G1 k (G2 k G3))⇡

1k(⇡2k⇡3) (associativity).

Proof. A direct consequence of Definitions 4.3 and 4.5.

Example 4.5 (Composing Strategies). Consider the game fragments in Figure 4.4.
The game G on the right is the composition of the two games G1 and G2 on the left.
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Figure 4.4: Composing SU Strategies. The arrays [pi0, p
i
1] show the belief in game Gi,

where p

i
j is the probability of mi

j . The matrices on the right show the belief from ⇡

1 k ⇡2,
where the entry in the ith row and jth column, pi,j stands for the probability of (m1

i ,m
2
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We define the SU strategies ⇡i for Gi, with respective memory M

i def
= {mi

0,m
i
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Supposing that the memory is m

1
0 in s10, we show how the belief from ⇡1 evolves in

Figure 4.4 (left). The choice function ⇡1
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In Figure 4.4 (centre), we show how the belief from ⇡2 evolves when starting with m

2
0

in s20. The memory of the composed strategy ⇡ = ⇡1 k ⇡2 is {(m1
i ,m

2
j) | i, j 2 {1, 2}},

corresponding to the product of the individual memories. In Figure 4.4 (right) we
show how the belief from ⇡ evolves, supposing that the memory is (m1

0,m
2
0) at (s10, s20).

We show the belief via the matrices [ p0,0, p
0,1

p
1,0

, p
1,1

], where pi,j corresponds to the probability
that the memory of ⇡ is in (m1

i ,m
2
j). We observe that, on the ⌧ -transition, only the

memory of ⇡1 updates, while on the b-transition only the memory of ⇡2 updates,
which is because �(⌧, (s12, s

2
0)) = {1} and �(b, (s10, s

2
2)) = {2}. On the a-transition,

the memory of both local strategies is updated, since �(a, (s11, s
2
1)) = {1, 2}. Finally,

we note that the memory of the local strategies can be obtained by marginals: for
example, at (s12, s20) the belief from ⇡1 is given by the row marginals of

⇥
0.5,0
0.5,0

⇤
, which

is [0.5, 0.5], and is thus the same as the local belief at s12.
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4.2 Assume-Guarantee Rules

In this section we develop assume-guarantee strategy synthesis rules. Synchronisation
in Player 1 states means that Player 1 in one component may indirectly control some
Player 2 actions in another component. In particular, we can impose local conditions
on the components, so that Player 1 of different components can cooperate to achieve
a common goal. A typical “contract” between components is to require that in one
component Player 1 satisfies the goal B under an assumption A on its environment
behaviour (that is, A ! B), while Player 1 in the other component ensures that the
assumption is satisfied, against all Player 2 strategies.

We suppose in our framework that the designer supplies a game G =ki2I Gi com-
posed of component games Gi, i 2 I, together with a local specification defined on
traces 'i for each component Gi, and a global specification ' for the composed game
G. The requirement is that ' can be deduced from 'i using PA composition rules.
Ideally, only the component games and the global specification are required, and the
local specifications are deduced automatically. Below, in Section 4.3, we show how
by interpreting the targets of an MQ as parameters, we can find the set of achievable
targets for the global specification by computing the Pareto sets of the local specifica-
tions, and, inversely, by fixing a target for the global specification, we can instantiate
the targets of the local specifications.

4.2.1 Specifications Defined on Traces

Our assume-guarantee framework supports a general class of specifications, which is
characterised by being invariant under interleaving actions, that is, we operate on
specifications defined on traces. We illustrate in Example 4.6 that specifications not
defined on traces are in general not supported in our framework. Specifically, Exam-
ple 4.6 demonstrates that average rewards are not defined on traces in general, since
the divisor (N + 1) counts the transitions, irrespective of whether the specification
takes them into account. In contrast, ratios of rewards are defined on traces, (as we
show below in Proposition 5.4), since we can control which actions are counted in the
denominator, and thus, in our game composition, both actions used in the numerator
r and denominator c can be synchronised.

Examplere 4.6 (Specifications Defined on Traces). We continue our running exam-
ple of Section 3.6. We illustrate how our compositional analysis relies on specifica-
tions defined on traces (here we use ratios of rewards), by comparing with specifica-
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tions not defined on traces (here we use mean-payoffs). We investigate the Pareto
sets in the component games and compare them with the composed game. We have

Pareto(G1
re |Pmp(r1)) = {v1  v11

def
= 0}

Pareto(G2
re |Pmp(r1)) = {v1  v21

def
= 1

6
}.

In the composed game, we have that Pareto(G1
re k G2

re |Pmp(r1)) = {v1  1
12
}, and so

v11 < 1
12

< v21. However, there is no straightforward relationship between the values
achievable for the components and the composition. For example, we have

Pareto(G1
re |Pmp(r2)) = {v2  v12

def
= 0}

Pareto(G2
re |Pmp(r2)) = {v2  v22

def
= 1

6
},

but we have Pareto(G1
re k G2

re |Pmp(r2)) = {v2  3
16
}, where v12 < v22 < 3

16
. We can

perform the same analysis with ratios of rewards. We obtain

Pareto(G1
re |Pratio(r1/c)) = {v1  v11

def
= 0}

Pareto(G2
re |Pratio(r1/c)) = {v1  v21

def
= 1

2
}

Pareto(G1
re k G2

re |Pratio(r1/c)) = {v1  1
2
}

where max{v11, v21}  1
2
. Similarly, we obtain

Pareto(G1
re |Pratio(r2/c)(v2)) = {v2  v12

def
= 0}

Pareto(G2
re |Pratio(r2/c)(v2)) = {v2  v22

def
= 1}

Pareto(G1
re k G2

re |Pratio(r2/c)) = {v2  3
2
}

where max{v12, v22}  3
2
. We observe that, for ratio objectives, the Pareto sets of the

individual components are subsets of the Pareto sets of the composed game. This is
formally shown in Theorem 4.6.

The traces of a composed system are a subset of the interleavings of the traces
of the individual components, and so we can view the composition as modifying the
trace distribution of the components. Additionally, note that specifications over multi-
dimensional reward structures are defined on traces over the union of the actions of
the individual dimensions, and so MQs consisting of objectives defined on traces are
likewise defined on traces.
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Figure 4.5: Functional simulation from the PA M to the PA M0, shown as dashed arrows.

Proposition 4.3. Let ('j)j2J be specifications defined on Aj-traces, respectively.
Then any MQ ' defined using ('j)j2J is defined on

S
j2J Aj-traces.

Proof. By a straightforward structural induction on the syntax of the MQ '.

4.2.2 Properties of the Composition

We now discuss properties of our game composition that allow us to show that syn-
thesising strategies for compatible individual components is sufficient to obtain a
composed strategy for the composed game.

Functional Simulations. We introduce functional simulations, which are a special
case of classical PA simulations [118], and show that they preserve specifications over
traces. Intuitively, a PA M0 functionally simulates a PA M if all behaviours of M
are present in M0, and if strategies translate from M to M0. Given a distribution µ,
and a partial function F : S ! S 0 defined on the support of µ, we write F(µ) for the
distribution defined by F(µ)(s0) def

=
P

F(s)=s0 µ(s).

Definition 4.6. A functional simulation from a PA M = hS, (S⇤, S�), &,A,�,�i
to a PA M0 = hS 0, (S 0

⇤, S
0
�), & 0,A0,�0,�0i is a partial function F : S ! S 0 such that

(F1) F(&) = & 0; and

(F2) if s a�! µ in M then F(s)
a�!0F(µ) in M0.

Example 4.7 (Functional Simulations). Consider the two PA fragments M and M0

in Figure 4.5. We define a functional simulation F from M to M0 by F(s0) = t0,
F(s1) = t2, and F(s2) = F(s3) = t1. Consider the transition s0

a�! µ in M,
where µ(s1) = µ(s2) = µ(s3) = 1

3
. We have that ⌫ = F(µ) is the distribution
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⌫(t1) =
2
3

and ⌫(t2) = 1
3
. Since s0

a�! µ in M, we have t0
a�!0F(µ) in M0. Further,

the initial distribution & 0 of M0 is simply the Dirac t0, which is equivalent to F(&).
Note, however, that the functional simulation is only in one direction, and so the
transition t0

b�!0t2 in M0 has no corresponding transition in M.

If a functional simulation exists from a PA M to a PA M0 then we can obtain
a strategy �0 for M0 from a strategy � of M. Whenever � selects a move (a, µ) in
state s of M, the functional simulation guarantees that there is a corresponding move
(a,F(µ)) in state F(s) of M0, which �0 can choose. We now formally show that a
functional simulation from M to M0 guarantees that a strategy winning in M can
be mapped to a strategy winning in M0 for specifications defined on traces. The need
to considering specifications defined on traces, rather than on paths, is a consequence
of the PAs M and M0 having different state spaces.

Lemma 4.4. Given a functional simulation from a PA M to a PA M0 and a spec-
ification ' defined on traces, for every (finite) strategy � there is a (finite) strategy
�0 such that (M0)�

0 |= ',M� |= '.

Proof. Let M = hS, (S⇤, S�), &,A,�,�i, M0 = hS 0, (S 0
⇤, S

0
�), & 0,A0,�0,�0i, and � =

hN, �
c

, �
u

, �
d

i. We construct an SU strategy �0 that simulates � applied to M by
keeping the current state in M and the memory of � in its own memory. The
functional simulation ensures that every path of M� corresponds to a path in (M0)�

0 ,
and so after seeing memory (s,m) the strategy �0 picks the next move that � would
pick in state s with memory m. Our aim is to show that the trace distributions of
(M0)�

0 and M� are equivalent. We formally let �0 def
= hN0, �0

c

, �0
u

, �0
d

i, where we define
N

0 def
= N ⇥ S, and where, for all (m, s), (n, (a, µ)), (o, t) 2 N

0 and all s0 a�!0µ0 in M0,
such that s0 = F(s), µ0 = F(µ), t0 = F(t) 2 supp(µ0), we define

�0
d

(s0)((m, s))
def
= �

d

(s)(m) · &(s)
& 0(s0)

�0
u

((m, s), (a, µ0))((n, (a, µ))) def
=

�
u

(m, (a, µ))(n)

�0
c

(s0, (m, s))(a, µ0)
(4.1)

�0
u

((n, (a, µ)), t0)((o, t)) def
= �

u

(n, t)(o) · µ(t)

µ0(t0)
(4.2)

�0
c

(s0, (m, s))(a, µ0) def
=
P

F(µ)=µ0 �
c

(s,m)(a, µ).

Denote by PD(m,�)
def
= PD(�) ·d�(m) the probability of the path � and the memory

m after seeing �. A functional simulation F must be defined for the reachable states
of M, and so it extends inductively to a total function on paths of M by defining
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F(�(a, µ)s)
def
= F(�)(a,F(µ))F(s). We now show by induction on the length of paths

that P�0
M0((m, s),�0) = P�

M(m,�) if F(�) = �0, and P�0
M0((m, s),�0) = 0 otherwise.

For the base case, for any (m, s) 2 N

0 and s0 2 S 0 such that s0 = F(s), we have
that P�0

M0((m, s), s0) = & 0(s0) · �0
d

(s0, (m, s)) = �
d

(s)(m) · &(s) = P�
M(m, s); if, on the

other hand, s0 6= F(s) then �0
d

(s0, (m, s)) = 0, and so P�0
M0((m, s), s0) = 0.

For the induction step, assume the equality holds for � 2 ⌦fin

M and �0 2 ⌦fin

M0 , and
we consider paths �(a, µ)t 2 ⌦fin

M and �0(a, µ0)t0 2 ⌦fin

M0 . We have that

P�0

M0((o, t),�0(a, µ0)t0) =
X

(m,last(�)),(n,(a,µ))2N0

P�0

M0((m, s),�0) · p1 · p2,

where

p1 = �0
c

(last(�0), (m, last(�)))(a, µ0) · �0
u

((m, last(�)), (a, µ0))((n, (a, µ)))

p2 = µ0(t0) · �0
u

((n, (a, µ)), t0)((o, t0)).

We consider first the case where F(�(a, µ)t) 6= �0(a, µ0)t0: if F(�) 6= �0, then from
the induction hypothesis P�0

M0((m, s),�0) = 0; and if F((a, µ)t) 6= (a, µ0)t0, then p2 = 0

from (4.2). Now suppose that F(�(a, µ)t) = �0(a, µ0)t0. From (4.1) we have that
p1 = �

u

(m, (a, µ))(n) and from (4.2) we have that p2 = µ(t) ·�
u

(n, t)(o). Applying the
induction hypothesis, we conclude the induction, since

P�0

M0((o, t),�0(a, µ0)t0) =
X

m,n2N
P�
M(m,�) · �

u

(m, (a, µ))(n) · µ(t) · �
u

(n, t)(o)

= P�
M(o,�(a, µ)t).

We thus have

P̃�0

M0(w) =
X

�02paths(w)
(m,s)2N0

P�0

M0((m, s),�0) =
X

�02paths(w)
F(�)=�0

m2N

P�
M(m,�)

⇤
=
X

�2paths(w)

P�
M(�)

def
= P̃�

M(w).

where the equation marked with ⇤ is a consequence of trace(�) = trace(F(�)). Thus,
�0 and � induce the same trace distribution, and ', which is defined on traces, satisfies
(M0)�

0 |= ',M� |= '.

Exchanging Order of Composition. We are interested in compositionally syn-
thesising strategies for the composed game G =ki2I Gi, that is, find strategies ⇡i for
the respective component games Gi, and then compose them, to ⇡ =ki2I ⇡i, in order
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to obtain a winning strategy for G. Below, we use compositional verification rules for
PAs in order to develop our synthesis rules for games, and hence we define the seman-
tics of strategies via inducing PAs (see Definition 3.5). When synthesising strategies
⇡i for the respective component games Gi, we obtain induced PAs (Gi)⇡

i by applying
the strategies, and then compose them to the PA ki2I (Gi)⇡

i . For a fully composi-
tional framework for strategy synthesis in games, however, we are interested in the
PA (ki2I Gi)ki2I

⇡i , which is constructed by first composing the individual component
games Gi, and only then applying the composed Player 1 strategy. The following
lemma justifies, via the existence of a functional simulation, that composing Player 1

strategies preserves the trace distribution between such PAs.

Lemma 4.5. Given compatible normal form games (Gi)i2I , and Player 1 strategies
(⇡i)i2I , there is a functional simulation from (ki2I Gi)ki2I

⇡i to ki2I (Gi)⇡
i.

Proof. We construct a functional simulation by viewing states in the induced PA M =

(ki2I Gi)ki2I

⇡i as derived from the paths of the composed game G = (ki2I Gi). These
paths are projected to components Gi and then assigned a corresponding state in the
induced PA (Gi)⇡

i . Due to the structure imposed by compatibility, moves chosen at
Player 1 states in Gi can be translated to moves in the composition M0 =ki2I (Gi)⇡

i .
Denote the induced PA by M = hS, (S⇤, S�), &,A,�,�i, and the composition

of induced PAs by M0 = hS 0, (S 0
⇤, S

0
�), & 0,A,�0,�0i. We define a partial function

F : S ! S 0, and then show that it is a functional simulation. We use ~� to stand
for both Player 2 states ~s and Player 1 state-move tuples (~s, (a, ~µ)) of the game G, as
occurring in the induced PA M (see Definition 3.5). We write

[~�]i =

8
>>><

>>>:

si if ~� = ~s 2 S⇤

(si, (a, µi)) if ~� = (~s, a, ~µ) and Gi is involved in ~s a�! ~µ

si if ~� = (~s, (a, ~µ)) and Gi is not involved in ~s a�! ~µ,

and let [d]i(mi)
def
=
P

m

j ,j 6=i d(~m) for all ~m 2M =
Q

i2I M
i. We define F by [F(~�, d)]i =

([~�]i, [d]i) for all reachable states (~�, d) 2 S of M, and all i 2 I. We now show that
F is a functional simulation.

Case (F1). We show that F(&) = & 0. Note that, due to the normal form, the initial
distribution & of M only maps to states of the form S⇤⇥D(M), and the initial distribu-
tion & 0 of M0 only maps to states of the form

Q
i2I S

i
⇤⇥D(Mi). For such states (~s, d) 2

S⇤ ⇥ D(M), we have [F(~s, d)]i = (si, [d]i), and so F(&)((s1, [d]1), (s2, [d]2), . . .) =

&(~s, d) = & 0((s1, [d]1), (s2, [d]2), . . .).
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Case (F2). According to the definition of the induced PA, M = Gk
i2I

⇡i has
transitions (~�, d)

a�! µ⇡
d

+

, for some belief d+, which are induced from transitions
~s

a�! ~µ of the game composition G. For each component Gi, we apply the strat-
egy ⇡i separately, and obtain that, for each transition si

a�!iµi in Gi, the transition
([~�]i, [d]i)

a�! (µi)⇡
i

[d
+

]i is in the induced PA (Gi)⇡
i . Then, composing the induced

PAs (Gi)⇡
i yields a transition F(~�, d)

a�!0⌫ in M0, where ⌫ is as follows: we consider
states ~�++ of M and beliefs d++, such that [~�]i = [~�++]i and [d]i = [d+]

i = [d++]
i for

all i 62 �(a,~�++), that is, the components not involved in the transition do not evolve,
and for such ~�++ and d++ we have

⌫(F(~�++, d++)) =
Y

i2�(a,~�
++

)

(µi)⇡
i

[d
+

]i([~�++]
i, [d++]

i) (Definition 4.3)

= µ⇡
d

+

(~�++, d++) (Definition 4.5)

= F(µ⇡
d

+

)(F(~�++, d++)). (definition of F)

We thus have that F(~�, d)
a�!0F(µ⇡

d

) is in M0, concluding the proof of (F2).

In general, there is no simulation in the other direction, since in the PA compo-
sition the states that were originally Player 1 states can no longer be distinguished,
see, for instance, Figure 4.5, as well as the following example.

Examplere 4.8. We consider again the games in Figure 4.2 to illustrate Lemma 4.5.
In Figure 4.6 we show the PA Mre = (G1

re k G2
re)

⇡1k⇡2, where G1
re and G2

re are the two
component games on the left in Figure 4.2, and ⇡1 and ⇡2 are Player 1 strategies
uniformly randomising between choices. Hence, Mre is obtained by first composing
the component games, and then applying the composed strategy ⇡1 k ⇡2, a process
which we call “compose-and-schedule”. In Figure 4.7 we show the PA M0

re = (G1
re)

⇡1 k
(G2

re)
⇡2, which is obtained by first applying the Player 1 strategies to the games, and

then composing the resulting PAs, which we call “schedule-and-compose”.
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Figure 4.6: “Compose-and-Schedule”: the PA M
re

induced from the composed game
G

re

= G1
re

k G2
re

from Figure 4.2 by applying a Player 1 strategy uniformly randomising
between choices. State labels are abbreviated: (s, t, a) stands for ((s, t), (a, µ)), where µ is
the distribution corresponding to the outgoing transition.

According to Lemma 4.5, we can construct a functional simulation. Thus we have

F(s2, t2)= s2, t2

F(s0, t2, d)= (s0, d), t2 F(s2, t0, a)= s2, (t0, a)

F(s0, t2, q1)= (s0, q1), t2 F(s2, t0, q2)= s2, (t0, q2)

F(s1, t2)= s1, t2 F(s2, t1)= s2, t1

F(s1, t0, a)= s1, (t0, a) F(s0, t1, q1)= (s0, q1), t1

F(s1, t0, q2)= s1, (t0, q2) F(s0, t1, d)= (s0, d), t1

F(s1, t1)= s1, t1,

where we use the same notation as in the figures to abbreviate states: for exam-
ple, s1, t2 is the state (s1, t2), and s0, t2, d, since only leading to (s1, t2) is the state
((s0, t2), (d, (s1, t2))); and (s0, d), t2 stands for ((s0, (d, s1)), t2).
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Figure 4.7: “Schedule-and-Compose”: the PA M0
re

obtained from applying uniformly ran-
domising Player 1 strategies to the games G1

re

and G2
re

in Figure 4.2, and then composing
the induced PAs. State labels are abbreviated: (s, a) stands for (s, (a, �), where � is the
distribution corresponding to the outgoing transition in the respective PA (G1)⇡

1 or (G2)⇡
2 .

The functional simulation guarantees that all transitions in Mre are matched by
transitions in M0

re. However, note that there are transitions and states in M0
re that

are not matched in Mre (shown in grey in Figure 4.7), and so no functional simula-
tion exists in the other direction. Mre is obtained from the composed game, where the
⌧ transitions are only available in Player 1 states due to the game composition; M0

re

is obtained by composing the induced PAs, and so the ⌧ transitions are not disabled
by the composition, since the states are no longer specific to Player 1. Every path in
Mre exists in M0

re, and in this example it is clear that every Player 2 strategy of Mre

can be mapped to a Player 2 strategy of M0
re, preserving the trace distribution, and

so any specification defined on traces satisfied in M0
re is satisfied in Mre.
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4.2.3 Synthesis Rules

Our main result for assume-guarantee synthesis is that any verification rule for PAs
gives rise to a synthesis rule for games with the same side conditions. The idea is to
induce PAs from the strategies synthesised for games, apply PA verification rules to
show that Player 2 cannot spoil Player 1 in the composition, and, using Lemma 4.5, we
can lift the result back into the game domain. A rule is a higher-order logic formula

8P 2 P, Q 2 Q(P ) . P ) Q,

where P is a set of allowed premises, and Q(P ) is a set of allowed conclusions, which
depend on how the premises P were chosen. We write such a rule as

P(Name) s.t. P 2 P, Q 2 Q(P ).
Q

Typically, P and Q(P ) are implicit, and defined informally via matching the syntax;
however, we make explicit some side conditions that restrict P and Q(P ), for instance,
by restricting the allowable choices of action alphabets. An instance of a rule is
written P

Q
, where P and Q have been chosen in accordance with all restrictions.

Lifting Theorem. The following theorem, the main result of our assume-guarantee
framework, establishes a lifting from PA verification rules to synthesis rules for games.
Recall that the notation M |= � means that all strategies � satisfy M� |= �.

Theorem 4.6. Given specifications 'i
j and ' defined on traces, such that the PA

verification rule

Mi |= 'i
j j 2 J i 2 I

ki2I Mi |= '

holds for PAs (Mi)i2I . Then the rule

(Gi)⇡
i |=

V
j2J '

i
j i 2 I

(ki2I Gi)ki2I

⇡i |= '

holds for all Player 1 strategies (⇡i)i2I of compatible normal-form games (Gi)i2I , with
the same action alphabets as the corresponding PAs.

Proof. For all i 2 I, let Gi be games, and let ⇡i be respective Player 1 strategies
such that (Gi)⇡

i |=
V

j2J '
i
j. By applying the PA rule with the PAs Mi def

= (Gi)⇡
i ,

where Mi |=
V

j2J '
i
j for all i 2 I from how the strategies ⇡i were picked, we have that
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Figure 4.8: Games G1 (left) and G2 (centre) to illustrate fairness in their composition
G1 k G2 (right).

ki2I Mi |= '. From Lemma 4.5, there is a functional simulation from (ki2I Gi)ki2I

⇡i to
ki2I (Gi)⇡

i . Since ki2I (Gi)⇡
i |= ', applying Lemma 4.4 yields (ki2I Gi)ki2I

⇡i |= '.

The specifications 'i
j and ' in Theorem 4.6 can be any MQs, as long as they are

defined on traces over the restricted action alphabets required by the relevant PA
verification rule. We write the side conditions on the action alphabets next to the
rules. In particular, for the premises in Theorem 4.6 we can use the assume-guarantee
rules for PAs developed in [85], which are stated for MQs consisting of total expected
rewards or !-regular objectives. Thus, the specification ' for the composed game
can, for example, be a CQ, or a summation of rewards, among others.

Fairness. We recall the concept of unconditional process fairness based on [5], which
we use in the PA verification rules. Given a composed PA M =ki2I Mi, a strategy
� is (unconditionally) fair if in M� the actions Ai of each component Mi appear
infinitely often on almost all paths,that is, each component makes progress infinitely
often with probability 1. We write M |=u ' if, for all unconditionally fair strategies �,
M� |= '. Note that fairness can be expressed as a specification defined on traces, and
thus incorporated into the rules of Theorem 4.6. Unconditional fairness corresponds
precisely to the fairness conditions used in the PA rules of [85].

Our game composition does not guarantee freedom from deadlocks, that is, states
without outgoing moves. For a single component, unconditional fairness is equivalent
to only requiring deadlock-freedom, and so our monolithic synthesis method does not
explicitly have to take the fairness assumption for component games into account.
In a deadlocked game, if Player 2 cannot avoid reaching deadlocks, there are no fair
Player 2 strategies, rendering the synthesis problem trivial, as any specification is then
vacuously satisfied under fairness. We also observe that, when composing stopping
games, fair strategies only exist in the composition if all components synchronise on
actions in terminal states, and can enter such terminal states together with probability
one, for instance by synchronising on entering terminal states.
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Example 4.9 (Fairness). Consider the two normal-form games G1 and G2 on the left
in Figure 4.8, and their composition G = G1 k G2 on the right. Fair Player 2 strategies
are those that play actions in each of A1 = {a} and A2 = {b} infinitely often
with probability one. For example, the Player 2 strategy �(1

2
) picking (⌧, (s1, t0)) and

(⌧, (s0, t1)) with uniform probability at (s0, t0) is fair. More generally, for 0 < � < 1,
any Player 2 strategy �(�) assigning probability � to (⌧, (s1, t0)) and probability 1�� to
(⌧, (s0, t1)) is fair. However, the strategies that always pick (⌧, (s1, t0)) or (⌧, (s0, t1))

are not fair. Note that any Player 2 strategy in G1 and G2 is fair in any case, since
they are (monolithic) component games without deadlocks.

We now present a set of assume-guarantee strategy synthesis rules for games. The
rules are stated for compatible normal-form games G1 and G2, and we are interested in
synthesis of strategies under the assumption that the scheduler is fair. The conclusion
of one rule can serve as the premise of other rules (thanks to the exchange in the order
of composition enabled by Lemma 4.5), and so we can combine several rules to deduce
properties about more than two components. Our rules are based on those in [85],
but we emphasise that Theorem 4.6 is applicable to any PA verification rule.

The (Conj) Rule. A fundamental rule in our framework is the (Conj) rule that
allows us to put specifications in conjunction. Each component Gi, with action al-
phabet Ai, has its specification 'i defined on Ai-traces, and the rule guarantees that
the conjunction

V
i2I '

i is satisfied in the composition ki2I Gi. We thus have for all
⇡i, i 2 I, the rule

(Gi)⇡
i |=u 'i i 2 I

(Conj)
(ki2I Gi)ki2I

⇡i |=u

V
i2I '

i

To derive the (Conj) rule, we prove the corresponding PA verification rule, and
use Theorem 4.6 to derive the synthesis rule.

Proposition 4.7. Let (Mi)i2I be PAs with respective action alphabets (Ai)i2I , and
let ('i)i2I be specifications, where, for all i 2 I, 'i is defined on Ai-traces. The
following rule holds:

Mi |=u 'i i 2 I
(Conj)

ki2I Mi |=u V
i2I '

i.

Proof. Let M =ki2I Mi. We first recall concepts of projections from [85]. Given
a state ~s = (s1, s2, . . .) of M, the projection of ~s onto Mi is ~s�Mi

def
= si, and for a

distribution ~µ over states of M we define its projection by ~µ�Mi

(si)
def
=
P

~s�Mi

=si ~µ(s).
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Given a path � of M, the projection of � onto Mi, denoted by ��Mi

, is the path
obtained from � by projecting each state and distribution, and removing all moves
with actions not in the alphabet of Mi, together with the subsequent states. Given
a strategy � of M, its projection ��Mi

onto Mi is such that, for any finite path �i

of Mi and transition last(�i)
a�! µi,

��Mi

(�i)(a, µi)
def
=
X

��Mi

=�i

X

~µ�Mi

=µi

P�
M(�) · �(�)(a, µ)/P��Mi

Mi

(�i).

Fix a fair strategy � for M. From Lemma 2 in [85], the projections ��Mi

are well-
defined fair strategies, for all i 2 I. Hence, Mi |=u 'i implies (Mi)��Mi |= 'i. Fur-
thermore, from Lemma 7.2.6 in [118], P̃�

M(w) = P̃��Mi

Mi

(w) for any trace w over actions
Ai. Since 'i is defined on Ai-traces, we have that (Mi)�

i�Mi |= 'i , '(P�i�Mi

Mi

) ,
'(P�

M) , M� |= 'i Finally, since � was an arbitrary fair strategy of M, we have
M |=u

V
i2I '

i.

Example 4.10 (Conjunction Rule). We illustrate the (Conj) rule and its side con-
ditions using the games in Figure 4.8. Define reward structures r1 and c1 with
r1(a) = c1(a) = 1 (and zero otherwise), r2 and c2 with r2(b) = c2(b) = 1 (and zero
otherwise), and c with c(a) = c(b) = 1. Clearly, G1 |= Eratio(r1/c)(1) and G2 |=
Eratio(r2/c)(1), and, equivalently, G1 |= Eratio(r1/c1)(1) and G2 |= Eratio(r2/c2)(1).
Now consider the conjunctions �1 = Eratio(r1/c)(1) ^ Eratio(r2/c)(1) and �2 =

Eratio(r1/c1)(1) ^ Eratio(r2/c2)(1) in the composed game G, and a (fair) Player 2

strategy �(�) with 0 < � < 1, as defined in Example 4.9. We have, for arbitrary
Player 1 strategies, that E⇡,�(�)

G [ratio(r1/c)] = � and E⇡,�(�)
G [ratio(r2/c)] = 1 � �, and

so the conjunction �1 is not satisfied in the composed game G. However, c does not
satisfy the restrictions on the action alphabets. In contrast, c1 and c2 conform with
this restriction: we have E⇡,�(�)

G [ratio(r1/c1)] = 1 and E⇡,�(�)
G [ratio(r2/c2)] = 1, and so

�2 is satisfied in G. Note that under a Player 2 strategy that is not fair, for example
�(0) or �(1), neither conjunction is satisfied in G.

The (Prop) Rule. Another useful rule in our framework is the non-compositional
(Prop) rule to deduce specifications via propositional logic. We define the relation
` between MQs such that ' `  if and only if  follows from ' in propositional logic
with each objective being interpreted as a literal. We thus have, for all ⇡, the rule

G⇡ |=u '
(Prop) s.t. ' `  .G⇡ |=u  
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Example 4.11 (Propositional Rule). We show how to use the (Prop) rule together
with the (Conj) rule by deducing a specification via sequential rule application. We
start by instantiating the (Conj) rule with the games G1 and G2 and specifications
'A and 'G defined on AA- and AG-traces, respectively, such that AA ✓ A1 and AA[
AG ✓ A2. We then instantiate the (Prop) rule, taking as premise the conclusion
of the (Conj) rule; the side condition of the (Prop) rule is instantiated noting that
'A ^ ('A ! 'G) ` 'G (modus ponens). Thus

(G1)⇡
1 |=u 'A (G2)⇡

2 |=u 'A ! 'G(Conj)
(G1 k G2)⇡

1k⇡2 |=u 'A ^ ('A ! 'G)(Prop)
(G1 k G2)⇡

1k⇡2 |=u 'G.

The (Asym) and (Circ) Rules. The (Asym) rule is used for asymmetric contracts,
where one component G2 satisfies the specification 'A ! 'G (an implication), and the
other component G1 satisfies the specification 'A. Often 'A is called the assumption
and 'G is called the guarantee. The rule guarantees that the composition satisfies
'G, even though it might be the case that Player 1 in G2 cannot force this. Rather,
the (Asym) rule establishes a contract between the two components, where Player 1

in G2 is only required to satisfy 'G if Player 1 in G1 satisfies 'A. Thus, for all ⇡1, ⇡2,
and 'A and 'G defined on AA- and AG-traces, respectively, we have the rule

(G1)⇡
1 |=u 'A (G2)⇡

2 |=u 'A ! 'G(Asym) s.t. AA ✓ A1,AG [AA ✓ A2.
(G1 k G2)⇡

1k⇡2 |=u 'G

We note that the (Asym) rule can be deduced from the (Conj) and (Prop) rules:
the sequential instantiation of rules in Example 4.11 can be generalised to yield a
(uninstantiated) rule, where the side conditions of the resulting rule are all the side
conditions taken together (unless they are necessarily satisfied).

We extend the idea of contracts between components further in the (Circ) rule,
to resolve circular contracts (this terminology of circularity derives from [85]). G2 has
the specification 'A ! 'G as in the (Asym) rule, but Player 1 in G1 can only satisfy
'A under its own assumption 'B, defined on AB-traces. This additional specification
'B must be guaranteed by Player 1 in G2, in order to resolve the circularity. Thus,
for all ⇡1, ⇡2, we have the rule

(G1)⇡
1 |=u 'B ! 'A

(G2)⇡
2 |=u 'B ^ ('A ! 'G)

(Circ) s.t. AA,AB ✓ A1 \A2,AG ✓ A2.
(G1 k G2)⇡

1k⇡2 |=u 'G
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The (Circ) rule can be derived from the (Conj) and (Prop) rules in a way similarly
to how the (Asym) rule is derived.

4.3 Compositional Pareto Sets

We can compute an (approximation) of the Pareto set of the global specification '

from the Pareto sets of the local specifications ', which also allows us to pick the
targets of the 'i so that ' is achievable. Consider a rule

(Gi)⇡
i |=u 'i i 2 I

(R)
(ki2I Gi)ki2I

⇡i |=u ',

where the specifications 'i and ' consist of objectives (Oj)j2J in the following way.
For each i 2 I, 'i is a MQ over the subset {Oji

1

, Oji
2

, . . .}, where the indices ji1, ji2, . . .
determine the dimensions of the associated local Pareto set. Further, ' is a MQ over
the subset {Oj

1

, Oj
2

, . . .}, where the indices j1, j2, . . . determine the dimensions of the
global Pareto set. Note that each objective Oj may be present in several specifications
'i, and in ': for instance, in the (Asym) rule we have local specifications O1 and O1 !
O2, and O2 in the global specification. Each objective occurring in a specification is
associated with a dimension in the Pareto set, so that the dimensions of a Pareto set
Pareto(Gi |'i) correspond to the objectives Oji

1

, Oji
2

, . . .. For a vector ~v 2 R|J |, we let
~v�'i

def
= (vji

1

, vji
2

, . . .) be the subvector of ~v consisting of all coordinates in 'i.
We now show how to compose Pareto sets computed for the local games. Recall

that the boundary of a Pareto set may not be achievable, and so, for each Pareto set
Pareto(Gi |'i), we consider its interior, which we denote by P i. We define the lifting
"P i of a set P i by "P i def

= {~v 2 R|J | |~v�'i

2 P i}, and the dimensions J of the lifting
correspond to all objectives O1, O2, . . . in the rule under consideration. The set of
target vectors that are consistent with the achievable objectives for all specifications
'i in the respective games is

T
i2I "P i, where intersection of the liftings "P i ensures

that the targets are consistent with all local Pareto sets. We let the compositional
Pareto set CPareto((Gi)i2I |', ('i)i2I)

def
= cl({~v�' |~v 2

T
i2I "P i}), that is, the closure

of the projection to the dimensions of '. The compositional Pareto set is an under-
approximation of the Pareto set computed directly on the composed game G for '.

Proposition 4.8. Let (Gi)i2I be compatible games, and let ('i)i2I and ' be defined
on traces. If the rule (R) holds, then CPareto((Gi)i2I |', ('i)i2I) ✓ Pareto(ki2I Gi |').
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Figure 4.9: Pareto set under-approximations for games in Figure 4.2, with specifications
beneath the respective sets. Signs of Eratio

 objectives are flipped. On the right is the
compositional Pareto set P

0 = CPareto(G1
re

,G2
re

|'
re

, ('1
re

,'

2
re

)), an approximation P to the
Pareto set Pareto(G1

re

k G2
re

|'), as well as the oblique projections of P 1 and P

2 for reference.

Proof. Take ~v0 2 {~v�' |~v 2
T

i2I "P i}. Thus, there exists ~v such that ~v�' = ~v0, and,
for all i 2 I, ~v�'i

2 P i. For each i, since P i is the interior of Pareto(Gi |'i), there
exists a finite DU Player 1 strategy ⇡i achieving 'i[~v�'i

]. We now instantiate the
rule (R) with 'i[~v�'i

] and '[~v0]. The strategy ki2I ⇡i is finite DU and achieves '[~v0]
against all fair Player 2 strategies. Hence ~v0 2 Pareto(G |'). As Pareto sets are closed,
the result follows.

Hence ~v0 in the compositional Pareto set CPareto((Gi)i2I |', ('i)i2I) is achieved by
instantiating the specifications 'i with targets ~v�'i

2 P i for any ~v such that ~v�' = ~v0.

Examplere 4.12 (Compositional Pareto Set). We return to our running example of
Section 3.6 to illustrate compositional Pareto set computation. Consider again the
games in Figure 4.2. We want to compute an under-approximation for the Pareto set
for Gre

def
= G1

re k G2
re (right) by computing the under-approximations of the components

G1
re (left) and G2

re (centre). The local Pareto sets Pareto(G1
re |'1

re) and Pareto(G2
re |'2

re)

are shown in Figure 4.9 (left) and (centre) respectively (their interiors are denoted
P 1 and P 2, respectively). We defer the discussion of computing these local Pareto
sets to Section 5.5. In Figure 4.9 (right), we show the compositional Pareto set
P 0 = CPareto((G1

re,G2
re) |'re, ('1

re,'
2
re)) as well as an approximation of the Pareto set

P = Pareto(G1
re k G2

re |'re), computed for 're directly on the composition Gre (here for
all Player 2 strategies), which is a superset of the compositional Pareto set.
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Composed strategies operate on a restricted view of the history in the composed
game. The cause for the gap between the compositional Pareto set P 0 and the mono-
lithically computed Pareto set P in Figure 4.2 (right) is due to this memory restriction
for the composed strategy: in a Player 1 state ~s of the composition, the strategy uses
only the part of the history that would be seen in the component controlling ~s. Note
that the PA verification rules in [85] that we based our synthesis rules on are already
incomplete.

4.4 Synthesis Procedure

We now develop a step-by-step method for assume-guarantee strategy synthesis. Re-
call that we require the designer to supply the component games Gi, each with a local
specification 'i, as well as a global specification '. Ideally, we would like to start
with the component games and the global specification, and work backwards using
the composition rules of Section 4.2.3 to find a local specification for each component;
however, the exploration of this approach is outside the scope of this thesis. While we
do not discuss eliminating the local specifications entirely from the information the
designer has to supply, here we show that the targets of the local specifications can
be found automatically. That is, we consider the local specifications parameterised
by the target vectors, requiring only the reward structure and the precise Boolean
combination to be supplied.

By computing the Pareto sets of the local specifications, and picking points that
are consistent with the target of the global specification, we obtain targets of the local
specifications. In the absence of additional criteria, each point on the Pareto frontier
is equally desirable from a mathematical perspective. We thus cannot a-priori select a
target to synthesise a strategy for, and instead employ an a-posteriori approach [88],
where a decision maker is presented with a Pareto set, and picks the desired point to
synthesise a strategy for. We summarise our method as follows:

(S1) User Input: a composed game G =ki2I Gi, and specifications 'i, ', such that
they instantiate a synthesis rule in Theorem 4.6.

(S2) Pareto Set Computation: compute (approximate) Pareto sets Pareto(Gi |'i),
and compute the compositional Pareto set P = CPareto((Gi)i2I |', ('i)i2I).

(S3) Decision Maker Feedback: pick a target vector ~v for the global specification
' from P ; matching targets vi for 'i can be picked automatically from the
Pareto set interiors P i.
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(S4) Strategy Synthesis: synthesise strategies ⇡i, for Gi |= 'i[~w�'i

].

(S5) Output: the strategy ki2I ⇡i, winning for G |= '[~v] by Theorem 4.6.

If the target ~v for the global specification ' is fixed beforehand, we can compute
the local targets via step (S2). If all targets are fixed beforehand, the steps (S1),
(S4) and (S5) are sufficient to synthesise strategies. The step (S3) allows the decision
maker to pick the targets. Recall that the targets can only be picked from the
compositional Pareto set CPareto((Gi)i2I |', ('i)i2I), but that the targets in the full
Pareto set Pareto(G |') may not be achievable by a composed strategy.

Examplere 4.13 (Synthesis Procedure). We discuss our assume-guarantee strategy
synthesis procedure on our running example of Section 3.6. The inputs for step (S1)
are the local games G1

re and G2
re with the local specifications '1

re and '2
re, and the

global specification 're as defined in the running example. For step (S2), the Pareto
sets for G1

re and G2
re are shown in Figure 4.9 (left) and (centre) respectively, and on

the right, we show the compositional Pareto set for Gre. In step (S3) we consider
synthesis for points in the compositional Pareto set. If, for example, we want to
find a strategy satisfying 're with (v2, v3) = (9

8
, 3
4
), we look up a value for v1 which

is consistent in both Pareto(G1
re |'1

re) and Pareto(G2
re |'2

re), as indicated by the dashed
lines in Figure 4.9 (left) and (centre). We find v1 = 1

4
to be consistent for both

components. In step (S4), we then synthesise a local strategy ⇡1 for '1
re[(

1
4
, 9
8
)] in G1

re,
and a strategy ⇡2 for '2

re[(
1
4
, 3
4
)] in G2

re, which we discuss later in Chapter 6. Finally,
in step (S5), we return the composed strategy ⇡ = ⇡1 k ⇡2.

4.5 Summary

In this chapter we presented a framework for assume-guarantee synthesis for strategies
in turn-based two-player stochastic games. We developed a composition for such
games, together with a compatibility condition, so that strategies of component games
can be composed to a strategy of the composed game. Our game composition extends
the composition of PAs [118] by distinguishing between the players of the games. Our
framework utilises synthesis for specifications defined on traces, consisting of multiple
objectives, which we discuss in the following chapters. Our main result of this chapter,
Theorem 4.6, is that any verification rule for PAs gives rise to a synthesis rule for
games, which allows us to deduce a winning strategy for the composed system. If we
are only interested in strategies for the components, we could define game composition
dependent on strategies via (G1)⇡

1 k (G2)⇡
2 k · · · , that is, using PA composition. We
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show, however, that we can also synthesise strategies ⇡ for a composed game G1 k
G2 k · · · , which, due to our compositional procedure, is of the form ⇡ = ⇡1 k ⇡2 k · · · ,
but other ways of composing strategies are possible, see, for example, the strategy
automata composition in [69].

We note that our assume-guarantee framework presents a general paradigm of
obtaining strategy synthesis rules, which is not confined to the stochastic games
that we use here. Theorem 4.6 can be restated for any type of nondeterministic
system where we want to find strategies resolving the controllable nondeterminism:
we need respective composition operators k for the systems and the strategies, and
verification rules for the systems without the controllable nondeterminism, and we
can similarly obtain a lifting theorem. For example, the framework can be used for
finding strategies for coalitions in multi-player games in the style of [124], as well
as for assume-guarantee strategy synthesis for PAs, based on verification rules of
DTMCs. We further note that the only condition on specifications that we impose is
that they are defined on traces, yielding a general class, while the rest of the thesis
demonstrates strategy synthesis for specific examples of such specifications.

Our framework has several shortcomings. The compatibility condition requires
that the full product game is constructed in order to be checked. For systems con-
sisting of many small components, checking compatibility could become the dominat-
ing factor in computational complexity. However, for homogeneous components, an
inductive argument might be able to establish compatibility without explicitly con-
structing the composition, showing in the inductive step compatibility of (kj2J Gj)

and Gi for i 62 J ⇢ I. Furthermore, our synthesis rules are not complete, meaning
that a strategy may exist for the global specification, while it is not possible to find a
strategy compositionally. Even if the underlying PA verification rules are complete,
the strategies synthesised compositionally base their decisions on the local memory
only. The advantage of this is, however, that the strategies can be implemented
locally on the component games, and still achieve the global specification.

The (Circ) rule offers some flexibility to develop bidirectional interfaces. In gen-
eral, we would like to consider components G1 and G2, where we require that each
game provides a guarantee to the other game, formalised in corresponding specifica-
tions '1 and '2, respectively. For example, '1 is “G1 provides energy to G2”, and
'2 is “G2 pays G1 for the received energy”. Each game can only fulfil its guarantee
by assuming the other game fulfils its guarantee, and so we want local strategies for
G1 |= '1 ! '2 and G2 |= '2 ! '1. In the current framework we can conclude
G1 k G2 |= ('1 _ '2)! ('1 ^ '2), but, ideally, we would like to find global strategies
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for G1 k G2 |= '1 ^ '2. Development of appropriate side conditions in this setting is
subject of ongoing research.

By computing compositional Pareto sets, a designer can pick the targets of given
specifications. However, it still remains an open problem how to automatically derive
appropriate local specifications in our assume-guarantee syntehsis rules, given the
global specification. We note also that if we want a specification Eratio(rG/c)(vG)

to be satisfied for a composed system G1 k G2, we would want to employ the
(Asym) rule and find a reward structure rA such that G1 |= Eratio(rA/c)(vA) and
G2 |= Eratio(rA/c)(vA) ! Eratio(rG/c)(vG) for some target vA. In this case the ob-
jective Eratio(rA/c)(vA) does not need to carry semantic significance, as it is only
establishing a contract between G1 and G2. For verification of PAs, some research
has been done to learn the local specifications [44, 62, 106]. Another promising ap-
proach in this direction in the verification domain is finding premises for the rules
using abstraction refinement [80]. While counterexample-guided abstraction refine-
ment for stochastic games has been considered, for example, in [30], this approach is
not directly applicable to our setting, because multi-objective games are in general
not determined, and so counterexamples (that is, spoiler strategies of Player 2) can-
not be straightforwardly derived. We observe, however, in Theorem 6.2 in Chapter 6,
that for Pmp CQs games are determined and have MD spoiler strategies.
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In the previous chapter we developed an assume-guarantee framework for strategy
synthesis, where a key requirement is that we can find winning strategies for the indi-
vidual components. Moreover, in order to make use of rules such as the asymmetric
rule (Asym), or the circular rule (Circ), we need to be able to synthesise multi-
objective queries (MQs), containing both conjunctions and disjunctions of objectives,
and so we discuss in this chapter the synthesis of strategies for such queries. We focus
on long-run objectives, and are specifically concerned with mean-payoffs and ratios of
rewards, where we consider both expectations and almost sure satisfaction semantics.
For example, in a game G under the Player 1 strategy ⇡ and Player 2 strategy �, the
expectation objective E⇡,�

G [mp(r)] � v means that the expected mean-payoff of r is
above the threshold v; and the almost sure satisfaction objective P⇡,�

G (mp(r) � v) = 1

means that the mean-payoff of r is above the threshold v with probability one, that
is, almost surely.

In order to synthesise strategies, we convert the MQs consisting of any type of
long-run objectives that we study to conjunctions of Pmp objectives. We develop three
main transformation steps. First, we show that ratio objectives for both expectation
and satisfaction semantics (Pratio and ratioE) can be converted to the corresponding

79



80 CHAPTER 5. MULTI-OBJECTIVE QUERIES

mean-payoff objectives (Pmp and Emp, respectively). Then, we introduce a general
class of games called controllable multichain (CM), for which we show that strategies
for conjunctions of expected mean-payoffs (Emp CQs) can be synthesised by consid-
ering Pmp CQs instead, with the same rewards. This transformation is complete for
"-optimal strategies for Emp CQs. Note also, from Lemma 3.1 that we can synthesise
Eratio objectives soundly, but not completely, using Pratio objectives. Finally, we
show how to reduce Boolean combinations of expectation objectives to conjunctions
of expectation objectives. To summarise, we can represent each transformation T

by an arrow, where an arrow �! �0 means that the same strategy satisfying ' 2 �

satisfies T (') 2 �0, and an arrow �  �0 means that if a strategy satisfies ' 2 �,
then there is a strategy satisfying T (') 2 �0. We hence obtain the following picture:

Pmp CQ! Emp CQ! Emp MQ! ratioE MQ,

Pmp CQ! Pratio CQ! Eratio CQ! Eratio MQ.

We remark that, for almost sure satisfaction objectives, the reduction from Boolean
combinations to conjunctions is not possible in general. For example, for a Pmp

objective B, defining an implication B ! C as the disjunction ¬B_C means that ¬B
is no longer an almost sure satisfaction objective of the form P(mp(r) � v) = 1, but
a positive satisfaction objective of the form P(mp(r) < v) > 0 (see also Example 3.7).
Even disjunctions of Pmp objectives without negation, that is, MQs of the form
A _ B are challenging, because a strategy needs to guarantee that either almost all
paths satisfy A or almost all paths satisfy B, so we cannot straightforwardly apply
arguments that isolate subsets of paths, by, for example, using BSCCs.

We begin the chapter in Section 5.1 by discussing necessary and sufficient classes of
Player 1 strategies for the specifications we are considering. We are mostly concerned
with synthesising finite-memory strategies, for which stochastic update gives rise to
a more succinct representation. Then, in Section 5.2, we discuss ratio objectives in
both expectation and satisfaction semantics, and show reductions to mean-payoff. In
Section 5.3 we exhibit a class of games for which expectation objectives reduce to
almost sure satisfaction objectives under "-optimality. Section 5.4 is dedicated to
showing how to convert Boolean combinations of expectation objectives to conjunc-
tions. Finally, in Section 5.5 we discuss algorithms to approximate Pareto sets.
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Figure 5.1: Illustrating the hiding of stochastic memory. Stochastic game G (left) and
induced PA G⇡ (right). The labels [p1, p2] show the belief d 2 D(M), where pi is the
probability of mi. The reward structure ~r is annotated next to the action names.

5.1 Discussion of Player 1 Strategies

We discuss the classes of strategies that are necessary and sufficient for Player 1 for
our objectives, focusing on the role of memory and randomisation. Further, we show
that SU strategies can be exponentially more succinct than DU strategies.

5.1.1 Memory and Randomisation

Applying strategies for the respective players to a game resolves all nondeterminism.
In [50] three types of strategies are distinguished: behavioural strategies select at
each step a distribution over moves based on the history; mixed strategies randomise
initially between several DU strategies that deterministically select moves; and general
strategies can both randomise initially and on-the-fly. For perfect observation, all
three strategy formulations are equally powerful, if infinite memory is allowed [50].

Hiding Memory. The memory of a strategy is internal, in particular, Player 2 does
not directly observe the memory of Player 1. However, the strategy � of Player 2 can
depend on the strategy ⇡ of Player 1 (due to the order of quantifiers in a synthesis
query), and so Player 2 can infer the belief d⇡� from the history �, which both players
observe. The following example demonstrates the problems if Player 1 reveals its
actual memory to Player 2, not just the belief d⇡�.

Example 5.1 (Hiding Memory). Consider the game G in Figure 5.1 (left). The
PA G⇡ on the right is induced by the SU strategy ⇡ defined by M = {m1,m2},
⇡d(s0)(mi) = ⇡u(mj, s0)(mi) = 1

2
, ⇡u(mi, s) = mi, and ⇡c(sj,mi) = (gi, s0), for all

i, j 2 {1, 2} and s 2 S\{s0}. We can see that Player 1 wins for Pmp(~r)(1, 1) using
⇡, since in the induced PA G⇡ the choices of Player 2 do not affect the mean-payoff.
However, if Player 2 knows the memory of Player 1 at s0 (not just the belief), it can
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Figure 5.2: Player 1 needs infinite memory for Pmp(~r)(14 ,
1
4). Example taken from [18].

pick (hi, si) for mi, for all i 2 {1, 2}. Hence, after hi, Player 1 plays gi (as promised
by the memory mi), resulting in a mean-payoff of (0, 2), and so Player 1 loses.

Infinite Memory. In general, infinite memory might be required to achieve a CQ
of Pmp objectives. The same requirement is already present for strategy synthesis
in MDPs, see [18], and thus carries over to games. We recall the intuition here: in
order to achieve Pmp(~r)(1

4
, 1
4
), in the game in Figure 5.2, Player 1 has to play the

b-transitions to go between s0 and s1, but can only win optimally if the b-transitions
do not contribute to the mean-payoff in the limit. Thus, an optimal strategy in-
creases the number of steps between b-transitions and plays the sequence of actions
a

20
ba

20
ba

21
ba

21
b · · · a2nba

2n
b · · · , which requires infinite memory to keep track of n.

For Emp CQs, the minimum requirements on the Player 1 strategy memory size
carries over from reachability objectives (see [41]), since in stopping games we can ex-
press the objective to reach a set T ✓ Term with probability at least v by Emp(rT )(v),
where rT is the reward structure such that rT (t) = 1 if t 2 T and rT (t) = 0 otherwise.
However, in this thesis we consider Emp objectives only for the subclass of controllable
multichain games (see Section 5.3.2), which is incomparable to stopping games.

Randomisation. Randomising between moves might be necessary for expectations,
even for "-optimality in non-stochastic games (see Lemma 14 of [36]). Using ran-
domisation, Player 1 can play "-optimally in the game in Figure 5.2 without needing
memory. Consider the memoryless Player 1 strategy playing b with probability ↵ > 0.
The resulting DTMC is irreducible, and so we can evaluate the stationary distribution:
the probability to be at the self-loops is 1�↵

4
each. Thus, the achieved mean-payoff,

both in expectation and almost sure semantics, is (1
4
� ", 1

4
� ") with " = ↵

4
.

However, memory is in general necessary for "-optimality, even if randomisation
is allowed. Consider the game in Figure 5.3 (left), with the two-dimensional reward
structure ~r given in the figure. For the CQ Pmp(~r), memoryless strategies of Player 1

can achieve any targets in the Pareto set in Figure 5.3 (right), by randomising be-
tween a and b, obtaining rewards (1, 0) and (0, 1

2
) respectively. The Pareto set for

Pmp(~r) under general Player 1 strategies is shown in Figure 5.3 (centre). To achieve
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Pmp(~r)(1
2
, 1
2
), Player 1 plays a following d, and b following c. To achieve Pmp(~r)(1, 1

4
),

Player 1 randomises uniformly between a and b following c, and plays a following d. It
is easy to see that, even for "-optimality of these specifications, Player 1 needs mem-
ory. Note that the same example applies to Emp. A similar result for non-stochastic
games is established in Lemma 13 of [36].

5.1.2 Succinctness of SU Strategies

In our strategy synthesis algorithm of Section 6.4 and its implementation, presented
in Chapter 7, we use SU strategies, and we justify their use by demonstrating that
they can be exponentially more succinct than DU strategies.

Proposition 5.1. Finite SU strategies can be exponentially more succinct than finite
DU strategies for expected and almost sure average rewards.

Proof. We provide the intuition behind the result, and give a full proof in Ap-
pendix A.2. The proof method is based on similar results in [36, 124]. Consider
the game G in Figure 5.4 with objective Pmp(~r). From s0, when Player 2 chooses a
sequence w of actions with |w|  n + 1, the total rewards are shifted by the vector
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�(↵w, 2|w|� 1�↵w), where ↵w
def
=
P|w|

j=1 �wj

=a

2j�1 is the number corresponding to the
binary word w represented with the least significant bit first, with a coding for 1 and
b for 0. A winning strategy of Player 1 has to compensate this shift by randomising
between a and b at sn+1, according to the distribution ⌫w defined by ⌫w(a) = ↵

w

2n+1�1

and ⌫w(b) = 1� ⌫w(a), where w is the sequence of actions seen in this iteration of the
loop. Then the total expected reward is balanced at (0, 0) at every iteration, and so
also the mean-payoff is above (0, 0) almost surely. A winning Player 1 strategy can
be constructed by keeping w in memory, requiring 2n+1 memory elements. We show
that no DU strategy can win with less memory as follows. There would then be a
memory element m with at least two distinct sequences w1

m

and w2
m

corresponding to
m, for which the accumulated reward differs. Thus, Player 1 can only compensate for
either sequence w1

m

or w2
m

at sn+1, and so Player 2 can pick the strategy that plays the
opposite sequence that Player 1 is not compensating for, ensuring that Player 1 loses.
However, we can construct a SU strategy for Player 1 that keeps a distribution over
a and b in memory, updating it as Player 2 selects actions, so that at sn+1 the distri-
bution between a and b in memory corresponds precisely to ⌫w, which is sufficient to
win the game. This strategy has only 2(n+ 1) memory elements.

5.1.3 Finite Strategies

When synthesising strategies that we can implement as controllers for autonomous
systems (see Chapter 8), we are interested in finite strategies for Player 1. Operating
with finite instead of infinite-memory strategies for both players means that the in-
duced DTMCs G(⇡,�) are finite, allowing us to apply classical results for finite DTMCs.
The following lemma characterises the long-run behaviour in finite DTMCs.

Lemma 5.2. Given a finite DTMC D with BSCCs B, and a reward structure ~r, for
� 2 ⌦D the limit limN!1 1

N+1
rew

N(~r)(�) almost surely exists and takes values ~x in
the finite set {mp(~r)(B) | B 2 B} with probability

P
B s.t. mp(~r)(B)=~x PD(FB).

Proof. Note first that, for every path � 2 ⌦D, 1
N+1

rew

N(~r)(�) converges if and only
if, for every suffix �0 of �, 1

N+1
rew

N(~r)(�0) converges to the same limit. For every
recurrent state t of D, we denote by Wt the set of paths � such that t is the first re-
current state along �. Paths � 2 Wt have suffixes �0 distributed according to PD,t, and
by Lemma 3.5, 1

N+1
rew

N(~r)(�0) almost surely converges to
P

t02B µB(t0)~r(t0). Thus,
with probability PD(FB) =

P
t2B PD(Wt), the sequence 1

N+1
rew

N(~r)(�) converges to
mp(~r)(B). To conclude, it suffices to recall that

P
B2B PD(FB) = 1.
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Remark 5.3. Consequently, D |= Pmp(~r) if and only if mp(~r)(B) � ~0 for every
BSCC B that is reached with positive probability.

Further, in some proofs we require finite PAs resulting from applying strategies
consecutively as in Definition 3.5. However, inducing a PA using the belief d⇡� corre-
sponds to unrolling the game G into an infinite tree of all its paths, and applying the
strategy ⇡. We have already observed that, if the belief space {d⇡� |� 2 ⌦fin

G } from an
SU strategy ⇡ is infinite, then the induced PA is infinite as well. Therefore, when our
proofs require finite PAs, we need to use finite DU strategies for Player 1.

5.2 Ratio Objectives

In Section 4.2.1 we discussed that the assume-guarantee framework is applicable to
specifications defined on traces. One example of specifications defined on traces are
ratios of rewards, since they allow us to synchronise both the numerator and denom-
inator, as opposed to mean-payoffs, see Example 4.6. We demonstrate in this section
that our discussion of Emp and Pmp objectives applies equally to ratio objectives,
since we can reduce ratioE to Emp and Pratio to Pmp, and vice versa.

Proposition 5.4. Given a DTMC D with reward structures r and c defined on
actions Ar and Ac, respectively, the objectives Pratio(r/c) and Eratio(r/c) are defined
on Ar [Ac-traces.

Proof. Fix a DTMC D = hS, &,A,�,�i. Let A = {⌧} [ A. Given a path � 2 ⌦D,
the trace �rc

def
= proj

A\(A
r

[A
c

)(�) = a0a1 . . . is such that, for all actions ai, r(ai) 6= 0

or c(ai) > 0. Given an index N and a path � 2 ⌦D, we denote by �(N) the prefix
of � of length N . We have for all odd N that rew

N(r)(�) = rew

N 0
(r)(�rc), and

rew

N(c)(�) = rew

N 0
(c)(�rc), where N 0 = |(�(N))rc|. Hence

rew

N(r)(�)/rewN(c)(�) = rew

N 0
(r)(�rc)/rew

N 0
(c)(�rc).

If � contains an infinite number of actions in Ar[Ac, then, as N !1, also N 0 !1.
Hence, we have that ratio(r/c)(�) is equal to

limN!1
rew

N(r)(�)

1 + rew

N(c)(�)
= limN!1

rew

N(r)(�rc)

1 + rew

N(c)(�rc)
def
= ratio(r/c)(�rc).
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If � contains finitely many actions in Ar[Ac, then ratio(r/c)(�) = ratio(r/c)(�rc) = 0.
Hence, for any DTMC D0 that is Ar [Ac-trace equivalent to D, PD(ratio(r/c) � v) =

PD0(ratio(r/c) � v). Thus Pratio and Eratio are defined on Ar [Ac-traces.

We now show, in Proposition 5.5, that Pmp can express Pratio, and that Emp can
express ratioE. The same reduction does not apply to expectations of ratios.

Proposition 5.5. Given a finite DTMC D, the following hold:

(i) D satisfies Pratio(r/c)(v) if and only if it satisfies Pmp(r � c · v)(0); and

(ii) D satisfies ratioE(r/c)(v) if and only if it satisfies Emp(r � c · v)(0).

Proof. Fix a finite DTMC D. By Lemma 5.2, the limit inferior can be replaced by the
true limit in mp(r) and mp(c). For Pratio, we first show that, for almost every path
� 2 ⌦D, ratio(r/c)(�) = mp(r)(�)

mp(c)(�)
. Using the conditions on c imposed by the definition

of ratio rewards, we have that, with probability one, mp(c) > 0. Hence,

mp(r)(�)

mp(c)(�)
=

limN!1 1
N+1

rew

N(r)(�)

limN!1 1
N+1

rew

N(c)(�)
= lim

N!1

1
N+1

rew

N(r)(�)
1

N+1
rew

N(c)(�)
.

There is no indeterminacy for this quotient of limits, as the denominator is positive
and both numerator and denominator are bounded. Simplifying the 1

N+1
term yields

the equality mp(r)(�)
mp(c)(�)

= limN!1
rew

N (r)(�)
rew

N (c)(�)
. This is almost surely equal to ratio(r/c)(�) =

limN!1
rew

N (r)(�)
1+rew

N (c)(�)
since rew

N(c)(�)! +1 almost surely. Then, for any v, it follows
that mp(r)(�) � v · mp(c)(�) � 0 holds almost surely exactly when ratio(r/c)(�) =
mp(r)(�)
mp(c)(�)

� v holds almost surely.
For ratioE, we have, by Theorem 3.2, that ED[mp(r)]/ED[mp(c)] � v if and only

if ED[mp(r)] � ED[mp(c)] · v, if and only if ED[mp(r � c · v)] � 0.

Examplere 5.2. Consider the specification '1
re, '2

re and 're for our running example
in Section 3.6, which are defined using Eratio objectives. If instead they were defined
using ratioE objectives (which, however, are not defined on traces), using Proposi-
tion 5.5 (ii), we could equivalently consider Emp

(r1 � c · v1)! Emp(r2 � c · v2) for
'1

re, Emp

(r1�c ·v1)^Emp

(r3�c ·v3) for '2
re, and Emp(r2�c ·v2)^Emp

(r3�c ·v3)
for 're.
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5.3 Expectation Objectives

We discuss in this section objectives under the expectation semantics, in particular
Emp objectives. We can then also synthesise ratioE objectives, using the transforma-
tion in Proposition 5.5 (ii). In order to synthesise strategies for Emp(~r), we synthesise
strategies for Pmp(~r). This conversion is sound, since any strategy satisfying a prop-
erty almost surely also satisfies the property in expectation, see Lemma 3.1. For
completeness, we need to show that, whenever Emp(~r) is achievable by ⇡, we can find
a strategy ⇡ achieving Pmp(~r). The key idea is the following. We observe that, in
order to achieve Emp(~r), ⇡ induces one or more MECs in G⇡, and there is some dis-
tribution � between these MECs. We thus construct the strategy ⇡ so that it induces
a single MEC in G⇡, within which the same expectation is attained as ⇡ achieves by
randomising between the MECs in G⇡. The following lemma allows us to conclude
that, within MECs, expectation semantics is equivalent to almost sure semantics.

Lemma 5.6. If a PA contains only one MEC, then it achieves Emp(~r) against finite
strategies if and only if it achieves Pmp(~r) against finite strategies.

Proof. If Pmp(~r), then Emp(~r), by Lemma 3.1. We show the other direction by
contraposition. If Pmp(~r) does not hold in a PA M with a single MEC, then there
exists a finite strategy �, such that P�

M(mp(ri) < 0) > 0 for some i. By Lemma 5.2,
there exists a BSCC B in the induced DTMC M� such that mp(ri)(B) < 0. By
Lemma 3.8, the set of states of the PA corresponding to the BSCC, formally given
by BM

def
= {s | 9m . (s,m) 2 B}, is reachable with probability one by an MD strategy

from all states in M. Hence, the strategy �0 that first reaches BM and then plays
as � to form the BSCC B is finite and induces a DTMC with a single BSCC B0

in which the mean-payoff is mp(ri)(B0) = mp(ri)(B) < 0. By Lemma 5.2, we have
P�0
M(mp(ri) = mp(ri)(B)) = P�0

M(FB) = 1. Thus P�0
M(mp(ri) < 0) = 1, and hence

E�
M[mp(ri)] < 0. We conclude that Emp(~r) does not hold when Pmp(~r) does not.

The MEC E 0 is induced by ⇡ cycling between the MECs of G⇡, staying in each
MEC E of G⇡ a number of steps proportional to �(E). We define below the class of
controllable multichain (CM) games, where we can construct such strategies cycling
between MECs. The idea underlying the definition of CM games is to make all the
MECs of an induced PA almost surely reachable from each other.
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5.3.1 MEC-Distribution for Emp CQs

We now characterise the distribution � between MECs of the PA M induced by a
Player 1 strategy that achieves a CQ Emp(~r). Moreover, in each MEC E = (SE ,�E)

of M, Player 1 achieves some mean-payoff ~z E , defined by

z

E
i

def
= min

t2SE
inf
�
E�
E,t[mp(ri)] = min

t2SE
inf
�
E�
E,t[limN!1

1
N

rew

N�1(ri)] (5.1)

for all i. We show below that, for every ", there exists an N such that rew

N�1(~r)/N

stays above the threshold ~z E � ", independently of the Player 2 strategy � and of the
starting state t. Lemma 5.9 below ensures that we can safely interchange the quan-
tification over �, t, and N . We first show the following lemma, used in Lemmas 5.9
and 5.15 to bound the rewards acquired by the strategies constructed there.

Lemma 5.7. Let D be a DTMC, let b � 0, let (cK)K�0 be a sequence of positive reals,
and let (XK)K�0, (YK)K�0, (ZK)K�0 be sequences of real-valued random variables on
⌦D such that ZK � 0, |XK |  b · cK, and |YK |  b · ZK. Then

����ED


XK + YK

cK + ZK

�
� ED


XK

cK

����� 
2b

cK
ED[ZK ].

Proof. From the assumptions of the lemma, we obtain
����ED


XK + YK

cK + Zk

�
� ED


XK

cK

����� =
����ED


YK

cK + ZK

�
� ED


XK · ZK

cK(cK + ZK)

�����

 ED


|YK |

cK + ZK

�
+ ED


|XK | · ZK

cK(cK + ZK)

�

 ED


b · ZK

cK

�
+ ED


b · cK · ZK

c2K

�

 2b

cK
ED[ZK ].

Lemma 5.8. Let G be a game with states S and with minimum non-zero probability
pmin. For any s, t 2 S, such that t is reachable from s almost surely, the expected
number of steps to reach t from s with an MD strategy is at most |S| · p�|S|

min .

Proof. After |S| steps, t is reached from s with probability at least p⇤ def
= p|S|min, Thus,

the expected number of steps to reach t from s is upper-bounded by NB
def
= |S|p⇤ +

2|S|p⇤(1� p⇤) + 3|S|p⇤(1� p⇤)2 + · · · = |S|/p⇤.



5.3. EXPECTATION OBJECTIVES 89

Lemma 5.9. Given a finite PA M with rewards ~r, for every MEC E = hSE ,�Ei of
M it holds that limN!1 mint2SE inf� E�

E,t[
1
N

rew

N�1(~r)] � ~z E .

Proof. Fix a MEC E = (SE ,�E) of a finite PA M = hS, (S⇤, S�), &,A,�,�i. Denote
by pmin the minimum non-zero probability in M, and let ⇢⇤ def

= maxs2S,i |ri(s)|. Assume
for the sake of contradiction that there exists � > 0 and i such that

limN!1 min
t2SE

inf
�
E�
E,t


rew

N�1(ri)

N

�
< z

E
i � �.

In particular, we can fix N � b2⇢⇤ · |SE | · p�|SE |
min ��1c, t 2 SE , and �, such that

E�
E,t


rew

N�1(ri)

N

�
< z

E
i � �.

We show that there exists a strategy �0, such that E�0
E,t[mp(~ri)] < z

E
i , that is, �0

contradicts the definition of z

E
i . From Lemma 5.8, we have that |SE | · p�|SE |

min is an
upper bound for the expected number of steps to reach t from s for MD strategies.
We construct the strategy �0 as follows. Starting from t, �0 plays in a first phase the
N first steps of �, then plays in a second phase an MD strategy to reach t, and then
repeats these two phases ad infinitum. For a path � 2 ⌦M, let N (K)(�) be the index
of the beginning of the Kth such loop, and +1 if � contains no loops. We have

E�0

E,t[mp(ri)]
def
= E�0

E,t


limk!1

1

k + 1
rew

k(ri)

�

 E�0

E,t


limK!1

1

N (K) + 1
rew

N(K)

(ri)

�
(subsequence)

 limK!1E�0

E,t


1

N (K) + 1
rew

N(K)

(ri)

�
,

where the last inequality holds by Fatou’s lemma (Theorem 4.21 in [79]). For a path
� 2 ⌦M, let cK(�) � 1

def
= NK and ZK(�) be the number of steps in the first and

second phase, respectively, during the K first loops. Let XK(�) and YK(�) be the
respective total reward of ri. Then, E�0

E,t
h

1
N(K)+1

rew

N(K)

(ri)
i

def
= E�0

E,t
h
X

K

+Y
K

c
K

+Z
K

i
, and so

from Lemma 5.7 we obtain

E�0

E,t


1

N (K) + 1
rew

N(K)

(ri)

�
 E�0

E,t


XK

cK

�
+

2⇢⇤

cK
E�0

E,t[ZK ]. (5.2)
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Consider the right-hand side of (5.2). By definition of �0 in the first phase, the first
term equals K

1+KN
E�
E,t
⇥
rew

N�1(ri)
⇤
. The second term is upper-bounded by �, since

(2⇢⇤/cK) · E�0
E,t[ZK ]  (2⇢⇤/KN)K · |SE | · p�|SE |

min = 2⇢⇤ · |SE | · p�|SE |
min /N  �. Thus,

E�0

E,t[mp(ri)]  limK!1
K

1 +KN
E�
E,t[rew

N�1(ri)] + � =
1

N
E�
E,t[rew

N�1(ri)] + � < z

E
i .

This contradicts the definition of z

E
i and the proof is complete.

Lemma 5.10. Given a MEC E , and an index i, the value inf� E�
E,t[mp(ri)] does not

depend on t, and is equal to z

E
i .

Proof. Fix a MEC E and an index i. Given a state t in E , denote by Et a PA with a
single MEC E and initial state t. Consider two states t, t0 in E , and a strategy � in Et.
Now consider the strategy � in Et0 that first plays MD to reach t almost surely (which
is possible within a MEC), and then switches to � as soon as t is reached for the first
time. Then E�0

E,t0 [mp(ri)] = E�
E,t[mp(ri)]. Hence, for every t, t0, inf�0 E�0

E,t0 [mp(ri)] 
inf� E�

E,t[mp(ri)]. Reversing the role of t, t0 leads to an equality.

We are now ready to show Proposition 5.12, the main result in this section. We
use the following result to reason about end components.

Lemma 5.11 (Theorem 3.2 of [53]). Given a finite PA M, for any finite strategy
�, with probability one, the states s in M corresponding to states (s,m) occurring
infinitely often on a path of M� form an end component.

Proposition 5.12. Let M be a finite PA for which Emp(~r) is satisfied and let E be
the set of MECs in M. Then there exists � 2 D(E) such that

P
E2E �(E) ·~z

E � ~0.

Proof. Fix a PA M with MECs E. Let � be an arbitrary Player 2 strategy. Given
a MEC E = (SE ,�E) 2 E, we denote by E (k) the set of paths that stay forever in E
after the k first steps, and define E (1) =

S
k E (k). We define the distributions �k(E) def

=

P�
M(E (k)) and �(E) def

= P�
M(E (1)). Note that (E (k))k�0 is a non-decreasing sequence

with respect to ✓, and hence �k(E) is a non-decreasing sequence that converges
toward �(E). By Lemma 5.11, with probability 1, the (control and stochastic) states
seen infinitely often along a path form an end component, and hence are included in
a MEC. Since MECs are disjoint, a further consequence is that

P
E2E �(E) = 1.

Now fix � > 0. Consider for every state s that is in some MEC E 2 E, and every
� > 0, a �-optimal strategy �s,�, that is, such that E�

s,�

M,s[mp(~r)]  ~z E + � (which exists



5.3. EXPECTATION OBJECTIVES 91

due to Lemma 5.10). Consider further the strategy �k,� that plays as � for the k first
steps, and then switches to the �-optimal strategy �s,� if it is at a state s in some MEC,
or plays arbitrarily if not in a MEC. Let F

=k T
def
= {� 2 ⌦fin

D | last(�) 2 T ^ |�| = k} be
the set of paths reaching T in exactly k � 0 steps. Let ⇢⇤ def

= maxs2S,i |ri(s)|. Hence,

~0  E�
k,�

M [mp(~r)] 
X

E2E

X

s2SE

P�
M(F=k {s}) · E�

s,�

M,s[mp(~r)] + (1�
X

E2E
P�
M(F=k SE)) · ⇢⇤,

where the second term upper bounds the reward contributed by the paths that are
not in a MEC after k steps. Let pk(E) def

= P�
M(F=k SE) =

P
s2SE

P�
M(F=k {s}). Thus,

~0 
X

E2E
pk(E) · (~z E + �) + (1�

X

E2E
pk(E)) · ⇢⇤. (5.3)

We now show that pk(E)! �(E) for every E 2 E. Indeed it holds that

�k(E)  pk(E)  1�
X

E 0 6=E
pk(E 0)  1�

X

E 0 6=E
�k(E 0),

and the outermost terms converge to the same limit �(E) = 1 �
P

E 0 6=E �(E 0), and
hence so does the inner term pk(E). Finally, we let k ! +1 and � ! 0 in (5.3) to
obtain the desired result ~0 

P
E2E �(E) ·~z

E .

5.3.2 Controllable Multichain Games

Intuitively, a game is controllable multichain if, from every state in the game, every
possible MEC can be reached with probability one. To this end, we define irreducible
components of a game, which are the smallest units that need to be reachable by
Player 1 from any state in the game. A game G is irreducible if, for all finite DU
Player 1 strategies ⇡, the induced PA G⇡ with states SG⇡ and transitions �G⇡ forms a
single MEC (SG⇡ ,�G⇡). A subgame H of a game G = hS, (S⌃, S⇤, S�), s

init

,A,�,�i
is a game hS 0, (S 0

⌃, S
0
⇤, S

0
�), s0

init

,A,�0,�0i, such that S 0 ✓ S; S 0
⌃ ✓ S⌃; S 0

⇤ ✓ S⇤;
S 0
� ✓ S�; s

init

2 S 0
⌃ [ S 0

⇤; �0 ✓ �; �0 ✓ �; and where s 2 S 0 if and only if s

is reachable from s0
init

via �0. A subgame H is Player 2-closed if, for all s, t 2 S 0
⇤,

�(s, t) = 1 implies �0(s, t) = 1, and so Player 2 cannot escape from H. An irreducible
Player 2-closed subgame of G is called an irreducible component (IC) of G.

Definition 5.1. A game G is a controllable multichain (CM) game if each IC H of
G is reachable almost surely from any state s 2 S of G.
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s0

s1 s2

t2

t0 t1

(0, 8)(8, 0)

Figure 5.5: A CM game (left) and, a non-CM game (right). Stochastic states have uniform
distributions. Irreducible components are annotated using dashed rectangles.

Example 5.3. Consider the games in Figure 5.5. The game G1 on the left contains
two ICs, consisting of the states S1 = {s1} and S2 = {s1, s2} respectively. Note that
the ICs can overlap. S2 is clearly reached almost surely from s0, as well as from s1

and s2, as these states already are in S2. Further, S1 is almost surely reached from
s1. From s2, the only way to avoid going to S1 is by taking the self-loop, but the
probability to stay in s2 approaches zero. Thus, S1 is reached from s2 and s0 as well.
The game G1 is therefore CM.

However, in the game G2 on the right, the IC containing only t0 cannot be
reached almost surely by Player 1 from t1, that is, for all ⇡ there is some � such
that P⇡,�

G,t
1

(F {t0}) < 1. Indeed, there can be a strategy achieving a Emp CQ, but not
the corresponding Pmp CQ. Consider the reward structure ~r(t0) = (8, 0) and ~r(t1) =
(0, 8). Player 1 can achieve Emp(~r)(2, 2) from t0, but cannot achieve Pmp(~r)(2, 2), not
even "-optimally. Player 1 can achieve Pmp(~r)(4, 0) by looping in t0, and Pmp(~r)(0, 4)

by looping in t1, but, in order to cycle between t0 and t1, Player 1 has to pass through
t2, where Player 2 can decide to stay and spoil Pmp(~r)(2, 2).

The key motivation for defining CM games is that Player 1 can control the MECs
to be reached almost surely. In the following lemma, we show that being able to
reach ICs in a game G is necessary and sufficient to reach MECs in the induced PA
G⇡ for any finite DU strategy ⇡, and hence equate the syntactic CM condition of
Definition 5.1 with a semantic condition. Given a game G with states SG and a finite
DU strategy ⇡, the control states of the induced PA G⇡ are of the form (s,m), where
m is a memory element of ⇡, since ⇡ is DU. Given a MEC E = (SE ,�E) of G⇡, define
the set SG,E

def
= {s 2 SG | 9m 2M . (s,m) 2 SE} of G-states SG occurring in E .
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Lemma 5.13. A game G is CM if and only if, for every finite DU Player 1 strategy
⇡, for every MEC E of G⇡, SG,E is almost surely reachable from every state of s.

Proof. “Only if ” direction. Fix a CM game G = hS, (S⌃, S⇤, S�), &,A,�,�i, fix a
finite DU Player 1 strategy ⇡, and let E = (SE ,�E) be a MEC of G⇡. It suffices to show
that there exists an IC H of G such that SH ✓ SG,E , since by the CM property SH is
reachable almost surely. We first build a Player 2-closed subgame H0 as follows. Define
H0 def

= hSG,E , (SG,E \ S⌃, SG,E \ S⇤, S 0
�), & 0,A0,�0,�0i, where & 0 2 D(SG,E) is arbitrary,

the move (a, µ) is in S 0
� whenever there is m such that (a, µ⇡

m

) is in E (which also
defines �0), and �0 is defined by �0(s, (a, µ)) = �E((s,m), (a, µ⇡

m

)) whenever s 2 S⇤

and m as before, �0(s, (a, µ)) = �E((s, (a, µ),m), (a, µ⇡
m

)) whenever s 2 S⌃ and m as
before. Hence, s a�! µ in G whenever s a�!0µ in H0, and so we have �0 ✓ �. Further,
since there is a finite path within E between each s0, t0 2 SE , there is also a finite path
within H0 between each s, t 2 SG,E ; hence H0 is a game. Finally, since for a MEC
in G⇡ we require that supp(µ⇡

m

) ✓ SE whenever �E(s0, (a, µ⇡
m

)) > 0, all successors of
Player 2 states SG,E \S⇤ must be in SG,E . Hence H0 is Player 2-closed. We now remove
all but one choice per Player 1 state in H0, and obtain a subgame H00 of G, which
corresponds to an PA, since Player 1 has no longer any choice. Since we remove only
Player 1 choices, H00 is still Player 2 closed. A corollary of Lemma 2.2 of [27] is that
every nonempty maximal subset of states that is closed under the transition relation
of the PA is a MEC. We can thus take any such set of states in H00, which corresponds
to a MEC, and thus an irreducible Player 2-closed subgame H of G.

“If ” direction. Fix a game G and assume that, for every finite DU Player 1 strategy
⇡, for every MEC E of G⇡, SG,E is almost surely reachable from every state of G. Take
any IC H in G. For any Player 1 strategy ⇡0, H⇡0 forms a single MEC E . Take the
strategy ⇡ in G that plays arbitrarily outside of H, and plays ⇡0 upon reaching H.
Then E is also a MEC in G⇡. By assumption, SG,E is almost surely reachable from
every state of G, and so is SH, since SG,E = SH. Hence G is CM.

Checking the CM Property. In general, checking whether a game is CM is in
co-NP, since we can guess unreachable ICs in polynomial time.

Theorem 5.14. The problem of whether a game is CM is in co-NP.

Proof. A game is not a CM game if it has an IC H and a state s 2 SG, such that
H is not reachable almost surely from s. We can, in polynomial time: guess such
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s0

b

c

s1

a

b

G1

t0

b

a

t1

c

b

G2

t0, s0

b

ca

s1, t1

b

G1 k G2

Figure 5.6: Composing CM games yields a non-CM game. ICs are indicated by the
rectangular boxes.

a subgame H and state s; check whether H is an IC; and check whether H is not
reachable almost surely from s (by Lemma 3.8). Hence, the problem lies in co-NP.

Composing CM Games. When composing CM games using our composition in
Definition 4.3, the result may not be a CM game, which we illustrate with an example.

Example 5.4 (Composing CM Games). Consider the games in Figure 5.6 (they only
consist of Player 2 states and associated moves). Composing the two games on the left
yields the game on the right. All three actions a, b and c are synchronised. The games
G1 and G2 are CM, since the ICs consisting of {s0, s1} and {t0, t1} are equivalent
to the full state spaces of the respective games G1 and G2, and hence reachable from
every state. However, in the game on the right, which is the composition G1 k G2,
there is one IC containing only the state (s1, t1), but it is not reachable from (s0, t0),
that is, there is no Player 1 strategy such that, for all Player 2 strategies, (s1, t1) is
reached from (s0, t0), since (s0, t0) is a Player 2 state. We note that there are back-
edges from s1 to s0, and from t1 to t0, but since they do not synchronise, there is no
back-edge from (s1, t1) to (s0, t0).

5.3.3 Emp-Pmp Equivalence

While a Player 1 strategy ⇡ achieving an Emp objective may randomise between
several MECs, a strategy ⇡ for Pmp must be winning in every reached MEC. Given
a strategy ⇡ achieving Emp(~r) in a CM game G, we can construct a strategy ⇡ that
"-achieves Pmp(~r), by inducing a single MEC in G⇡, and simulating the distribution
over the MECs in G⇡.
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L

⇡

sinit,E1

⇡

s1,E2
⇡

s2,E3
⇡

s3,E4
⇡

sL�1,EL

⇡

sL,H1

Figure 5.7: The step strategy ⇡ to simulate the probability distribution between MECs
E1, E2, . . . , EL of G⇡, where we take ⇡l = ⇡ in Definition 5.2 for simplicity. The MECs are
only induced after fixing ⇡, and so each MEC El has some associated IC Hl in G.

Strategy Construction. We construct ⇡ by looping between MECs, where each
MEC El is of a PA G⇡l and has an associated finite step count Nl. Allowing distinct
strategies ⇡l only slightly complicates our proof of Theorem 5.16, but allows us in
Theorem 5.19 to show that Pareto sets for Emp CQs in CM games are convex.

Since G is CM, from each s 2 SG, each MEC E can be reached almost surely by
an MD strategy ⇡s,E : S ! S� (see Lemma 5.13). We first explain the intuition of
our construction of ⇡. We start ⇡ by playing ⇡sinit,E1 , the MD strategy to reach E1. As
soon as E1 is reached, ⇡ switches to ⇡1, which is played for N1 steps, that is, ⇡ stays
inside E1 for N1 steps. Then, from whatever state s in E1 the game is in, ⇡ plays ⇡s,E

2 ,
and then in a similar fashion switches to ⇡2 for N2 steps within E2. This continues
until EL is reached, at which point ⇡ goes back to E1 again. The strategy ⇡ keeps
track in memory of whether it is going from a state s to a MECs E , denoted sBE , or
whether it is at a MEC E and has played j steps, denoted j@E . We emphasise that
the strategies are finite DU. See Figure 5.7 for an illustration of ⇡.

Definition 5.2. Let ⇡l = hMl, ⇡l
c, ⇡

l
u, ⇡

l
di be finite DU Player 1 strategies, for 1 

l  L, with respective MECs El and step counts Nl. The step strategy ⇡ is defined
as hM, ⇡c, ⇡u, ⇡di, where

M

def
= (M⇥ {j@El | l  L, j  Nl}) [

SL
l=1{sB El},
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and where, for all s, t, u 2 SG, l  L, j  Nl, and m 2M,

⇡d(s)
def
=

8
<

:
(sB E1) if s 62 SG,E

1

(⇡1
d(s), 0@E1) if s 2 SG,E

1

⇡u((sB El), t) def
=

8
<

:
(sB El) if t 62 SG,E

l

(⇡l
d(t), 0@El) if t 2 SG,E

l

⇡u((m, j@El), s) def
=

8
<

:
(sB El0) if j = Nl and l0 = 1 + (l mod L)

(⇡l
u(m, s), j + 1@El) if j < Nl

⇡c(s, (tB El))(u) def
= ⇡t,E

l(s)(u)

⇡c(s, (m, j@El))(t) def
= ⇡l(s,m)(t).

Lemma 5.15 justifies that, for appropriate choices of the step counts Nl, the strat-
egy ⇡ approximates a strategy ⇡, and induces a single MEC in G⇡.

Lemma 5.15. Let G be a CM game, let ⇡l be finite DU strategies, for 1  l  L,
with associated MECs El of G⇡l, and let E be the set of MECs {El | 1  l  L}. For
all � 2 D(E) and " > 0, there exists a finite DU strategy ⇡ such that G⇡ contains
only one MEC, and for all finite Player 2 strategies �,

E⇡,�
G [mp(~r)] �

X

E2E
�(E)~z E � ".

Proof. Fix a CM game G, finite DU Player 1 strategies ⇡l for 1  l  L, and the set of
L MECs E, indexed by l, and fix � 2 D(E). We now pick step counts Nl so that the
step strategy ⇡ satisfies the lemma, that is, it "-approximates �. From Lemma 5.13,
every MEC is almost surely reachable in G from any state s. Thus, we have an upper
bound NB = |S|·p⇤ on the mean time spent between two MECs. For every l, we define
Al such that, for every Nl � Al, mint2SE

l

inf� E�
E
l

,t

⇥
rew

N
l

�1(~r)
⇤
� Nl(~z

E
l�"/3), which

exists by virtue of Lemma 5.9. We now define the step counts for ⇡ by Nl
def
= bh�(El)c,

and let N
def
=
PL

l=1 Nl, where we choose h such that

(h1) for every l, Nl � Al;

(h2) 1/h  "/(3
PL

l=1 k~z
E
lk1);

(h3) (L�(El) + 1)/(h� L)  "/(3
PL

l=1 k~z
E
lk1); and

(h4) 1
N
2⇢⇤LNB  "/3,
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where ⇢⇤ def
= maxs2S,i |ri(s)|. For an infinite path � 2 ⌦G, we let N (K)(�) be the index

of the beginning of the Kth loop, or +1 if � has fewer than K loops. For every
finite DU strategy �, for almost every path �, N (K)(�) is finite for all K, and thus
limk!1 1

k+1
rew

k(~r)(�) = limK!1 1
N(K)+1

rew

N(K)

(~r)(�). Hence,

E⇡,�
G [mp(~r)] = E⇡,�

G


lim

K!1
1

N (K) + 1
rew

N(K)

(~r)

�
(almost sure equality)

= lim
K!1

E⇡,�
G


1

N (K) + 1
rew

N(K)

(~r)

�
. (Lemma 3.2)

For a path � 2 ⌦D, we denote by cK � 1
def
= NK and ZK(�) the number of steps in

the MEC phase and the inter-MEC phase, respectively, during the K first loops. We
denote by XK(�) and YK(�) the respective total rewards of ~r. We are interested in

E⇡,�
G


1

N (K) + 1
rew

N(K)

(~r)

�
= E⇡,�

G


XK + YK

cK + ZK

�
,

as K !1, and from Lemma 5.7 we get that

E⇡,�
G


1

N (K) + 1
rew

N(K)

(~r)

�
� E⇡,�

G


XK

cK

�
� 2⇢⇤

cK
E⇡,�
G [ZK ]. (5.4)

We let Xl,k(�) be the reward accumulated in the lth MEC phase during the kth loop,
and thus have XK =

PK�1
k=0

PL
l=1 Xl,k. By virtue of (h1), Nl � Al, and hence it holds

that E⇡,�
G [Xl,k] � Nl(~z

E
l � "/3). Therefore,

E⇡,�
G


XK

cK

�
� 1

1 +KN

K�1X

k=0

LX

l=1

Nl(~z
E
l � "

3
) �

 
K

1 +KN

LX

l=1

Nl~z
E
l

!
� "

3
,

and taking the limit, we get

lim
K!1

E⇡,�
G


XK

cK

�
�

LX

l=1

Nl

N
~
z

E
l � "

3
�

LX

l=1

�(El)~z E
l �

LX

l=1

�����(El)�
Nl

N

���� · k~z
E
lk1 �

"

3
.

We can upper- and lower-bound the term N
l

N
by noting that

Nl

N
� h�(El)� 1
PL

l0=1 h�(El0)
� �(El)�

1

h
,

Nl

N
 h�(El) + 1
PL

l0=1(h�(El0)� 1)
=

h�(El) + 1

h� L
= �(El) +

1

h� L
(L�(El) + 1).
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By conditions (h2) and (h3) for h, we get
���(El)� N

l

N

��  "/(3
PL

l0=1 k~z
E
l

0k), and so

lim
K!1

E⇡,�
G


XK

cK

�
�

LX

l=1

�(El)~z E
l � 2"

3
. (5.5)

We now upper-bound the absolute value of the second term of (5.4) using

2⇢⇤

cK
E⇡,�
G [ZK ] 

2⇢⇤

KN
KLNB =

1

N
2⇢⇤LNB 

"

3
, (5.6)

where the last inequality comes from condition (h4) on h and hence on N . Applying
the bounds (5.5) and (5.6) to (5.4), we obtain E⇡,�

G [mp(~r)] �
PL

l=1 �(El)~z
E
l � ".

We now show, in Theorem 5.16, the main result of this section, that, in CM games,
for any " > 0, we can find a strategy ⇡ that achieves Pmp(~r + "), whenever Emp(~r)

is achievable by a finite DU strategy. The " degradation is unavoidable for finite
strategies, due to the need for infinite memory in general, as illustrated in Figure 5.2:
here, the strategy ⇡ has to minimise the relative impact of the NB steps between
MECs which only vanishes if the step counts Nl go to infinity.

Theorem 5.16. If, in a CM game G, a finite DU strategy achieves Emp(~r), then,
for all " > 0, there is a finite DU strategy achieving Pmp(~r + ").

Proof. Let " > 0 and let ⇡ be a finite DU strategy such that G⇡ |= Emp(~r). The
induced PA G⇡ contains a set E of L MECs. If L = 1, we let ⇡ = ⇡. If, on the other
hand, L > 1, we construct a strategy ⇡ such that G⇡ |= Emp(~r + ~") as follows. From
Proposition 5.12, we obtain a distribution � such that

P
E2E �(E)~z

E � ~0. We then
apply Lemma 5.15 with ⇡l = ⇡ to find a strategy ⇡, so that G⇡ contains only one MEC,
and, for all finite Player 2 strategies �, it holds that E⇡,�

G [mp(~r)] �
PL

l=1 �(El)~z
E
l�" �

�". We conclude that ⇡ achieves Pmp(~r + ") using Lemma 5.6.

Expected Ratio Objectives. We briefly discuss the difficulty of synthesis for ex-
pected ratio objectives, that is, Eratio(r/c)(v)

def
= ED[ratio(r/c)] � v. For MDPs, syn-

thesis of one-dimensional Eratio objectives has been discussed, for example, in [135]:
the algorithm operates by identifying the MECs in the MDPs, synthesising a strategy
for each MEC, and then putting the strategies together. In games, imposing the CM
property allows Player 1 to control the MECs accessed. However, the same argument
as used in Theorem 5.16 is not applicable to equate Pratio CQs and Eratio CQs.



5.4. BOOLEAN COMBINATIONS 99

s0s1
(4,0)
(2,8)

s2
(0,4)
(8,2)

Figure 5.8: CM game illustrating that the proof technique of Theorem 5.16 does not carry
over to expected ratio objectives. Reward structures ~r and ~c are shown as ~r

~c where nonzero.

Consider the CM game in Figure 5.8 with ~r(s1) = (4, 0), ~c(s1) = (2, 8) and
~r(s2) = (0, 4), ~c(s2) = (8, 2). Player 1 can achieve Eratio(~r/~c)(1, 1) by randomising in
s0 between going to s1 and s2 uniformly, and then staying forever in s1 and s2 respec-
tively, which corresponds to the distribution � in Lemma 5.15. However, Player 1 has
no strategy to achieve this objective by inducing a single MEC. For example, playing
s1 for 2n steps, then playing in s2 for 2n steps yields, in the limit as n!1 a reward
of 2+0

1+4
= 0.4 for Eratio(r1/c1), and 0+2

1+4
= 0.4 for Eratio(r2/c2), which is clearly below

the required target. The same argument applies for finite "-optimal strategies.
Note, however, that Eratio CQs can be soundly synthesised by converting them to

Pratio CQs using Lemma 3.1, and Eratio MQs can be converted to Eratio CQs as we
show in Section 5.4 in Theorem 5.17.

5.4 Boolean Combinations

In this section we show that Boolean combinations of objectives with bounded ex-
pected rewards reduce to conjunctions of expected reward objectives. Note that, in a
PA M, synthesising strategies satisfying an MQ

W
j

V
i �i,j reduces to CQs straight-

forwardly: 9� .M� |=
W

j

V
i �i,j is equivalent to 9j . 9� .M� |=

V
i �i,j, for which it is

sufficient to consider the CQs
V

i �i,j in isolation for each j. In games, the approach
for a Player 1 strategy to achieve

W
j

V
i �i,j is to leave it open to Player 2 to choose

the CQ
V

i �i,j; Player 1 then has to be able respond (with the already fixed strategy)
by satisfying it. Boolean combinations can be converted to conjunctive normal form
(CNF), and we show in Theorem 5.17 that MQs in CNF can be converted to CQs.

Theorem 5.17. Let G be a game, let ~%i : ⌦G ! Rm be bounded measurable functions,
let ~ui 2 Rm, for 1  i  n, and let ⇡ be a Player 1 strategy. There are non-zero
weight vectors ~x1, . . . ~xn 2 Rm

�0, such that ' =
Vn

i=1 E
⇡,�
G [~xi · ~%i] � ~xi · ~ui holds for all

finite Player 2 strategies � if and only if  =
Vn

i=1

Wm
j=1 E

⇡,�
G [%i,j] � ui,j holds for all

finite Player 2 strategies �.

Proof. The proof method is based on a similar result in [41]. Fix a strategy ⇡.
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s0

s1 s2

a :
(2, 4, 2)

b :
(4, 2, 2)

U1

0

1

1.5

2

0 1 1.5 2

r1

r2

~u1

~x1 U2

0

1

1.5

2

0 1 2

r1

r3

~u2
~x2

Figure 5.9: Illustrating the necessity of converting MQs to CNF before finding weight
vectors. The hyperplanes separating the targets ~ui (marked by crosses) from Ui are marked
as dotted lines, annotated with their normals ~xi, for i 2 {1, 2}.

“If ” direction. Assume ⇡ achieves  . Fix i. Let Ui
def
= upc({~y 2 Rm | 9� .E⇡,�

G [~%i] =

~y}). This set is convex by A.6 of [18]. Since ⇡ achieves  , there is a j satisfying
yj � ui,j for every ~y 2 Ui. We have that ~ui 62 int(Ui): suppose otherwise; then there
is ✏ > 0 such that ~ui � ✏ 2 Ui, contradicting that for all ~y 2 Ui there is a j satisfying
yj � ui,j (take ~y = ~ui�✏ to derive the contradiction ui,j�✏ � ui,j). By the separating
hyperplane theorem (Theorem 11.3 of [114]), there is a non-zero vector ~xi 2 Rm, such
that, for all ~w 2 Ui, ~w · ~xi � ~ui · ~xi. We now show ~xi � 0. Assume for the sake of
contradiction that xi,j < 0 for some j. Take any ~w 2 U , let d = ~w ·~xi�~ui ·~xi � 0, and
let ~w0 be the vector obtained from ~w by replacing the jth coordinate with wj +

d+1
�x

i,j

.
Since d+1

�x
i,j

is positive and Ui is upwards closed in Rm, we have ~w0 2 Ui. So

~w0 · ~xi =
mX

h=1

w0
h · xi,h =

d+ 1

�xi,j

+
mX

h=1

wh · xi,h = �(d+ 1) + ~w · ~xi = ~ui · ~xi � 1,

implying ~ui · ~xi > ~w0 · ~xi, which contradicts ~w0 · ~xi � ~ui · ~xi, since ~w0 2 Ui. Now fix a
finite strategy �. Since E⇡,�

G [~%] 2 Ui, it follows that E⇡,�
G [~xi · ~%i] = ~xi ·E⇡,�

G [~%i] � ~xi · ~ui.

“Only If” direction. Assume there are non-zero vectors ~x1, . . . ~xn 2 Rm
�0 such that ⇡

achieves '. Assume for the sake of contradiction that ⇡ does not achieve  . Fix a finite
strategy � and i such that ¬(E⇡,�

G [%i,j] � ui,j) for all j, which exist by assumption.
Since ~xi is such that ⇡ achieves ', we have ~xi ·E⇡,�

G [~%i] = E⇡,�
G [~xi ·~%i] � ~xi ·~ui. Because

0 6= ~xi 2 Rm
�0, there must be a j such that E⇡,�

G [%i,j] � ui,j, a contradiction.

Example 5.5. Consider the game G in Figure 5.9 (left). The three-dimensional
reward structure ~r is defined as ~r(a) = (2, 4, 2), ~r(b) = (4, 2, 2), and zero oth-
erwise. We want to synthesise a strategy achieving the MQ  = Emp(r1)(1.5) _
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(Emp(r2)(1.5) ^ Emp(r3)(1)). To apply Theorem 5.17, we first convert ' to CNF,
obtaining  0 = (Emp(r1)(1.5) _ Emp(r2)(1.5)) ^ (Emp(r1)(1.5) _ Emp(r3)(1)).

We thus let ~%1 = (mp(r1),mp(r2)) and ~u1 = (1.5, 1.5) for the first conjunct, and
~%2 = (mp(r1),mp(r3)) and ~u2 = (1.5, 1) for the second conjunct. We now want
to find non-zero vectors ~x1, ~x2 2 R2

�0 such that the CQ ' = Emp(~x1 · ~%1)(~x1 · ~u1) ^
Emp(~x2 ·~%2)(~x2 ·~u2) is achievable. The intuition is that the choices of ~x1 and ~x2 should
neutralise the power of Player 2, that is, no matter what Player 2 picks, the outcome
should be the same. Let ~x1 = (1

2
, 1
2
) and ~x2 = (0, 1). We get new reward structures

⇢1 = ~x1 · ~%1 and ⇢2 = ~x2 · ~%2, where ⇢1(a) = ⇢1(b) = 3 and ⇢2(a) = ⇢2(b) = 2. The
CQ ' becomes Emp(⇢1)(1.5) ^ Emp(⇢2)(1), which is clearly achievable.

We show, in Lemma 5.20, that "-optimal strategies can be obtained by discretis-
ing the search space of weight vectors, and in Section 7.2.3 we show a heuristic for
efficiently finding suitable weights. However, we must not reduce the search space
to a degree that sacrifices completeness of Theorem 5.17, as the following example
demonstrates.

Example 5.6. We continue with Example 5.5, and illustrate the necessity of con-
sidering MQs in CNF. Consider again the game in Figure 5.9 (left). The MQ
 = Emp(r1)(1.5) _ (Emp(r2)(1.5) ^ Emp(r3)(1.5)) suggests to find weight vectors
~x1 = (z1, z2) and ~x2 = (z1, z3) that coincide in z1, the dimension corresponding to
Emp(r1). However, no such z1, z2 and z3 exist, as we demonstrate in the following.
We convert  to the CQ ' using ~x1 and ~x2 under our restriction. Then, at s1, the
mean-payoff is (z1 + 2z2, z1 + z3), and at s2 the mean-payoff is (2z1 + z2, 2z1 + z3).
Recall that we divided the rewards by the number of steps (that is, two) in the loops.
The target vector in ' is (1.5z1+1.5z2, 1.5z1+z3). Let p be the probability of Player 2

going left (to s1) from s0. We need to pick z1, z2 and z3 so that they satisfy

8p 2 [0, 1] . p(z1 + 2z2) + (1� p)(2z1 + z2) � 1.5z1 + 1.5z2

8p 2 [0, 1] . p(z1 + z3) + (1� p)(2z1 + z3) � 1.5z1 + z3.

We get
8p 2 [0, 1] . p(z2 � z1) � 0.5(z2 � z1)

8p 2 [0, 1] . (2� p)z1 � pz1.

These conditions are only satisfiable if z1 = z2 from the first line, and z1 = 0 from
the second line. But then ~x1 = (z1, z2) = ~0, which is not allowed.
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We illustrate the situation in Figure 5.9 (centre) and (right), showing the sets
Ui = upc{~y 2 R2 | 9� .E⇡,�

G [%i] = ~y} for i = {1, 2}, respectively, which are used in the
proof of Theorem 5.17 to find the weights ~x1 and ~x2 by separating the targets ~u1 and
~u2 from the respective sets U1 and U2. In these figures it becomes clear that the only
solutions are weights ~x1 and ~x2 proportional to (1, 1) and (0, 1), respectively.

We now summarise our synthesis method for ratios of expectations. Recall that
the componentwise product of two vectors is denoted by •.

Theorem 5.18. Given a CM game G with MQs  def
=
Vn

i=1

Wm
j=1 ratioE(ri,j/ci,j)(vi,j)

and '(~x) =
Vn

i=1 Pmp(~xi · (~ri � ~vi • ~ci)).

(i) If a finite DU strategy ⇡ achieves '(~x) for some non-zero vectors ~x1, . . . , ~xn 2
Rm

�0, then ⇡ achieves  .

(ii) If  is "-achievable by a finite DU strategy, then there exist non-zero vectors
~x1, . . . , ~xn 2 Rm

�0 such that '(~x) is "-achievable.

Proof. Let G be a CM game. For item (i), fix a finite DU strategy ⇡ and non-zero
vectors ~x1, . . . ~xn 2 Rm

�0 such that ⇡ achieves '(~x). By Lemma 3.1, ⇡ also satisfies
Vn

i=1 Emp(~xi · (~ri � ~vi • ~ci)), and by Theorem 5.17, it satisfies
Vn

i=1

Wm
j=1 Emp(ri,j �

vi,j · ci,j). Finally, by Proposition 5.5, ⇡ satisfies
Vn

i=1

Wm
j=1 ratioE(ri,j/ci,j)(vi,j).

For item (ii), assume  is "-achievable by a finite DU Player 1 strategy ⇡. Fix
" > 0. By Proposition 5.5, ⇡ achieves

Vn
i=1

Wm
j=1 Emp(ri,j � vi,j · ci,j + "

2
). From

Theorem 5.17, there exist non-zero vectors ~x1, . . . , ~xn 2 Rm
�0 such that ⇡ achieves

Vn
i=1 Emp(~xi · (~ri � ~vi • ~ci + ~"

2
)), and, by linearity of expectations, that moreover

xi,j  1
m

for all i, j. Hence, ~xi · ~"
2
=
Pm

j=1 xi,j · "
2
 "

2
. Thus, ⇡ also achieves

Vn
i=1 Emp(~xi · (~ri�~vi •~ci) + "

2
). Since G is CM, by Theorem 5.16, there is a finite DU

strategy achieving
Vn

i=1 Pmp(~xi · (~ri � ~vi • ~ci) + ").

Theorem 5.18 (i) justifies that a strategy synthesised for the Pmp CQ '(~x) is also
winning for the ratioE MQ  . In the other direction, in item (ii), the strategy ⇡ for
 is modified when applying Theorem 5.16 in the proof; this step is necessary as ⇡
might be randomising between MECs that are both losing in order to win for  .

We also remark that for synthesis with an Eratio MQ in a CM game, we can
soundly use the corresponding ratioE MQ: the Eratio MQ can be converted to ta
Pratio MQ using Lemma 3.1, and to a PMP MQ using Proposition 5.5, after which
we can use Theorem 5.18 to obtain the Eratio MQ. A consequence of this as Pareto
sets for ratioE MQs are under-approximated using Eratio MQs.
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Examplere 5.7. The specification '1
re in the running example of Section 3.6, con-

sidered as ratioE objectives, is equivalent (up to "-achievability) to a disjunction of
ratioE objectives, ratioE(r1/c)(v1) _ ratioE(r2/c)(v2). From Theorem 5.18, we can
find non-zero weights ~x 2 R2

�0 such that we can synthesise an "-optimal strategy for
'1

re by considering instead the specification Pmp(r0) with the single-objective reward
structure r0 = x · (~r � ~v • ~c).

Recall from Example 4.13 that we are interested in the target (1
4
, 9
8
) for '1

re. Con-
sider the weight vector (1, 2

3
). The reward structure r0 then is given by

r0(a) = (1, 2
3
) · (3

4
,�9

8
) = 0

r0(b)= (1, 2
3
) · (�1

4
,�1

8
)= �1

3

r0(d)= (1, 2
3
) · (0, 1) = 2

3
,

and zero everywhere else. The optimal strategy for Player 1 here clearly is to always
take d. To spoil, the best Player 2 can do is play b, but, due to the distribution, b

can be taken at most
P

k�0 2
�k = 2 times before a is taken again, balancing exactly

the mean-payoff to zero. Hence, Player 1 wins for Pmp(r0), and also for '1
re.

5.5 Pareto Set Computation

We discuss how to compute Pareto sets for CM games. Recall that the Pareto set
Pareto(G |') contains the "-achievable trade-offs for a given quantitative specification
' in a game G, that is, if ~v 2 Pareto(G |'), then '[~v] is "-achievable. We have already
shown that the Pareto sets of satisfaction objectives may not necessarily be convex
in Example 3.7. For Emp CQs in CM games, the Pareto sets are convex.

Theorem 5.19. Emp CQs in CM games have convex Pareto sets.

Proof. Fix a CM game G and an Emp CQ '. Let P be the Pareto set for ', and
let ~v(1),~v(2) 2 P . We show that the interior of P is convex: fix ↵ 2 [0, 1] and
" > 0; we have ~v(1) � " and ~v(2) � " in the interior of P and need to show that
~v

def
= ↵~v(1) + (1� ↵)~v(2) � " is in the interior of P .

For i 2 {1, 2}, there exists a finite DU strategy, ⇡(i) achieving '[~v(i)� "
2
]. Further,

for i 2 {1, 2}, let E

(i) be the set of MECs in G⇡(i) , and so from Proposition 5.12 we
obtain �(i) 2 D(E(i)) satisfying

P
E2E(i)

�(i)(E)~z E � ~v(i)� "
2
. We now apply Lemma 5.15

with ⇡l = ⇡(1) for all 1  l  |E(1)| and ⇡l = ⇡(2) for all |E(1)|+1  l  |E(1)|+ |E(2)|,
with the respective MECs collected in E = E

(1)[E(2), and with � = ↵�(1)+(1�↵)�(2).
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We thus obtain a finite DU strategy ⇡ achieving

E⇡,�
G [mp(~r)] � ↵

X

E2E(1)

�(1)(E)~z E + (1� ↵)
X

E2E(2)

�(2)(E)~z E � "

2
(Lemma 5.15)

� �↵(~v(1) � "

2
)� (1� ↵)(~v(2) � "

2
)� "

2
(Proposition 5.12)

= ↵~v(1) + (1� ↵)~v(2) � ". (arithmetic)

Thus ~v is in the interior of P . As P is the closure of a convex set, it is itself convex.

Note that, by linearity of expectations, Theorem 5.19 together with Proposition ii
also yields that the Pareto sets for ratioE CQs are convex.

5.5.1 Emp Objectives

We first show how to approximate Pareto sets for Emp objectives.

Emp CQs. For finite Player 1 strategies, we can approximate the Pareto set of
the CQ Emp(~r) by computing the Pareto set approximations (Y k)k�0 for the step-
bounded total expected reward E⇡,�

G [rewk(~r)], using the F operator from Lemma 3.12,
and evaluating Zk = 1

k+1
Y k. By Lemma 5.2, the limit limk!1 1

k+1
rew

k(~r) exists
almost surely, and so, for each " > 0, there is a k such that Zk is "

2
-close to the

Pareto set of Emp(~r). Then, Zk � " is an under-approximation of Pareto(G |Emp(~r)).
Alternatively, since by Theorem 5.16 Emp objectives are "-achievable when interpreted
as Pmp objectives, Pareto sets for Emp can be approximated by the same method as
in Theorem 6.7 of the next chapter.

Disjunctions. To compute "-approximations for the specification
Wm

j=1 Emp(rj)(vj),
we utilise Lemma 5.20 below, which is a straightforward extension of Theorem 9
of [124], where the idea is to discretise the space of weight vectors used. We first give
a condition on the sets of weight vectors to be used in approximating the Pareto sets.
For given " > 0 and ⇢⇤ � 0, let Weights(⇢⇤) be a set of non-zero vectors ~x 2 Rm

�0,
such that the corresponding unit vectors ~y = ~x/k~xk are of the form yj = byjc⌧ for
all i, with ⌧ = "

2·m2·(⇢⇤+1)
. The quantity ⇢⇤ corresponds to the maximum extent in

any dimension of the Pareto sets. We utilise this definition of Weights(⇢⇤) later in
Section 7.2.4 to develop a heuristic to iterate through the weight vectors.

Lemma 5.20. Let G be a game, let ~% : ⌦G ! Rm be a bounded measurable function,
and let ⇢⇤ = sup�2⌦G maxj |%j(�)|. The set

S
~x2Weights(⇢⇤){~u | ~x · ~u  v~x}, where v~x =

sup⇡ inf� E
⇡,�
G [~x · ~%], is an "-approximation of Pareto(G |

Wm
j=1 E[%j]).



5.5. PARETO SET COMPUTATION 105

Using Lemma 5.20, we can compute an "-approximation of Pareto sets for dis-
junctions of Emp objectives using a bounded number of one-dimensional queries.

Boolean Combinations. Consider the Emp MQ
Vn

i=1

Wm
j=1 Emp(ri,j)(vi,j) in CNF.

We define the set Weights

MQ

(~⇢⇤) def
=
Qn

i=1 Weights(⇢⇤i ), reflecting the requirement that
for each i individually we need non-zero weight vectors ~xi 2 Rm

�0. We let ~⇢ be
such that ⇢⇤i = maxs2S,j |ri,j(s)| for all i, and for each choice of weight vectors ~x =

(~x1, ~x2, . . . , ~xn) 2 Weights

MQ

(~⇢⇤), we compute an "-approximation P~x of the Pareto
set Pareto(G |

Vn
i=1 Emp(~xi · ~ri)). Given a point ~v 2 P~x, each dimension vi corresponds

to v~x
i

in Lemma 5.20 for the ith disjunction in the MQ. We thus obtain that

[

~x2WeightsMQ(~⇢⇤)

conv(
[

~v2P
~x

n\

i=1

{~u 2 Rn⇥m | ~xi · ~ui  vi}) (5.7)

is the "-approximation of the Pareto set Pareto(G |
Vn

i=1

Wm
j=1 Emp(ri,j)). Note that it

is sufficient to consider the extreme points ~v of the closure of P~x.

5.5.2 ratioE Objectives

The computation of Pareto sets for ratioE objectives is based on Emp objectives, using
the transformation in Proposition 5.5 (ii), whence ratioE(r/c)(v) is achievable if and
only if Emp(r � c · v)(0) is achievable.

Conjunctions. Knowing the Pareto set for Emp(~r�~c•~v) does not help to determine
the values for ~v. We compute "-approximate Pareto sets for ratioE CQs by checking
achievability of Emp(~r � ~c • ~v) for all vectors ~v such that vi = bvic" def

= bvi/"c · " and

mins2S ri(s)
mins2S,c

i

(s)>0 ci(s)
 vi 

maxs2S ri(s)
mins2S,c

i

(s)>0 ci(s)
, (5.8)

for all i, that is, we grid the space of possible achievable targets ~v by ". Since the
Pareto sets of ratioE are convex by Theorem 5.19, this gridding process can be slightly
accelerated, as we show in Section 7.2.4.

Boolean Combinations. We can apply Theorem 5.17 to an Emp MQ and reduce it
to a CQ. However, when computing the Pareto set for ratioE MQs, we have to be able
to extract the targets, which is the same problem as for ratioE CQs. For each non-zero
~xi 2 Rn

�0, there is an index `(i) such that xi,`(i) > 0. We define reward structures
~⇢i(s)

def
= ~xi ·~ri(s) +

P
j 6=`(i) xi,j · ci,j(s) and �i(s)

def
= xi,`(i) · ci,`(i)(s) for every state s 2 S

of the game. Given `(i) and some i 2 R, define ~wi by wi,j(i)
def
= 1 for all j 6= `(i),
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and set wi,`(i)(i)
def
= i. Then,

Vn
i=1 Emp(~xi · (~ri � ~ci • ~wi(i))) is achievable if and

only if Emp(~⇢� ~� • ~) is achievable. Note that, by varying i, the value of ~xi · ~wi(i)

is determined. We obtain the values for ~ by computing the ratioE CQ Pareto set
Q~x = Pareto(G | ratioE(~⇢/~�)). We thus get that Pareto(G |

V
i

W
j ratioE(ri,j/ci,j)) is

"-approximated by

[

~x2WeightsMQ(~⇢⇤)

conv(
[

~2Q
~x

n\

i=1

{~u 2 Rn⇥m | ~xi · ~ui  ~xi · ~wi(i)}), (5.9)

where ⇢⇤i = maxs2S,j ri,j(s) · (mins2S,j,c
i,j

(s)>0 ci,j(s))�1, for all i, according to (5.8).

Examplere 5.8. We resume the discussion from Example 4.12 to compute Pareto
sets for the running example in Section 3.6, and show here how to compute the local
Pareto sets for the individual components. Recall that the reward structures ~r and
c are given by ~r(a) = (1, 0, 0), ~r(b) = (0, 1, 1), ~r(d) = (0, 1, 0), c(a) = c(b) = 1,
and zero everywhere else, and note that the games G1

re, G2
re and Gre are CM, so

we can use the methods of this section to approximate Pareto sets for expected re-
wards. Recall that we can underapproximate Pareto sets in CM games for Eratio

objectives using ratioE objectives. The Pareto sets are shown for the specifications
'1

re = ratioE

(r1/c)(v1) ! ratioE(r2/c)(v2) for G1
re and '2

re = ratioE

(r1/c)(v1) ^
ratioE

(r3/c)(v3) for G2
re. Note, however, that we defined Pareto sets for maximis-

ing objectives only, so the specifications used for computation are ratioE(r1/c)(v1) _
ratioE(r2/c)(v2) for G1

re (the strict inequality is ignored, see the discussion in Sec-
tion 3.4.2), and ratioE(�r1/c)(�v1) ^ ratioE(�r3/c)(�v3) for G2

re. The resulting
Pareto sets are shown in Figure 4.9, where we flip the negated dimensions to re-
flect the sign of the original specifications.

5.6 Summary

In this chapter we discussed multi-objective queries involving Boolean combinations
of objectives, which was motivated by the assume-guarantee strategy synthesis rules
of Chapter 4, such as (Asym) and (Circ). Specifications consisting of Eratio objec-
tives are particularly suited for our assume-guarantee strategy synthesis framework,
because they are defined on traces and we can (soundly) synthesise strategies for
arbitrary Boolean combinations, using the corresponding ratioE objectives. Likewise,
Pratio objectives are defined on traces, for which we can synthesise strategies for
conjunctions.
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The core of this chapter presented a series of reductions between specifications.
We began by providing a taxonomy of strategies required for the Pmp and Emp ob-
jectives under discussion, and moreover justified our use of SU strategies by showing
that they can be exponentially more compact than DU strategies. Using the more
compact SU strategies is particularly relevant for our tool implementation presented
in Chapter 7. We then showed that ratioE and Pratio objectives can be reduced to
Emp and Pmp objectives, respectively, by instantiating the reward structures appro-
priately, and so the discussion of strategies carries over to these objectives. To be
able to synthesise strategies winning for expectation semantics, we further defined
the class of controllable multichain (CM) games, in which Emp and Pmp objectives
are equivalent under "-achievability. The class of CM games contains the games we
use in our case studies in Sections 8.3 and 8.4, demonstrating that CM games can
model versatile control applications. We then showed that Boolean combinations
of expectation objectives reduce to conjunctions, if appropriate weight vectors are
found. For "-achievability, these weight vectors can be found from a discretised set,
as we further develop algorithmically in Sections 7.2.3–7.2.4. We used our reductions
to compute Pareto sets for Boolean combinations of expectation objectives, which
provides a decision maker with valuable feedback about the achievable queries.

We highlight some open questions emerging from the foregoing discussion. Firstly,
it remains an open question how to synthesise strategies for general Boolean combi-
nations of Pmp objectives in non-CM games. For a special class of Pmp MQs of
the form

V
j Pmp(rAj )(v

A
j ) !

V
i Pmp(rGj )(v

G
j ), it is possible to slightly relax the CM

assumption to only require reachability of all ICs from the initial state of the game,
and thus obtain a reduction to Pmp CQs. Secondly, we do not address completeness
for synthesis with expected ratio rewards. We already noted in Example 3.6 that the
values for expected ratios and ratios of expectations do not coincide in general. For
MDPs, synthesis for conjunctions of (one-dimensional) expected ratio objectives has
been discussed in [135], using that a strategy in an MDP can control which MECs
are entered, and thus a synthesis algorithm can reduce the problem to synthesis in
MECs. In games, the same flexibility does not exist for Player 1 in general, since it
is up to Player 2 to control the induced PA. Finally, it remains to be shown whether
finite SU strategies and finite DU strategies are equally powerful, both for Pmp and
Emp objectives. For conjunctions of expected total reward (Erew) objectives, [124]
shows that for the particular case of conjunctions of target reachability objectives
infinite DU strategies are necessary, but finite SU strategies are sufficient; however,
the same argument does not straightforwardly carry over to Pmp objectives.
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In this chapter we develop the main strategy synthesis algorithm for conjunctions
of objectives (CQs) requiring to keep a mean-payoff almost surely above a thresh-
old (Pmp). Synthesis for Pmp CQs is sufficient to synthesise "-optimal strategies for
Boolean combinations of expectation objectives (Emp and ratioE), as well as conjunc-
tions of almost sure ratio (Pratio) objectives, as we have shown in Chapter 5.

We develop a co-NP decision procedure for the achievability problem of Pmp CQs,
which decides whether a (potentially infinite) Player 1 strategy achieves the specifica-
tion. This decision procedure allows us to precede our synthesis algorithm by a check
of achievability, yielding a complete algorithm. We then show that we can construct
strategies that achieve Pmp CQs by considering expected energy (EE) objectives in-
stead, which require maintaining the expected total reward above a bounded shortfall
at every step, due to the observation that a strategy winning for expected energy al-
most surely keeps the mean-payoff above zero. The argument for the reduction to EE

objectives relies on finiteness of the induced DTMCs, and so we show that it suffices
to consider finite memory strategies for Player 2, if Player 1 also uses finite memory.

Our strategy construction is based on a geometric interpretation of the strategy
memory, where each memory element is mapped to the vector of shortfalls achiev-
able when starting the strategy with this memory. We therefore develop a Bellman

109
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operator to characterise the sets of achievable shortfalls, and formalise a fixpoint com-
putation in order to approximate the shortfall sets. We show that if a Pmp CQ is
achievable, our fixpoint computation terminates after a finite number of steps, and so
the resulting shortfall sets are polytopes with a finite number of extreme points. The
strategies we construct keep the extreme points in memory, and so we obtain finite
(SU) strategies. While we have shown that finite SU strategies can be exponentially
more succinct than DU strategies, which is particularly relevant for our tool imple-
mentation in Chapter 7, they cannot, in general, be unrolled to finite DU strategies.
Since our transformation between Pmp and EE objectives was shown for finite DU
strategies, in order to obtain a complete algorithm we give a discretisation of SU
strategies, showing that we can also obtain finite "-optimal DU strategies for Pmp

CQs. We remark that discretising SU strategies for Emp CQs is an open question.
The technical contributions of this chapter are mainly based on our previous work

in [10]. We start the chapter by analysing the complexity of the Pmp CQ achievability
problem in Section 6.1, which is based on the observation that it is sufficient for
Player 1 to win against MD Player 2 strategies. In Section 6.2 we then develop our
reduction of Pmp objectives to expected (truncated) energy, and we give a Bellman
operator to characterise the truncated energy shortfalls. We develop our strategy
construction in Section 6.3, both for SU strategies and the discretisation to finite DU
strategies. Finally, in Section 6.4 we summarise our synthesis algorithm for Pmp CQs.

6.1 Decision Procedure

In this section we present our decidability result of the achievability problem for
Pmp CQs, based on a general class of objectives defined via shift-invariant submixing
functions. A function % : ⌦G ! R is shift-invariant if 8 2 ⌦fin

G .� 2 ⌦G . %(�) =

%(�). A function % : ⌦G ! R is submixing if, for all ,0,� 2 ⌦G such that � is an
interleaving of  and 0, it holds that %(�)  max{%(), %(0)}.

We obtain a co-NP algorithm by studying the strategies Player 2 needs to win for
Pmp objectives against Player 1, and using qualitative determinacy for Pmp objectives
(see Lemma 3.9). From [72] we have that MD strategies suffice for Player 1 to win for
one-dimensional shift-invariant submixing functions.

Lemma 6.1 (Theorem V.2 of [72]). Let G be a game, and let % : ⌦G ! R be a
measurable, shift-invariant and submixing function. Player 1 has an MD strategy ⇡̃
such that inf� E⇡̃,�

G [%] = sup⇡ inf� E
⇡,�
G [%].
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Given a measurable function %, we write P(%) for the objective PD(% � 0) = 1.

Theorem 6.2. Let G be a game, and let ~% : ⌦G ! Rn be a vector of shift-invariant
submixing functions. If Player 1 wins for P(�~%) against all MD Player 2 strategies,
then Player 1 wins for P(�~%) against all Player 2 strategies.

Proof. We use Lemma 6.1 by evaluating the expectation of the indicator function
of the objective. Given a measurable subset ⇤ of ⌦G, we denote by 1⇤ its indicator
function, defined as 1⇤(�)

def
= 1 if � 2 ⇤ and 0 otherwise. Fix shift-invariant submixing

functions %1, . . . , %n, and let A
def
= {� | 9i . �%i(�) < 0} be the set of paths falsifying

the property of interest. We first show the following intermediate result.

Lemma 6.3. The function 1A is shift-invariant and submixing.

Proof. Since %i is shift-invariant for all i, also 1A is shift-invariant. We now show
that 1A is submixing. Let �,,0 2 ⌦G such that � is an interleaving of  and
0. Assume 1A() = 1A(0) = 0, that is �%i() � 0 and �%i(0) � 0 for all i.
Since %i is submixing, %i(�)  max{%i(), %i(0)}, for all i. Then, for all i, 0 
min{�%i(),�%i(0)}  �%i(�). Thus, 1A(�) = 0.

We show the theorem by contraposition. Assume 8⇡ . 9� .P⇡,�
G (9i . �%i < 0) > 0.

Hence 8⇡ . 9� .E⇡,�
G [1A] > 0, and so, from Lemma 3.9, we have that 9� . 8⇡ .E⇡,�

G [1A] >

0. Since 1A is shift-invariant and submixing, by Lemma 6.1 (via switching players),
there is an MD Player 2 strategy �̃ in G such that 8⇡ .E⇡,�̃

G [1A] > 0. Then, for all
Player 1 strategies ⇡, we have P⇡,�̃

G (9i . �%i < 0) > 0.

Our proof for Pmp CQs derives from a transfer theorem, that characterises the
complexity of achievability problems for games if the complexity is known for PAs.

Theorem 6.4. Let G be a game, and let � be a class of specifications, such that
for every ' 2 �, G with ' is qualitatively determined and MD strategies suffice for
Player 2. Suppose that, for a PA M with ' 2 �, the problem 9� .M� |= ' is in the
time-complexity class A. The problem 9⇡ . 8� .G⇡,� |= ' is in co-NP if A ✓ co-NP,
and in A if A ◆ co-NP.

Proof. By qualitative determinacy, the decision problem of interest is equivalent to
8� . 9⇡ .G⇡,� |= '. The answer is negative exactly if 9� . 8⇡ .G⇡,� |= ¬', which is
equivalent to deciding whether some MD strategy � satisfies 8⇡ .G⇡,� |= ¬'. Such an
MD spoiling strategy � can be guessed in polynomial time. To decide 8⇡ .G⇡,� |= ¬',
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it suffices to decide its negation 9⇡ .G⇡,� |= ', and this problem is in the class A. The
overall complexity is hence the maximum complexity of co-NP and A.

Using Lemma 3.9 and Theorem 6.2, we obtain the following corollary of Theo-
rem 6.4.

Corollary 6.5. Let G be game, let ~% : ⌦G ! Rn be a measurable shift-invariant
submixing function, and suppose the problem whether there exists a strategy � for a
PA M such that M� satisfies P(�~%) is in the time-complexity class A. The problem
9⇡ . 8� .G⇡,� |= P(�~%) is in co-NP if A ✓ co-NP, and in A if A ◆ co-NP.

As a further corollary, the achievability problem for Pmp CQs in co-NP, since we
can decide the corresponding achievability problem in PAs in polynomial time.

Corollary 6.6. The Pmp CQ achievability problem is in co-NP.

Proof. From Proposition VI.1 in [72], �mp(~r) is shift-invariant and submixing, and
from Lemma 3.11, the problem 9� .M� |= Pmp(~r) is polynomial-time for PAs M.

The decision procedure we propose does not yield a straightforward algorithm to
synthesise Player 1 strategies, which is the main subject of the rest of this chapter.
However, the decision procedure gives us an alternative way to "-approximate Pareto
sets for Pmp objectives, compared to Section 5.5.

Pareto Sets for Pmp CQs. We grid the set of targets in the n dimensional hyper-
rectangle {~v 2 Rn | 8i . � ⇢⇤  vi  ⇢⇤} with ⇢⇤ def

= maxi,s2S |ri(s)|, selecting points at
most a distance " apart. At every such point ~v in the grid, we call the co-NP decision
procedure of Corollary 6.6, and hence obtain an "-approximation of the Pareto set by
taking the downward closure of the set of achievable points. There are ⇢⇤/" sections
per dimension, and 2|S| strategies to be checked with the polynomial-time oracle of
B.3. in [18] (Lemma 3.11), and so we obtain the following result.

Theorem 6.7. The "-approximation of the Pareto set for an n-dimensional con-
junction of Pmp objectives can be computed in time O((⇢⇤/")n · 2|S|).

6.2 Expected Energy Objectives

In order to construct a strategy, we need information on how the rewards change
from one state to the next, so that the correct choices can be made. However, if we
compute the mean-payoff at every state in the game, we find that the values achievable
at each state might be the same, and so do not yield sufficient information on how the
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Figure 6.1: Illustration of expected energy (EE) and expected truncated energy (ETE).

strategy should pick successor states. For example, in the game in Figure 5.3 (left) of
Chapter 5, the Pareto sets for Pmp objectives, shown in the centre of the figure, are
the same at every state of the game, and so we cannot construct the memory updates
for a strategy from them, which is required to win for some targets.

Instead, we convert Pmp objectives to an alternative objective, called expected
energy (EE), for which we develop our strategy construction. We explain the intuition
behind this conversion. Observe that, for finite DTMCs, if the mean-payoff mp(r) is
non-negative, at almost every step N , the corresponding total reward rew(r) up to N

steps is bounded from below. In particular, if the total reward diverges to negative
infinity, the mean-payoff must be negative. We call the total reward up to a finite
number of steps energy, since it represents the amount of resources that need to be
spent up to that point. If the energy converges to a finite, negative, shortfall v0,
we know that the system, when started with a supply of �v0, does not run out of
resources. Consider the DTMC in Figure 6.1 (left). The mean-payoff that can be
achieved almost surely in s0 is �1, since there is some non-zero probability that the
BSCC consisting of {s1} is accessed, where the mean-payoff is �1. Correspondingly,
in Figure 6.1 (centre), we show the expected energy at each state. At s1 the total
reward diverges towards negative infinity, at s2 the total reward diverges towards
positive infinity, and at s0 the expectation is positive after the second step. We
observe that in order for the mean-payoff to be non-negative almost surely at the
initial state, it must be non-negative almost surely in every BSCC of the DTMC, and
so the expected total reward up to any step is lower-bounded at every state in the
DTMC. We now formally define expected energy objectives.

Definition 6.1. A DTMC D satisfies the expected energy objective EE(r) if there is
a finite shortfall v0 such that, for all states s of D, and all N � 0, ED,s[rew

N(r)] � v0.
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Note that a game satisfies an EE objective if there is a Player 1 strategy, and a finite
shortfall for each Player 2 strategy. Given a strategy satisfying an EE objective, we
show below in Proposition 6.18 that it also satisfies the corresponding Pmp objective.
The reduction to energy objectives is inspired by a similar result for non-stochastic
games [26, 36], which we summarised in Section 3.5.3 (with inverted signs).

However, as shown in Figure 6.1, even if the expected energy is lower-bounded
for one state, it may diverge towards positive infinity at other states. We therefore
truncate the positive values of the expected energy at every step N , which is illustrated
in Figure 6.1 (right). Then, we can find finite shortfalls for the expected truncated
energy, and hence we can construct in Section 6.3 a strategy that satisfies the EE

objective. Initially, we use the expected truncated energy for a single dimension
to show that, for EE objectives, it suffices to consider finite memory strategies for
Player 2.

6.2.1 Finite Memory Strategies for EE

When Player 1 fixes a finite DU strategy ⇡ with the aim to satisfy a conjunction of EE

objectives, then the aim of Player 2 is to falsify (that is, spoil) at least one objective
in the finite induced PA M = G⇡ = hS, (S⇤, S�), &,A,�,�i. We therefore fix in this
section a single reward r, for which Player 2 aims to falsify EE(r). A Player 2 strategy
� spoils if for every shortfall v0 there exists a state (s,m) of M�, such that, for some k,
eks,m  v0, where we define eks,m

def
= EM� ,(s,m)[rew

k(r)]. In the following, we use boldface
notation for vectors over the state space, reserving the arrow notation for vectors
over the reward dimensions, for example, a vector a is defined by its components [a]s
for every state s 2 S (or some subset of S). To witness whether Player 2 can spoil,
without needing to induce the DTMC M�, we also define the sequence of expected
truncated energy (uk)k�0 parameterised by states of the PA M: for all states s of M,
we let u0

s
def
= 0, and for every k > 0, we let

uk+1
s

def
=

8
<

:
min(0, r(s) + mint2�(s) uk

t ) if s 2 S⇤

min(0, r(s) +
P

t2�(s) �(s, t) · uk
t ) if s 2 S�.

(6.1)

One can see by induction on k that (uk)�0 is a non-increasing sequence, and we denote
by u

⇤ its limit in (R0 [ {�1})|S| as k ! 1. Let S
fin

def
= {s 2 S | u⇤

s > �1} be the
set of states s of M such that u⇤

s is finite, and let S1 = S \ S
fin

. We now show that
S1 6= ; witnesses that Player 2 can spoil the EE objective with a finite strategy.
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Proposition 6.8. Let M be a finite PA with a one-dimensional reward structure r.
If S1 6= ;, then Player 2 has a finite strategy to spoil EE(r � "), for every " > 0.

Proof. The proof is as follows. For k large enough and for states s 2 S1, there is no
cut-off used to define uk

s , similarly to the non-truncated energy. We can then express
the equations for u

k in terms of matrices, from which we construct a finite memory
Player 2 strategy that keeps the expected energy with respect to the reward r bounded
from below. By operating with the reward r � ", we subtract " at each step, and so
the expected energy goes to �1, falsifying EE(r � ").

Let k0 be the least integer such that, for all k � k0, uk
s < 0 for every s 2 S1. For

k � 0 and s 2 S⇤, let �k(s) be a successor of s, for which the minimum is attained,
that is, uk+1

s = min{0, r(s) + uk
�
k

(s)}. Let U (k) be the S ⇥ S matrix for M defined by

U (k)
s,t =

8
>>><

>>>:

1 if s 2 S⇤ and t = �k(s)

�(s, t) if s 2 S�

0 otherwise,

for all s, t 2 S. Let U (j,i) be the matrix product U (j�1) · U (j�2) · · · · · U (i) for j > i,
and let U (i,i) = IS (the identity). We use the following block decomposition of U (k):

U (k) =

 
U (k)
S1

U (k)
S1,Sfin

0 U (k)
Sfin

!
. (6.2)

The zero block in the lower left corner of U (k) arises because all successors of states
in S

fin

are in S
fin

. Moreover, U (j,i)
S1

= U (j�1)
S1

· U (j�2)
S1

· · · · · U (i)
S1

.

Remark 6.9. For every k � k0, it holds that uk+1
S1

= rS1 + [U (k) · uk]S1.

We now proceed to show Proposition 6.8 as a consequence of Lemmas 6.10–6.15.
Our first step is to show in Lemma 6.12 that there is a subset E of states in S1
where Player 2 has no incentive to leave to spoil EE. Two technical results are needed
for this step: a) in Lemma 6.10 we show that, within S1, the expected truncated
energy behaves as a sequence whose update is bounded by an affine recursion; and
b) in Lemma 6.11 we show that, for such sequences to diverge with a bounded rate
cm  1, the rate must be saturated to 1 in the limit.
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Lemma 6.10. For every l � 0, there exists a constant bl � 0, such that, for every
k � k0, it holds that kuk+l

S1
k1  kU (k+l,k)

S1
k1 · kuk

S1k1 + bl.

Proof. We first show, by induction on l, the more general statement

u

k+l
S1
� U (k+l,k)

S1
· uk

S1 + a� l⇢⇤, (6.3)

where a and ⇢⇤ are the constant vector with equal components a
def
= mins2Sfin u

⇤
s and

⇢⇤ def
= maxs2S |r(s)|, respectively. The base case, for l = 0, is satisfied. Now assume

(6.3) holds for some index l, and we show that then (6.3) is true for l+1. Recall that
for k � k0 and s 2 S1, there is no cut-off of positive values in uk

s . We thus obtain

u

k+l+1
S1

= rS1 + [U (k+l) · uk+l]S1 (Remark 6.9)

= rS1 + U (k+l)
S1

· uk+l
S1

+ U (k+l)
S1,Sfin

· uk+l
Sfin

(by (6.2))

� �⇢⇤ + U (k+l)
S1

· uk+l
S1

+ U (k+l)
S1,Sfin

· a (definition of a and ⇢⇤)

� �⇢⇤ + U (k+l)
S1

· (U (k+l,k)
S1

· uk
S1 + a� l⇢⇤) + U (k+l)

S1,Sfin
· a

(induction hypothesis)

� U (k+l+1,k)
S1

· uk
S1 + (U (k+l)

S1
+ U (k+l)

S1,Sfin
) · a� (l + 1)⇢⇤ (rearranging)

� U (k+l+1,k)
S1

· uk
S1 + a� (l + 1)⇢⇤. (U (k+l) is stochastic)

It now suffices to define bl
def
= a� l⇢⇤, and take the norm in (6.3), and so we get

kuk+l
S1
k1 = max

s2S1
|uk+l

s | = max
s2S1

(�uk+l
s )

 max
s2S1

(U (k+l,k)
S1

· (�uk
S1) + bl) (by (6.3))

= kU (k+l,k)
S1

· (�uk
S1)k1 + bl

 kU (k+l,k)
S1

k1 · kuk
S1k1 + bl. (sub-multiplicativity)

Lemma 6.11. Let b � 0, and let (xm)m�0 and (cm)m�0 be non-negative real se-
quences. If xm ! 1 as m ! 1, and, for every m � 0, xm+1  cmxm + b and
cm  1, then it holds that supm cm = 1.

Proof. Assume toward a contradiction that there exists ✓ < 1 such that, for every m,
cm  ✓. As xm ! 1, there exists m0 such that, for every m � m0, it holds that
xm > b/(1� ✓), and hence that xm+1/xm  cm + b/xm < ✓ + b/(b/(1� ✓)) = 1. This
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yields that from the index m0, the sequence (xm)m�m
0

is decreasing, and thus cannot
go to +1, a contradiction.

In the proof of Lemma 6.12 we show that, if the set E contains a state in S
fin

,
then the probability of staying in E is strictly less than 1, allowing us to derive a
contradiction to the divergence of the expected truncated energy in S1.

Lemma 6.12. If S1 6= ;, then there exists a set E ✓ S1 and indices j > i � k0,
such that U (i,j)

E is stochastic.

Proof. Given a subset of states A ✓ S, and a S ⇥ S stochastic matrix P , we define
Reach(A,P )

def
= {s0 | 9s 2 A .Ps,s0 > 0}. Note that PE, the matrix P restricted

to the states E, is stochastic if and only if Reach(E,P ) ✓ E, and further that
Reach(Reach(A,P ), P 0) = Reach(A,P · P 0). Let l = 2|S|, s 2 S and k 2 N. Consider
the sets Reach({s}, U (k+l,k+l)), Reach({s}, U (k+l,k+l�1)), . . ., Reach({s}, U (k+l,k)). By
the pigeonhole principle, there are at least two indices i, j with k  i < j  k + l

such that Reach({s}, U (k+l,j)) = Reach({s}, U (k+l,i)), and we denote this common set
by Es,k. We thus have that

Reach(Es,k, U
(j,i)) = Reach(Reach({s}, U (k+l,j)), U (j,i))

= Reach({s}, U (k+l,j) · U (j,i))

= Reach({s}, U (k+l,i))

= Es,k.

Hence U (j,i)
E

s,k

is stochastic. It now suffices to prove that Es,k ✓ S1 for some s 2 S1
and k � k0. Assume for the sake of contradiction that Es,k 6✓ S1 for every s 2 S1
and k � k0. This means that, for every s 2 S1 and k � k0, there exists i such that
Reach(U (i,k+l), {s}) \ S

fin

6= ;. For j � i, we write U (j,i) as the block decomposition
(U (j,i)

S,S1
, U (j,i)

S,Sfin
), and write U (j,i)

s,Sfin
for the row of U (j,i)

S,Sfin
corresponding to state s. Now

recall that U (i,k)
Sfin

is stochastic, since every successors of a state in S
fin

is in S
fin

. We
deduce that kU (k+l,i)

s,Sfin
· U (i,k)

Sfin
k1 > 0, hence that kU (k+l,k)

s,Sfin
k1 > 0. The matrix U (k+l,k)

is the product of l matrices, each of which has entries either zero or greater than pmin,
the minimal probability on edges of the PA M. Therefore, coefficients of U (k+l,k) are
either zero or greater than plmin, and so kU (k+l,k)

s,Sfin
k1 � plmin. Since U (k+l,k) is stochastic,

its row-sum are equal to one, that is,
P

s02Sfin
U (k+l,k)
s,s0 +

P
s02S1

U (k+l,k)
s,s0 = 1, for every

s 2 S and k � 0. This implies that
P

s02S1
U (k+l,k)
s,s0  1 � plmin, for every s 2 S

and k � 0. We let cm
def
= kU (k

0

+lm+l,k
0

+lm)
S1

k1, and have by the above discussion that
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supm cm  1�plmin < 1, to which we now derive a contradiction. Let xm
def
= kuk

0

+lm
S1

k1,
for which we have, by Lemma 6.10, that xm+1  cm ·xm+ bl for some bl � 0. We now
use Lemma 6.11 to obtain supm cm = 1, a contradiction.

We now define Player 2 strategies and the expected energies they induce in terms
of matrices. We consider ultimately periodic sequences of matrices that after a finite
prefix n keep repeating the same p elements in a loop. Formally, an ultimately periodic
sequence (P [m])m�0 with prefix n and period p is such that the mth element is equal
to the element of index m mod (n, p) (that is, P [m] = P [m mod (n,p)]), where

m mod (n, p)
def
=

8
<

:
m if m  n+ p� 1

n+ (m� n mod p) otherwise.

A stochastic matrix P conforms to M if, for every s 2 S� and all s0 2 �(s), it holds
that Ps,s0 = �(s, s0). We define a finite strategy by an ultimately periodic sequence
of matrices (P [k])k�0 that conform to M: the memory is a counter m  n + p that
is updated at every step from m to m + 1 mod (n, p); and in state s and memory
m the choice function selects s0 with probability P [m]

s,s0 . To express several steps of the
strategy, we define the interval matrices P [m,m+l] def

= P [m] · · ·P [m+l�1] with P [m,m] = IS,
and corresponding cumulative matrices P̂ [m,m+l] def

=
Pl�1

q=0 P
[m,m+q] with P̂ [m,m] = 0.

For every step k � 0 and memory m, we define a vector ek(m)(r), where the entry for
s is defined as eks,m in the game with reward structure r, that is, the expected energy
for r after k steps at state (s,m) of the induced DTMC. We show in Lemma 6.14 that
the strategy based on ultimately periodic matrices decreases the expected energy in
the periodic phase by a non-zero amount every p steps. The proof of Lemma 6.14
relies on the following technical lemma.

Lemma 6.13. Given an ultimately periodic matrix based strategy with prefix n and
period p, it holds that el(m mod (n,p))(r) = P̂ [m,m+l] · r, for all l � 0 and m � 0.

Proof. We show this statement by induction on l. The base case for l = 0 is satisfied.
Now assume the statement holds for l, and we show for l + 1. As the strategy with
memory m mod (n, p) plays according to the matrix P [m], and increments its memory



6.2. EXPECTED ENERGY OBJECTIVES 119

to m+ 1 mod (n, p), it holds that

e

l+1
(m mod (n,p))(r) = r+ P [m] · el(m+1 mod (n,p))(r)

= P [m] · P̂ [m+1,m+l+1] · r
= P̂ [m,m+l+1] · r.

Lemma 6.14. Given an ultimately periodic matrix based strategy with prefix n and
period p, and a set E such that A = P [n,n+p]

E is stochastic, then, for all j � 0, it holds
that [ejp(n)(r � ")]E =

Pj�1
k=0 A

k · [P̂ [n,n+p] · r]E � jp".

Proof. Note first that P [n,n+jp] = (P [n,n+p])j, that P̂ [n,n+jp] ·1 = jp, and that P̂ [n,n+jp] =
Pj�1

k=0(P
[n,n+p])k · P̂ [n,n+p]. Since the restriction of P [n,n+p] to the set E is stochastic, it

holds, for every vector x, that [P [n,n+p] · x]E = P [n,n+p]
E · xE. We apply Lemma 6.13

with l = jp and m = n, and thus get, for all j � 0, that

[ejp(n)(r � ")]E = [P̂ [n,n+jp] · (r� ")]E

=

"
j�1X

k=0

(P [n,n+p])k · P̂ [n,n+p] · r� jp"

#

E

=

j�1X

k=0

(P [n,n+p]
E )k · [P̂ [n,n+p] · r]E � jp".

We now describe a situation where truncation in the definition of uk do not occur.

Lemma 6.15. For k � k0, and E ✓ S1 such that U (k+p,k)
E is stochastic, it holds

that uk+p

E = [Û (k+p,k) · r]E + U (k+p,k)
E · uk

E.

Proof. We show, by induction on l, the following more general statement: for all
l � 0, k � k0, and E,E 0 ✓ S1 such that E 0 = Reach(E,U (k+l,k)), it holds that

u

k+l
E = [Û (k+l,k) · r]E + U (k+l,k)

E,E0 · uk
E0 .

The base case for l = 0 is straightforward. Now suppose that the result holds for l, and
we show it for l+1. Let k � k0 and E,E 0 ✓ S1 such that E 0 = Reach(E,U (k+l+1,k)),
and let E 00 = Reach(E,U (k+l+1,k+1)). Note that Reach(E 00, U (k)) = E 0 ✓ S1, and
hence that E 00 ✓ S1, since all predecessors of states in S1 are in S1. As k + 1 � k0
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defining U

(i)

backward U (0)U (1)· · ·U (k)U (k+1)· · ·U (k+p�1)

U (k+p,k)
E is stochastic

defining P

[m] forward,
and looping

P [0] P [1] · · · P [n] · · · P [n+p�2] P [n+p�1]

= = =

Figure 6.2: Matrices U (i) and P

[m] to define the ultimately periodic matrix based strategy
for Player 2 to spoil EE(r � ") in the proof of Proposition 6.8.

and E 00 ✓ S1, Remark 6.9 yields uk+1
E00 = rE00 +U (k+1)

E00,E0u
k
E0 , and so we can conclude by

u

k+l+1
E = [Û (k+l+1,k+1) · r]E + U (k+l+1,k+1)

E,E00 · uk+1
E00

= [Û (k+l+1,k+1) · r]E + U (k+l+1,k+1)
E,E00 · rE00 + U (k+l+1,k+1)

E,E00 · U (k+1)
E00,E0 · uk

E0

= [Û (k+l+1,k) · r]E + U (k+l+1,k)
E,E0 · uk

E0 ,

where the first equality is due to the induction hypothesis.

We complete the proof of Proposition 6.8. Suppose S1 6= ;. By Lemma 6.12, there
exists a set E ✓ S1, and indices k0  k < k + p, such that Reach(U (k+p,k), E) = E.
By Lemma 6.15, we have u

k+p

E = y+A ·uk
E with y = [Û (k+p,k) · r]E and A = U (k+p,k)

E .
We define an ultimately periodic matrix based Player 2 strategy � based on the

matrices U (k+p), . . ., U (k+1) (involved in the definition of A). The prefix of this strategy
ensures that the set E is reachable from the initial state, and hence that the states
of E are in the induced DTMC M�. Let P [0], . . . P [n�1] be matrices conform to M,
such that E \Reach(P [0,n�1], s

init

) 6= ;; for instance, we can take P [i] to be the matrix
corresponding to choosing successors in Player 2 states with uniform probability. Then
we define the periodic phase of � with p matrices by letting P [n+i] = U (k+p�i) for
0  i  p � 1. We illustrate the matrices used to construct � in Figure 6.2. Note
that P [n,n+p] = U (k+p,k) and y

def
= [Û (k+p,k) · r]E = [P̂ [n,n+p] · r]E. Further, for states

s 2 E \ Reach({s
init

}, P [0,n�1]), the state (s, n) is in M�.
We now show that ejps,n ! �1 as j ! 1, and hence that the strategy � spoils

EE(r�"). From Lemma 6.14 we have [ejp(n)(r�")]E =
Pj�1

k=0 A
k ·y�jp". It remains to

show that the sequence
Pj�1

k=0 A
k · y is upper-bounded, in order to have convergence
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of ejps,n toward �1 as j !1. Since y = u

k+p

E � A · uk
E  (IE � A) · uk

E, we have

 
j�1X

i=0

Ai

!
· y 

 
j�1X

i=0

Ai

!
· (IE � A) · uk

E = (IE � Aj) · uk
E  �Aj · uk

E  kuk
Ek1 · 1,

where we use for the last inequality that kAjk1 = 1, since Aj is stochastic.

Finally, in Proposition 6.17 we show that it is sufficient to consider finite memory
Player 2 strategies for EE objectives. We first show in Lemma 6.16 that the precon-
dition S1 6= ; of Proposition 6.8 is satisfied if Player 2 can spoil the EE objective.

Lemma 6.16. If Player 2 can spoil EE(r) in a finite PA with a one-dimensional
reward structure r, then S1 6= ;.

Proof. Fix a Player 2 strategy � for M, and let �0 be the transition function of the
induced DTMC M�. We first show by induction on k that uk

s  eks,m for every s and
m. The base case for k = 0 is satisfied as e0s,m = u0

s = 0. Now assume uk
s  eks,m holds

for some k and for every s and m, and we show for k + 1. In each Player 2 state s,

uk+1
s  r(s) + min

t2�(s)
uk
t

 r(s) +
X

(t,m0)2�0(s,m)

�0((s,m), (t,m0)) · uk
t

 r(s) +
X

(t,m0)2�0(s,m)

�0((s,m), (t,m0)) · ekt,m0 (induction hypothesis)

= ek+1
s,m .

Since Player 2 can falsify EE(r), for every v0, there is (s,m) such that eks,m  v0 and
hence u⇤

s  uk
s  eks,m  v0. As M is finite and v0 can be taken arbitrary low, it

means that there is at least one state s for which u⇤
s = �1, and thus S1 6= ;.

Proposition 6.17. Let " > 0. If a finite DU Player 1 strategy ⇡ achieves EE(~r � ")
against finite Player 2 strategies, then ⇡ achieves EE(~r) against all Player 2 strategies.

Proof. We show the contrapositive. Assume the strategy ⇡ loses for EE(~r) against an
arbitrary strategy of Player 2. Then there is a coordinate r of the rewards ~r such that
Player 2 achieves EE(r) in the induced PA G⇡. Then, by Lemma 6.16, S1 6= ;, and
thus, by Proposition 6.8, Player 2 wins EE(r�") for every ", with a finite strategy.



122 CHAPTER 6. STRATEGY SYNTHESIS

6.2.2 Transforming Between Pmp and EE

We now formalise the correspondence of the expected energy (EE) objectives with
almost sure satisfaction of mean-payoff (Pmp) objectives. The following lemma estab-
lishes soundness of the transformation in part (i), and completeness up to "-optimality
of the strategies in part (ii). To obtain finite induced DTMCs, we use Theorem 6.2 to
work with MD Player 2 strategies for Pmp CQs, and Proposition 6.17, to work with
finite Player 2 strategies for EE CQs.

Proposition 6.18. Given a finite strategy ⇡ for Player 1, the following hold:

(i) if ⇡ achieves EE(~r), then ⇡ achieves Pmp(~r); and

(ii) if ⇡ is DU and achieves Pmp(~r), then ⇡ achieves EE(~r + ~") for all " > 0.

Proof. Instead of proving 8� .G(⇡,�) |=  ) 8� .G(⇡,�) |= ', we prove the stronger
statement 8� . (G(⇡,�) |=  ) G(⇡,�) |= '). Fix finite strategies ⇡ and �. Let D =

G(⇡,�), which is a finite DTMC. By Lemma 5.2, the limit limN!1 1
N+1

rew

N(~r) almost
surely exists. For every N and path �, we have | 1

N+1
rew

N(~r)(�)|  maxs2SD |~r(s)|,
where the maximum is taken componentwise, and so we have

ED,s

h
lim

N!1
1

N+1
rew

N(~r)
i
= lim

N!1
ED,s

⇥
1

N+1
rew

N(~r)
⇤

(6.4)

by the Lebesgue dominated convergence theorem (Lemma 3.2).

Proof of (i). By Theorem 6.2 it suffices to consider MD Player 2 strategies. Assume
that EE(~r) is satisfied. Fix a finite shortfall ~v0 such that, for all s 2 SD, it holds that

8N � 0 .ED,s[rew
N(~r)] � ~v0 (by assumption)

8N � 0 .ED,s[
1

N+1
rew

N(~r)] � ~v
0

N+1
(dividing by N + 1)

lim
N!1

ED,s[
1

N+1
rew

N(~r)] � 0 (taking limits)

ED,s[ lim
N!1

1
N+1

rew

N(~r)] � 0. (by (6.4))

From Lemma 5.2, whenever s is in a BSCC B of D (that is, PD,s(FB) = 1), we have
mp(~r)(B) = ED,s[limN!1 1

N+1
rew

N(~r)]. Therefore, for every BSCC B, mp(~r)(B) � ~0.
Thus, again by Lemma 5.2, Pmp(~r) is satisfied.

Proof of (ii). Assume ⇡ is DU, and so, by Proposition 6.17, it suffices to consider
finite Player 2 strategies. Fix " > 0. Assume that D |= Pmp(~r), and so, by Lemma 5.2,
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rew(~r)(B) � 0 for every BSCC B of D. Thus, for all states s 2 SD, we have

lim
N!1

ED,s[
1

N+1
rew

N(~r)] � ~0 (by (6.4))

9N",s � 0 . 8N � N",s .ED,s[
1

N+1
rew

N(~r)] � �~" (definition of limit)

8N � 0 .ED,s[rew
N(~r)] � �(N + 1) · ~"+ ~vs0

(fixing N",s and letting vs0,i
def
= min

NN
",s

ED,s[rew
N(ri)])

8N � 0 .ED,s[rew
N(~r + ")] � ~vs0 � ~v0. (letting v0,i

def
= min

s2SD
vs0,i)

Since ~v0 is finite, D satisfies EE(~r + ~").

6.2.3 Shortfall Characterisation

In Section 6.2.1 we used a one-dimensional version of the expected truncated energy
to establish that finite strategies suffice for Player 2. To construct Player 1 strategies
for an n-dimensional Pmp CQ, we have to consider all n dimensions simultaneously.
We show below in Proposition 6.23 that having a lower bound on the expected trun-
cated energy at the initial state is sufficient to be able to construct a strategy that
only reaches states with lower-bounded expected energy (states with no lower bound
can be avoided by the strategy). The intuition is that, by truncating positive values,
divergence towards negative infinity in any BSCC that is reached with non-zero prob-
ability is sufficient to cause divergence towards negative infinity at the initial state.
We go on to construct strategies from the shortfalls of the expected truncated energy,
in Section 6.3, and prove that they satisfy the corresponding EE objective.

Bellman Operator. We define a Bellman operator to characterise sets of shortfalls
for each state of a game, for which we use a CPO of |S|-dimensional vectors of subsets
of Rn, defined as follows. Given M � 0 and a set X ✓ Rn, define the M-downward
closure of X by dwc(X) \ BoxM , where BoxM

def
= [�M, 0]n. Let Pc,M be the set of

convex, closed, M -downward-closed subsets of Rn. We define the CPO CM to be
the set P |S|

c,M , with the bottom element ?M
def
= Box

|S|
M , and which we endow with the

partial order v defined as Y v X , 8s 2 S . dwc(Xs) ✓ dwc(Ys). For D ✓ CM , the
supremum supD is defined via [supD]s

def
=
T

X2D Xs for all s 2 S. The intersection of
convex, closed, M -downward-closed sets is itself convex, closed, M -downward-closed,
and so supD 2 CM for any directed set D. Hence, CM is a CPO.
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We now define the Bellman operator FM,~r,G : CM ! CM , for a game G, rewards ~r,
and M � 0, as follows. For all player and stochastic states s 2 S of the game G, let

[FM,~r,G(X)]s
def
= BoxM \ dwc

0

BBB@
~r(s) +

8
>>><

>>>:

conv(
S

t2�(s) Xt) if s 2 S⌃
T

t2�(s) Xt if s 2 S⇤
P

t2�(s)�(s, t)⇥Xt if s 2 S�

1

CCCA
.

If the game G is clear from context, we write FM,~r instead of FM,~r,G. The operator FM,~r

computes the shortfalls for the expected truncated energy that Player 1 can achieve
in the respective state types. In s 2 S⌃, Player 1 can achieve the values in successors
(union), and can randomise between them (convex hull). In s 2 S⇤, Player 1 can
achieve only values that are in all successors (intersection), since Player 2 can pick
arbitrarily. Lastly, in s 2 S�, Player 1 can achieve values with the prescribed distri-
bution. The operator FM,~r is closely related to the operator F

rew,~r for expected total
rewards in [41] but here we cut off values outside of BoxM , similarly to the controllable
predecessor operator of [36] for non-stochastic games (see F

ens,M,~r in Section 3.5.3).

Fixpoint of FM,~r. We show that the fixpoint of FM,~r exists. A further consequence
of our proof is that FM,~r is monotonic, and so we can approximate the fixpoint to
arbitrary accuracy, see Section 6.4.1.

Proposition 6.19. FM,~r is order-preserving and the least fixpoint fix(FM,~r) exists.

Proof. The claimed properties are consequences of Scott continuity of FM,~r and the
Kleene fixpoint theorem, Lemma 3.10. To establish Scott continuity, it is sufficient
to show that, for every countable directed set D, we have that [FM,~r(supD)]s =

sup([FM,~r(D)]s) for all s 2 S. Fix any countable directed set D = {Xk 2 CM | k �
0} ✓ CM , and any s 2 S. We first show intermediate results about D.

Lemma 6.20. For finite T ✓ S, conv(
S

t2T
T

k�0 X
k
t ) =

T
k�0 conv(

S
t2T Xk

t ).

Proof. Let Y k def
= conv(

S
t2T Xk

t ) and define Y 1 def
=
T

k�0 Y
k. The sets Xk

t are compact
and convex, and so their convex hull Y k is also compact and convex, by Theorem 17.2
of [114]. Moreover, Y k is M -downward closed, so, for every k, Y k 2 Pc,M . We now
show the equality in the lemma. For the ✓ direction, take ~y 2 conv(

S
t2T
T

k�0 X
k
t ).

Then ~y =
P

t2T µ(t) · ~xt for some distribution µ 2 D(T ) and some ~xt 2
T

k�0 X
k
t .

Hence, for every k, ~y 2 Y k, and so, ~y 2 Y 1. For the ◆ direction, take ~y1 2 Y 1. We
note that, for every k � 0, ~y1 =

P
t2T µk(t) · ~xk

t for some distribution µk 2 D(T ) and
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some vector ~xk
t 2 Xk

t . The sets Xk are in Pc,M , and thus compact, and so one can
extract a subsequence of indices ik such that µi

k

and ~xi
k

t converge toward limits, which
we respectively denote µ and ~xt for every t 2 T . Moreover, limk!1 ~xi

k

t = ~xt 2 Y l
t

for every l � 0 as Y l is compact. Hence, ~xt 2
T

k�0 X
k
t for every t and we conclude

~y1 =
P

t2T µ(t) · ~xt 2 conv(
S

t2T
T

k�0 X
k
t ).

Lemma 6.21. For finite T ✓ S,
T

t2T
T

k�0 X
k
t =

T
k�0

T
t2T Xk

t .

Proof. Reordering of countable intersections.

Lemma 6.22. For finite T ✓ S,
P

t2T µ(t) ⇥
T

k�0 X
k
t =

T
k�0

P
t2T µ(t) ⇥ Xk

t ,
where µ 2 D(T ).

Proof. For the ◆ direction, let ~x 2
T

k�0

P
t2T µ(t) ⇥ Xk

t , and so, for all k � 0,
there exist vectors ~xk

t 2 Xk
t for t 2 T , such that ~x =

P
t2T µ(t) · ~xk

t . We extract
a subsequence of indices ik such that ~xi

k

t tends to a limit ~xt, which necessarily lies
in
T

k�0 X
k
t , by the same argument as in Lemma 6.21. Hence ~x =

P
t2T µ(t)~xt 2P

t2T µ(t)⇥
T

k�0 X
k
t . The ✓ direction is straightforward.

We now continue the proof of Proposition 6.19 by cases. For s 2 S⌃,

[FM,~r(sup(D))]s
def
= BoxM \ dwc(~r(s) + conv(

S
t2�(s)

T
k�0 X

k
t ))

= BoxM \ dwc(~r(s) +
T

k�0 conv(
S

t2�(s) X
k
t )) (Lemma 6.20)

=
T

k�0(BoxM \ dwc(~r(s) + conv(
S

t2�(s) X
k
t )))

def
= [supFM,~r(D)]s.

For s 2 S⇤,

[FM,~r(sup(D))]s
def
= BoxM \ dwc(~r(s) +

T
t2�(s)

T
k�0 X

k
t )

= BoxM \ dwc(~r(s) +
T

k�0

T
t2�(s) X

k
t ) (Lemma 6.21)

=
T

k�0(BoxM \ dwc(~r(s) +
T

t2�(s) X
k
t ))

def
= [supFM,~r(D)]s.
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Figure 6.3: Fixpoint fix(FM,~r,G2

re
) for shortfall sets in G2

re

of Figure 3.8. For easier reference,
moves are given state names. Each state s has an associated set fix(FM,~r,G2

re
)(s) pointed to

by the dashed arrows, and a memory mapping (used in Section 6.3) is annotated at the
extreme points.

Finally, for s 2 S�,

[FM,~r(sup(D))]s
def
= BoxM \ dwc(~r(s) +

P
t2�(s) �(s, t)⇥

T
k�0 X

k
t )

= BoxM \ dwc(~r(s) +
T

k�0

P
t2�(s) �(s, t)⇥Xk

t ) (Lemma 6.22)

=
T

k�0(BoxM \ dwc(~r(s) +
P

t2�(s) �(s, t)⇥Xk
t ))

def
= [supFM,~r(D)]s.

This concludes the proof of Scott continuity for FM,~r. Then, by Lemma 3.10, the
least fixpoint exists, and is equal to fix(FM,~r) =

T
k�0 F

k
M,~r(?M).

Examplere 6.1. Continuing our running example of Section 3.6, we show in Fig-
ure 6.3 the fixpoint of FM,~r,G2

re for the game G2
re. Recall the reward structures (defined

on actions) r1(a) = 1, r3(b) = 1, c(a) = c(b) = 1, and zero otherwise (for the actions
used in G2

re). The objective we are interested in is '2
re with ratioE objectives, that is,

ratioE

(r1/c)(v1) ^ ratioE

(r3/c)(v3). We let the target be (v1, v3) = (1
4
, 3
4
), which is

achievable "-optimally, as can be seen from the Pareto set in Figure 4.9. We use
Theorem 5.18 to convert '2

re to the CQ Pmp(�r1 + v1 · c) ^ Pmp(�r3 + v3 · c); note
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that the signs of the rewards were inverted. We define new reward structures r01 and
r03 by

r01(a) = �r1(a) + v1 · c(a) = �1 + 1
4
· 1 = �3

4
,

r01(b) = �r1(b) + v1 · c(b) = 0 + 1
4
· 1 = 1

4
,

r03(a) = �r3(a) + v3 · c(a) = 0 + 3
4
· 1 = 3

4
,

r03(b) = �r3(b) + v3 · c(b) = �1 + 3
4
· 1 = �1

4
,

and zero otherwise. By Proposition 6.18, we need to consider the expected energy
objective EE(r01, r

0
3), and so we compute the fixpoint fix(FM,~r,G2

re) for the rewards ~r =

(r01, r
0
3), which we denote by X⇤. Note that this sequence of transformations ensures

that a strategy constructed from X⇤ achieves the original specification '2.
We now explain the fixpoint X⇤. Since t2 has only one move enabled, and since

the ⌧ -transition is followed by a Dirac, we have X⇤
t
2

= X⇤
t
2,0

= X⇤
s
0

. Similarly,
X⇤

t
0,1

= X⇤
t
1

. Since r01(b) =
1
4

and r03(b) = �1
4
, the set X⇤

t
1,0

is X⇤
t
2

shifted by (1
4
,�1

4
),

and then cut by BoxM ; and the set X⇤
t
1,0

is the uniformly weighted Minkowski sum
of X⇤

t
2

and X⇤
t
1

, shifted by (1
4
,�1

4
), and then cut by BoxM . Since r01(a) = �3

4
and

r03(a) = 3
4
, the set X⇤

t
0,0

is the uniformly weighted Minkowski sum of X⇤
t
1

and X⇤
t
2

,
shifted by (�3

4
, 3
4
), and then cut by BoxM . For X⇤

t
1,0

, X⇤
t
1,1

, and X⇤
t
0,0

, the sets before
cutting by BoxM are shown in red (dotted) in Figure 6.3. Since X⇤

t
1,1

is a subset
of X⇤

t
1,0

, we have that, for the Player 2 state t1, X⇤
t
1

= X⇤
t
1,0

due to the intersection
operation of FM,~r. Finally, X⇤

t
0

is the convex union of X⇤
t
0,0

and X⇤
t
0,1

.

In order to obtain a complete synthesis algorithm, we now show that whenever
the expected energy (EE) objective is achievable, the fixpoint of FM,~r is nonempty
for some box size M . Thus, if it is known that Pmp is achievable, by employing
Proposition 6.18 (ii), we can compute FM,~r for a large enough M and construct an
"-optimal strategy for EE that is winning for Pmp by Proposition 6.18 (i).

Proposition 6.23. Let G be a game with rewards ~r. For every " > 0, if EE(~r � ")
is achievable by a finite DU strategy, then [fix(FM,~r,G)]sinit 6= ; for some M � 0.

Proof. We first show two intermediate lemmas. In Lemma 6.24, we show that we can
consider the fixpoints fix[FM,~r,M]s for PAs M, which exist due to Proposition 6.19, and
in Lemma 6.25 we reduce the problem to the study of the one-dimensional expected
truncated energy, which we used earlier in Proposition 6.8 and Lemma 6.16.

Lemma 6.24. Given a game G and a strategy ⇡, if [fix(FM,~r,G⇡)]s 6= ; for all states
s of G⇡, then [fix(FM,~r,G)]sinit 6= ;.
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Proof. By a straightforward induction on k, for every k � 0 and every state (s, d�) of
G⇡, we have that [F k

M,~r,G⇡

(?M)](s,d
�

) ✓ [F k
M,~r,G(?M)]

last(�). Hence, [fix(FM,~r,G⇡)](s,d
�

) ✓
[fix(FM,~r,G)]last(�), for every state (s, d�) of G⇡. Since, in particular, [fix(FM,~r,G⇡)]t 6= ;
for all t in the support of the initial distribution of G⇡, we have [fix(FM,~r,G)]sinit 6= ;,
concluding the proof.

Lemma 6.25. Given a PA M with rewards ~r and a state so of M, if fix[FM,~r,M]s
o

=

; for every M <1, then there exists i such that u⇤
s
o

= �1 for the reward ri.

Proof. Fix a PA M = hS, (S⇤, S�), &,A,�,�i with rewards ~r, and let so 2 S. We
prove the lemma by contraposition: we assume that u⇤

s
o

> �1 for rewards ri for all
i, and show that there is an M for which fix[FM,~r,M]s

o

6= ;. We consider a multi-
dimensional version of the truncated energy sequence defined in (6.1), and we get
that the fixpoint of the multi-dimensional truncated energy, as k !1, is

~u⇤
s =

8
<

:
min(~0,~r(s) + mint2�(s) ~u⇤

t ) if s 2 S⇤

min(~0,~r(s) +
P

t2�(s)�(s, t) · ~u⇤
t ) if s 2 S�,

for every s 2 S, where the minima are taken componentwise. Observe that, if ~u⇤
s is

finite for a state s, then ~u⇤
t is finite for all successors t of s. Since all states of the PA

are reachable from the initial state, ~u⇤
s has no infinite coordinate, for every state s.

Therefore, there is a global bound M , such that ~u⇤
s 2 BoxM for every s. We now show

that Z 2 CM , defined by Zs
def
= BoxM \ dwc(~u⇤

s), is a fixpoint of FM,~r,M, and hence
that the least fixpoint of FM,~r,M is nonempty. Taking the downward-closure gives

dwc(~u⇤
s) =

8
<

:
R0 \ (~r(s) +

T
t2�(s) dwc(~u⇤

t )) if s 2 S⇤

R0 \ (~r(s) +
P

t2�(s) �(s, t)⇥ dwc(~u⇤
t )) if s 2 S�,

and hence

Zs =

8
<

:
BoxM \ (~r(s) +

T
t2�(s) dwc(~u⇤

t )) if s 2 S⇤

BoxM \ (~r(s) +
P

t2�(s) �(s, t)⇥ dwc(~u⇤
t )) if s 2 S�.

Since ~u⇤
t 2 BoxM , Zt is nonempty, and we have

~r(s)+
T

t2�(s) dwc(~u⇤
t ) = dwc(~r(s) +

T
t2�(s) Zt) for s 2 S⇤,

~r(s)+
P

t2�(s) �(s, t)⇥ dwc(~u⇤
t )= dwc(~r(s) +

P
t2�(s) �(s, t)⇥ Zt) for s 2 S�.
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This implies that Z = FM,~r,M(Y ), and hence that fix[FM,~r,M]s
o

v Zs
o

. We thus
conclude from Zs

o

6= ; that fix[FM,~r,M]s
o

6= ;.

We now conclude the proof of Proposition 6.23. Fix a game G with rewards ~r
and " > 0. We show the contrapositive, that is, Player 1 does not have a finite DU
strategy achieving EE(~r� ") whenever, for every M � 0, [fix(FM,~r,G)]sinit = ;. Assume
that [fix(FM,~r,G)]sinit = ; for all M � 0, and let ⇡ be an arbitrary finite DU strategy.
By Lemma 6.24, [fix(FM,~r,G⇡)]s

o

= ; for some state so of G⇡. Thus, by Lemma 6.25,
there is an index i such that u⇤

s
o

= �1 for the reward ri, and hence S1 6= ;. We
conclude, using Proposition 6.8 that Player 2 can spoil EE(r � ") in the PA G⇡.

6.3 Strategy Construction

We construct strategies for Pmp(~r) that operate by maintaining finite shortfalls for
the expected energy. In Proposition 6.23 we showed that the fixpoint fix(FM,~r) is
nonempty if the corresponding EE objective is "-achievable, and so our strategy con-
struction uses approximations to fix(FM,~r). We justify the correctness of our construc-
tion using a mapping from memory elements of the strategy to shortfall vectors.

6.3.1 Geometric Interpretation of Strategies

We map each memory element of a strategy to a vector, and if we can find an ap-
propriate mapping, the geometric interpretation allows us to prove that the strategy
achieves an EE objective. Then, in our strategy construction, we find such vectors
from computing an approximation of fix(FM,~r), which exists due to Proposition 6.23.

Given a game G = hS, (S⌃, S⇤, S�), s
init

,A,�,�i, a strategy ⇡ = hM, ⇡
c

, ⇡
u

, ⇡
d

i,
and an n-dimensional reward structure ~r, a memory mapping is a partial function
f⇡ : M ⇥ S ! Rn

0. We typically write f⇡(m, s) = ~
ms. A memory mapping is

"-consistent for ~v0 2 Rn
0, if

P
m2M ~

msinit · ⇡d

(s
init

)(m) � ~v0, and for all s 2 S, m 2M,

P
t2�(s) ⇡c

(s,m)(t)·
P

m

02M ⇡
u

(m, t)(m0) · ~m0
t � ~

ms � ~r(s)� " if s 2 S⌃

maxt2�(s)

P
m

02M ⇡
u

(m, t)(m0) · ~m0
t � ~

ms � ~r(s)� " if s 2 S⇤P
t2�(s) �(s, t)·

P
m

02M ⇡
u

(m, t)(m0) · ~m0
t � ~

ms � ~r(s)� " if s 2 S�.

Lemma 6.26. Given a strategy ⇡ with a memory mapping f⇡, if f⇡ is "-consistent
for some ~v0 < �1, then ⇡ achieves EE(~r + ").
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Proof. Fix a game G = hS, (S⌃, S⇤, S�), s
init

,A,�,�i with rewards ~r : S ! Rn, let
⇡ = hM, ⇡

c

, ⇡
u

, ⇡
d

i be a Player 1 strategy, and let f⇡ be an "-consistent memory
mapping for ~v0 < �1. For each state s of G, we write ~

ms = f⇡(m, s). Let � be
a Player 2 strategy, let D def

= G(⇡,�) be the induced DTMC, and let so be a state of
D, which is of the form so = (po, ~mp

o

, n), for some memory n of Player 2. We show
that ED,s

o

[rewN(~r)] � ~
mp

o

�N" for all N � 0, by showing that, at every step N , the
memory of ⇡ maps to a non-negative vector above ~mp

o

� ED,s
o

[rewN(~r)]�N".
Let VN : ⌦D ! Rn be the random variable that assigns ~ms to a path � = s0s1 . . .

for which sN = (s, ~ms, n). Since ED,s
o

[VN ]  ~0 for all N � 0, it is sufficient to show,
for all states so of D, that

ED,s
o

[VN ] � ~
mp

o

� ED,s
o

[rewN(~r)]�N", (6.5)

in order to conclude that ED,s
o

[rewN( ~r + ")] � ~0, and thus that D satisfies EE(~r+ ~").
We show (6.5) by induction on the length N of paths ⌦D. In the base case, for N = 0,
we have ED,s

o

[V0] = ~
mp

o

, corresponding to the memory at the initial state so. For
the induction step, assume that ED,s

o

[VN ] � ~
mp

o

� ED,s
o

[rewN(~r)] � N". Let WN

be the set of all finite paths of length N in D. Let �0 2 WN , which is of the form
�0 = �(s, ~ms, n). We have

ED,s
o

[VN+1|�0] =

8
><

>:

P
t2�(s) ⇡c

(s,m)(t)·
P

m

02M ⇡
u

(m, t)(m0) · ~m0
t if s 2 S⌃P

t2�(s) �c

(s, n)(t)·
P

m

02M ⇡
u

(m, t)(m0) · ~m0
t if s 2 S⇤P

t2�(s) �(s, t)·
P

m

02M ⇡
u

(m, t)(m0) · ~m0
t if s 2 S�.

Therefore, by the "-consistency of the memory mapping f⇡, we have

ED,s
o

[VN+1|�0] � ~
ms � ~r(s)� ". (6.6)

Further, evaluating expectations over paths in WN yields

ED,s
o

[rewN+1(~r)]� ED,s
o

[rewN(~r)] =
P

�02W
N

~r(s) · PD,s
o

(�0), (6.7)

ED,s
o

[VN ] =
P

�02W
N

PD,s
o

(�0) · ~ms. (6.8)
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We can now establish (6.5) as follows:

ED,s
o

[VN+1] =
P

�02W
N

ED,s
o

[VN+1|�0] · PD,s
o

(�0) (law of total probability)

�
P

�02W
N

(~ms � ~r(s)� ") · PD,s
o

(�0) (by Equation (6.6))

= ED,s
o

[VN ]� (ED,s
o

[rewN+1(~r)]� ED,s
o

[rewN(~r)])� "
(by Equations (6.7) and (6.8))

� ~
mp

o

� ED,s
o

[rewN+1(~r)]� (N + 1) · ". (induction hypothesis)

This concludes the proof by induction.

Examplere 6.2 (Memory Mapping). We explain the concept of memory mappings
on the fixpoint shown in Figure 6.3. Let the memory of ⇡ be M = {m0,m1}⇥S, that
is, memory is specific to the states, for convenience of presentation. The memory
mapping f⇡ is shown by assigning the extreme points of the sets in the fixpoint to
memory elements. For example, at t0, f⇡(m0, t0) = (�3

4
, 0) and f⇡(m1, t0) = (0,�3

4
).

Note that in Figure 6.3 some memory elements are shown in parentheses, and we
explain in Example 6.3 that we may not need all memory elements for every state.

6.3.2 SU Strategy Construction

We now show how to construct Player 1 strategies given X 2 CM , rewards ~r, and
" � 0, and we formalise in Proposition 6.27 the sufficient conditions for achieving
EE(~r + "). For any point ~p 2 Xs, s 2 S, there is some ~q � ~p that can be obtained
by a convex combination of extreme points C(Xs), and so the strategy we construct
uses C(Xs) as memory, randomising to attain the convex combination ~q. Denote by
TX ✓ S the set of states s 2 S for which [FM,~r(X)]s 6= ;.

Definition 6.2. Given X 2 CM , " � 0, G = hS, (S⌃, S⇤, S�), sinit,A,�,�i, and
~r : S ! Rn, define ⇡(X,~r, ") = hM, ⇡c, ⇡u, ⇡di, where

• the memory is M

def
=
S

s2T
X

{(s, ~p) | ~p 2 C(Xs)};

• the initial distribution ⇡d is defined by ⇡d(s)
def
= (s, ~q s

0 ) for any s 2 TX and some
arbitrary ~q s

0 2 C(Xs); and

• the memory update ⇡u and next move function ⇡c are defined as follows: at
state s with memory (s, ~p), for all t 2 �(s), pick n vectors ~q t

i 2 C(Xk
t ) for
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1  i  n and distributions �t 2 D({1, . . . , n}), such that

for s 2 S⌃: 9↵ 2 D(�(s) \ TX) .
P

t2�(s) ↵(t) ·
P

i �
t(i) · ~q t

i � ~p� ~r(s)� ",

for s 2 S⇤: 8t 2 �(s) .
P

i �
t(i) · ~q t

i � ~p� ~r(s)� ",
for s 2 S�:

P
t2�(s) �(s, t) ·

P
i �

t(i) · ~q t
i � ~p� ~r(s)� ",

and let, for all t 2 �(s) \ TX ,

⇡u((s, ~p), t)(t, ~q t
i )

def
= �t(i) for all 1  i  n,

⇡c(s, (s, ~p))(t)
def
= ↵(t) if s 2 S⌃.

We now show that the strategy ⇡(X,~r, ") is well defined if FM,~r(X) + " v X and
[FM,~r(X)]sinit 6= ;, and that it achieves EE(~r+ "), by defining an "-consistent memory
mapping for M from the sets X 2 CM .

Proposition 6.27. Let X 2 CM and " � 0. If FM,~r(X)+" v X and [FM,~r(X)]sinit 6=
;, then ⇡(X,~r, ") achieves EE(~r + ").

Proof. Fix a game G = hS, (S⌃, S⇤, S�), s
init

,A,�,�i, let X 2 CM , and let " � 0.
such that FM,~r(X) + " v X and [FM,~r(X)]sinit 6= ;. We first show that the strategy
⇡(X,~r, ") is well-defined. Recall that TX ✓ S is the set of states s 2 S for which
[FM,~r(X)]s 6= ;, and so s

init

2 TX , and, if s 2 TX \(S⇤[S�), then, for every t 2 �(s),
[FM,~r(X)]t + " v Xt 6= ;, and hence t 2 TX .

For any s 2 TX , depending on the type of s (that is, Player 1, Player 2, or move),
we define an auxiliary set Zs without the cut-off by BoxM . We then show that we
can find the required distributions ↵ and �t, and the extreme points for every point
in Zs, and prove that for all extreme points ~p of Xs we have ~p � " in Zs for k � 0,
allowing us to show well-definedness of the strategy. Take s 2 TX .

• Case s 2 S⌃. Let Zs
def
= ~r(s) + conv(

S
t2�(s)\T

X

Xt). Take any ~p 0 2 Zs. There
are distributions ↵ 2 D(�(s) \ TX), �t 2 D({1, . . . , n}), and points ~q t

i 2 C(Xt)

for t 2 �(s) \ TX , such that
P

t ↵(t) ·
P

i �
t(i) · ~q t

i � ~p 0 � ~r(s).

• Case s 2 S⇤. Let Zs
def
= dwc(~r(s) +

T
t2�(s) Xt). Take any ~p 0 2 Zs. For any

t 2 �(s), there are distributions �t 2 D({1, . . . , n}), and points ~q t
i 2 C(Xt)

such that
P

i �
t
i · ~q t

i � ~p 0 � ~r(s).

• Case s 2 S�. Let Zs
def
= ~r(s) +

P
t2�(s) �(s, t) ⇥ Xt. Take any ~p 2 Zs. Due

to the Minkowski sum, there are distributions �t 2 D({1, . . . , n}), and points
~q t
i 2 C(Xt) such that

P
t2�(s) �(s, t) ·

P
i �

t
i · ~q t

i � ~p 0 � ~r(s).
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Figure 6.4: Strategy constructed from the fixpoint fix(FM,~r,G2

re
) in Figure 6.3.

Note that, if two sets satisfy A v B, they also satisfy A � " v B � ". We have
FM,~r(X) + " v X, and so dwc(Zs) \ BoxM = [FM,~r(X)]s v Xs � ~", for all s 2 TX .
Then, for any point ~p 2 C(Xs), it holds that ~p � " 2 dwc(Zs) \ BoxM . We now let
f⇡ be the memory mapping for ⇡(X,~r, "), defined by f⇡(s, ~p)

def
= ~p for all s 2 S and

~p 2 C(Xs). It is "-consistent for ~q s
0 � �M by definition. We conclude that ⇡(X,~r, ")

achieves EE(~r + ") by Lemma 6.26.

Examplere 6.3 (Strategy Construction). We show how to construct a winning strat-
egy ⇡2 = ⇡(X,~r, 0) from the fixpoint X⇤ = fix(FM,~r,G2

re) (shown in Figure 6.3), for the
game G2

re of our running example in Section 3.6. Since we operate with the true fix-
point we can set " = 0, as FM,~r(X⇤) v X⇤ for the preconditions of Proposition 6.27,
and we construct the strategy according to the memory mapping shown in Figure 6.3.
Since the initial state of G2

re is t1, we only construct the strategy constructed specific
to this state, and therefore only use memory elements that are reachable from the
initial state t1. In Figure 6.3 the unused memory elements are shown in parentheses.

We show the constructed strategy ⇡2 in Figure 6.4. The strategy is initialised
to m0 at t1, corresponding to the point (0,�3

4
) in the fixpoint fix(FM,~r)(t1). For

illustration, we explain the memory update from m0 at t1,0. The memory update
randomises between the memory elements of t2, assigning probability 1

3
to m0 and

probability 2
3

to m1, which is due to the memory mapping: the strategy needs to
maintain (�1

4
,�1

2
), because the point associated with m0 at t1,0 is (0,�3

4
), and the

shift that is incurred at t1,0 from the b action is (1
4
,�1

4
) (see Example 6.1). Note
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that the strategy plays the EE objective, and so does not cut off the positive values,
as is done to compute X⇤. To find the distribution between the memory elements at
t2, we solve

↵ ·
m

0z }| {
(�3

4
, 0)+(1� ↵) ·

m

1z }| {
(0,�3

4
) = (�1

4
,�1

2
),

and get ↵ = 1
3
, corresponding to the desired distribution of memory elements at t2.

6.3.3 Finite DU Strategies

We construct SU strategies in Section 6.3.2. Since we use Proposition 6.18 (ii) in
order to show completeness of our method, we show in this section that if Player 1

achieves Pmp(~r) with an arbitrary strategy, then it also has a finite "-optimal DU
strategy. The intuition is to restart the strategy after intervals that are long enough so
that the probability of paths violating the required mean-payoff threshold approaches
zero. We first show the following technical result.

Lemma 6.28. Let (Xn)n�0 be a sequence of real-valued random variables such that
P(limn!1Xn � v) = 1. For every � > 0, it holds that P(Xn < v��)! 0 as n!1.

Proof. Assume that P(limn!1Xn � v) = 1. Fix � > 0. Let An
def
=
S

m�n{e |Xm(e) <

v � �}. Since An is a non-increasing sequence of events as n ! 1, it holds that
P(An)! P(

T
n�0 An), which is zero by hypothesis of the lemma. Hence P (Xn < v��)

also tends to zero as n!1, since P (Xn < v � �)  P (An).

Theorem 6.29. If Player 1 achieves Pmp(~r), then, for every " > 0, Player 1 has a
finite DU strategy to achieve Pmp(~r + ").

Proof. Let G be a game, let ⇡ be a Player 1 strategy achieving Pmp(~r), and let
M = G⇡. Denote by SM and SG the respective states spaces of M and G. Without
loss of generality, we assume that the memory of ⇡ is the set ⌦fin

G of paths in G, and
so M is an infinite tree where each state is identified uniquely by a path � 2 ⌦fin

G .
Consider the set SM,G

def
= {last(�) 2 SG |� 2 SM} of states of the game that appear

in some state of M. For every � 2 SM, P�
M,�(mp(~r) � 0) = 1 holds for all Player 2

strategies �. Consider, for each state s 2 SM,G, a path �s 2 SM with last(�s) = s,
which uniquely identifies a state in M (note that given s, �s is not unique, but
it suffices to pick an arbitrary one). Then, for every Player 2 strategy �, it holds
that P�

M,�
s

(limN!1
1

N+1
rew

N(~r) � 0) = 1, and hence, by Lemma 6.28, the quantity
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ps,h,�
def
= P�

M,�
s

( 1
h+1

rew

h(~r)  �"/2) tends to 0. We define ph,�
def
= maxs ps,h,�, and let

ph be the maximum ps,h,� over all MD Player 2 strategies �. As the maxima are taken
over finite sets, we have that ph ! 0 as h!1.

Now construct the finite DU Player 1 strategy ⇡h that plays as follows: starting
from s 2 SM,G, it initialises its memory to �s and plays ⇡ for h steps; then, from
whatever state t 2 SM,G it arrived at, it resets its memory to �t and plays ⇡ for
a further h steps, and so on. Fix any MD strategy of Player 2, and a BSCC B
of the induced DTMC D = G⇡

h

,�. Given a state s 2 SM,G, let s̃ = (s,�s, n) be
the corresponding state of D (where n is the only memory element of �.) Since ⇡h
plays unique memory elements (by unrolling the history) except when resetting in
states of SM,G, B must contain at least one state s̃0 with s0 2 SM,G. Note that B
is finite. By Remark 3.6, we then have PD(mp(~r) = mp(~r)(B)) = 1, so it suffices to
find a lower-bound for mp(~r)(B), which is equivalent to limN!1 1

N+1
ED,s̃

0

[rewN(~r)].
We have constructed ⇡h so that every h steps a state in SM,G is encountered, and
hence it holds, for every k � 0, that ED,s̃

0

[rewkh(~r)] � k · mins2SM,G ED,s̃[rew
h(~r)].

From a state s 2 SM,G, with probability less than ph,�, the reward accumulated is
at least �h⇢⇤, where ⇢⇤ = maxs2SG ,i |ri(s)|. Further, with probability greater than
1 � ph,� the reward accumulated is at least �h". Therefore, for every state s 2
SM,G, ED,s̃[rew

h(~r)] � �ph,�⇢⇤ � (1� ph,�)h" � �ph⇢⇤ � h". Hence, ED,s̃[rew
kh(~r)] �

�kh(ph⇢⇤ + "). Dividing by kh + 1 and letting k go towards infinity, we get that
ED,s̃

0

[mp(~r)] = limk
1

kh+1
ED,s̃

0

[rewkh(~r)] � �ph⇢⇤ � ". We therefore have, for every
BSCC B of D, that mp(~r)(B) � �ph⇢⇤ � ", and hence, by Remark 5.3, Player 1

achieves Pmp(~r+ph⇢⇤+ ") against all MD Player 2 strategies. Then, by Theorem 6.2,
Player 1 achieves Pmp(~r + ph⇢⇤ + "/2) against all Player 2 strategies. Since ph ! 0,
we can find h large enough so that ph⇢⇤  "/2, and hence have Pmp(~r + ") against
every �.

6.4 Strategy Synthesis Algorithm

In this section we develop our algorithm to construct winning strategies for Pmp CQs.
In the proof of Proposition 6.27 we constructed winning strategies for EE objectives if
we are given X 2 CM such that FM,~r(X)+" v X and [FM,~r(X)]sinit 6= ;. Our algorithm
computes an approximation X to fix(FM,~r) that satisfies the required conditions, and
uses the transformations in Proposition 6.18 to obtain a strategy for Pmp.
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(c) Move s = (a, µ); µ uniform.

Figure 6.5: One step of the fixpoint computation for expected truncated energy shortfalls
for a state s with successors t1, t2, and rewards r1(s) = 0.5 and r2(s) = 0.

6.4.1 Fixpoint Computation

From the Kleene fixpoint theorem (Lemma 3.10), we can obtain the least fixpoint
fix(FM,~r) as the limit of the sequence (F k

M,~r(?M))k�0 as k ! 1. For notational
convenience, we let Xk def

= F k
M,~r(?M). Since, for finite k, Xk has a finite number of

extreme points, which we use as strategy memory in ⇡(X,~r, "), we obtain finite SU
strategies. Note that our strategy construction also works for fix(FM,~r), where we
can take " = 0, but it is not currently known if fix(FM,~r) is finitely representable or
computable in general.

Example 6.4 (Fixpoint Computation). We illustrate a single step of our fixpoint
computation in Figure 6.5. Consider a state s with two successors t1 and t2, and
the three cases of s 2 S⌃, s 2 S⇤ and s 2 S�. We let the rewards be r1(s) = 0.5

and r2(s) = 0, and let the box size M = 8. The figure shows, for the three state
types, the sets Xk

s at iteration k, which are computed from Xk�1
t
1

and Xk�1
t
2

, the sets
corresponding to the successors at iteration k � 1.

Bounding the Number of Steps. To bound the number of steps k necessary for
Xk+1 + " v Xk, we use Lemma 6.30 (related to Ramsey’s theorem) to bound the
length of paths in a graph. A graph G = (V,E) consists of a finite set V of nodes
and a set E ✓ V ⇥ V of edges. A graph is linearly-ordered complete if, for some
strict linear order � on V , (v, w) 2 E if and only if v � w. An n-colouring of a
graph (V,E) is a function E ! {1, . . . , n}, assigning one of n colours to each edge. A
monochromatic directed path of length N is a sequence of nodes v1, . . . , vN such that
(vi, vi+1) 2 E for all 1  i < N , and such that each node vi has the same colour.
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Figure 6.6: Illustrations for Lemma 6.31 for two dimensions r1 and r2.

Lemma 6.30 (Theorem 4.5.2 of [116]). Let G = (V,E) be a linearly-ordered com-
plete graph over m nodes, with an n-colouring of its edges. Then G contains a
monochromatic directed path of length b

p
m/n� 2c � 1.

We first consider a single state in Lemma 6.31, and use an inductive argument on
the number of states to find the bound for all states in Proposition 6.33.

Lemma 6.31. Let (Zk)k�0 be a sequence over Pc,M(BoxM) such that Zk v Zk+1 for
every k � 0. For every I ✓ N such that |I| � k⇤ def

= n · ((dM
"
e+ 1)2 + 2), there exists

k 2 I such that Zk+1 + " v Zk.

Proof. Fix a sequence (Zk)k�0 that is non-decreasing for v, and fix I ✓ N such that
|I| � k⇤. Assume towards a contradiction that for every k 2 I, Zk+1 + " 6v Zk.
Note first that if two sets satisfy Z 6v X, then there exists ~x 2 X \ dwc(Z). Hence
the hypothesis Zk+1 + " 6v Zk for every k 2 I implies the existence of a sequence
(~xk)k2I 2 Zk \ dwc(Zk+1 + ") of points, shown in Figure 6.6 (a). Note that, for all
j < k, there exists a coordinate c(j, k) for which xj

c(j,k)�xk
c(j,k) > ". Assume otherwise,

that is, ~xj � "  ~xk for j < k. Then ~xj � " 2 dwc(Zk), and, since Zk v Zj+1, we
deduce ~xj 2 dwc(Zj+1 + "), contradicting the definition of the sequence (~xk)km.

Now consider the linearly-ordered complete graph over nodes I, and with edges
(j, k) for j < k and j, k 2 I. Endow the edges of this graph with the n-colouring
c given above, that is, there is one colour per dimension of the M -polytope, see
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Figure 6.6 (b). By Lemma 6.30, there exists a monochromatic path j1 ! j2 ! · · ·!
jl of length l = b

p
|I|/n� 2c � 1 � dM

"
e, and thus by denoting c the colour of this

path it holds that xj
1

c > xj
2

c +" > . . . > xj
l

c + l" � �M + M
"
" � 0, a contradiction.

Lemma 6.32. Let U a be a finite set, let � be a predicate over U ⇥N, and let K be
a positive integer. The implication “�1 ) �2” holds, where

�1 is “for every s 2 U and every I ✓ N such that |I| � K, there exists i 2 I, such
that �(s, i) holds;” and

�2 is “for every I ✓ N such that |I| � K |U |, there exists i 2 I such that, for every
s 2 U , �(s, i) holds.”

Proof. We show the result by induction on the cardinality of U . If U is empty the
result is true. Now assume that the implication “�1 ) �2” holds for sets U 0 of
cardinality c, and let U = U 0 [ {t} be of cardinality c+ 1. Let � be a predicate over
U ⇥N and let K be a positive integer, such that �1 is satisfied for U . Let I ✓ N such
that |I| � K |U |. We want to find an index i such that �(s, i) holds for all s 2 U . We
partition I into K parts I1, . . . , IK , each containing at least K |U |�1 elements. Since
�1 is satisfied for U , it is also satisfied for U \{t}, and so, by the induction hypothesis,
for every Ik there is an index ik 2 Ik such that, for every s 2 U \ {t}, �(s, ik) holds.
The set {i1, . . . , iK} contains K elements and hence we can apply �1 (which holds
for U by assumption), and extract one i such that also �(t, i) is true. Hence, i is such
that for every s 2 U , �(s, i) is true, concluding the induction step.

Proposition 6.33. Let M , " > 0, and let (Xk)k�0 be a sequence over CM such that
Xk v Xk+1 for every k � 0. There exists k  k⇤⇤ def

=
⇥
n((dM

"
e+ 1)2 + 2)

⇤|S|, such
that Xk+1 + " v Xk.

Proof. Fix M and " > 0. Let G be a game with state space S. Let (Xk)k�0 be a
sequence over CM that is non-decreasing for v. We apply Lemma 6.32 with U = S,
K = k⇤, and with the predicate Xk+1

s + " v Xk
s for �, noting that �1 is satisfied by

Lemma 6.31, and that �2 is the statement we set out to prove.

6.4.2 Algorithm

We now summarise our synthesis algorithm for Pmp CQs. We first invoke our co-NP

decision procedure from Section 6.1. If the specification is achievable, we fix ~r0 = ~r+ "
2
,
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and so by Proposition 6.23, there is an M such that for all k � 0, [F k
M,~r0(?M)]sinit 6= ;.

For a fixed M , we compute the fixpoint approximation for Xk = F k
M,~r0(?M), until

either FM,~r0(Xk) + " v Xk or [FM,~r0(Xk)]sinit = ;, where the maximum required value
of k is bounded by Proposition 6.33. However, since we do not know the value of
M a-priori, we iteratively increase M , for example, starting M at Mmin = 2, and
increasing M quadratically every time [FM,~r0(Xk)]sinit = ;. We state in Theorem 6.34
the correctness of our algorithm, and give the pseudocode in Section 7.2.3.

Theorem 6.34. The above algorithm terminates, returning a finite "-optimal strat-
egy for Pmp(~r) if it is achievable, and indicating if it is unachievable.

Proof. The case when Pmp(~r) is not achievable is covered by Corollary 6.6. Suppose
Pmp(~r) is achievable. By Theorem 6.29, Pmp(~r + "

8
) is achievable by a finite DU

strategy, and so, by Proposition 6.18 (ii), EE(~r + "
4
) is achievable by a finite DU

strategy. Applying Proposition 6.23 with ~r0 def
= ~r + "

4
+ "0 and "0 = "

4
, there exists an

M such that [fix(FM,~r0)]sinit is nonempty. As [F k
M,~r0(?M)]sinit = Xk

sinit
v [fix(FM,~r0)]sinit ,

we have Xk
sinit
6= ;. Further, due to the bound M , after a finite number of iterations,

k, we have Xk + "
2
v Xk�1, by Proposition 6.33. Then, by Proposition 6.27, the

finite SU strategy ⇡(Xk�1,~r + "
2
, "
2
), constructed for the reward ~r0 = ~r + ~"

2
, satisfies

EE(~r + ~"). By Proposition 6.18 (i), this strategy also satisfies Pmp(~r)(�~").

Value and Policy Iteration. Our algorithm uses a value iteration approach to
first find the achievable targets for the EE objective, using the Belman operator FM,~r,
and then constructs a strategy from the resulting sets of shortfalls. An alternative
approach is policy iteration, which involves starting with an arbitrary strategy ⇡k,
computing the achievable targets under ⇡k, and then using an improvement step
to find a strategy ⇡k+1, until a strategy is found achieving the desired target. While
both value and policy iteration yield winning strategies when they exist, one is usually
outperforming the other in practice. In our setting, the use of policy iteration requires
to overcome two key difficulties. Firstly, strategies of Player 1 in general require
memory and randomisation, which means that the set of strategies to iterate over is
unbounded, and evaluating the outcome of any particular strategy requires to reason
over the induced PA. Secondly, obtaining an improvement step requires to understand
how changing a given strategy affects the outcome of the game, which is exacerbated
by the observation that setting the probability to pick a move to zero changes the
topology of the induced PA, and hence can affect the end components. We therefore
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adopted a value iteration approach, as we can approximate the achievable targets
iteratively, and then construct strategies with the appropriate memory updates.

6.5 Summary

In this chapter we have presented our synthesis method for conjunctions of almost
sure satisfaction of mean-payoff (Pmp) objectives. We first showed that the achiev-
ability problem for Pmp CQs is in co-NP if Player 1 can play arbitrary strategies. We
introduced expected (truncated) energy objectives, which we used as a technical tool
in our strategy construction, and gave a transformation between Pmp objectives and
expected energy (EE) objectives. We then gave a Bellman operator, FM,~r, to char-
acterise the shortfalls of the expected truncated energy in a stochastic game, which
we defined over a CPO of compact, closed subsets of a continuous space, reflecting
the continuous nature introduced by stochasticity. Using this Bellman operator, we
developed a finite fixpoint approximation for the shortfalls of the expected truncated
energy, together with a relative stopping criterion, F k+1

M,~r (?M)+ " v F k
M,~r(?M). From

the approximations to the fixpoint, we then constructed finite SU strategies that are
"-optimal for Pmp.

Our proofs for the Bellman operator FM,~r use finite DU strategies, since this allows
us to induce finite PAs using Definition 3.5. However, the strategies we construct in
Section 6.3.2 are (finite) SU strategies. By showing in Theorem 6.29 that we can
"-approximate arbitrary winning strategies using finite DU strategies, our algorithm,
which we summarise in Section 6.4.2, is sound and complete for "-optimal strategies.

Several directions for further investigation arise. In this chapter we focused
on keeping the mean-payoffs above a threshold with probability one. In [71] it is
shown that, if we know the states where Player 1 has an almost sure winning strat-
egy (the almost sure winning region), we can construct strategies for an arbitrary
probability threshold, that is, P(mp(r) � v) � ✓ for ✓ 2 [0, 1]. It is to be in-
vestigated whether the same is possible for conjunctions, that is, whether we can
construct strategies for P(

V
i mp(ri) � vi) � ✓ from knowing the winning region

for P(
V

i mp(ri) � vi) = 1. A further question is to construct strategies for percentile
queries of the form

V
i P(mp(ri) � vi) � ✓i, where each objective could have a different

probability threshold. For MDPs, the synthesis problem for percentile queries with
mean-payoffs is discussed in [34]. In the context of our assume-guarantee framework,
percentile queries motivate the investigation of further rules, where the probability
thresholds may change through composition.
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Further, some questions of complexity classification remain open. For Pmp CQs,
our algorithm iteratively finds a box size M that is sufficiently large to separate the
states where the energy diverges from the states where the energy is bounded. We
do not currently know how to pick M so that it is large enough a-priori, even in the
cases where we know that such a value exists from deciding the achievability problem.
Knowing M would also establish a complexity bound for the synthesis problem of fi-
nite "-optimal strategies. The complexity of Emp synthesis remains an open problem;
two key characteristics in this case are that the games are not determined (Proposi-
tion 1 of [40]), and that it is not sufficient to consider MD strategies for Player 2, see
for example the (non-stopping) game in Figure 1 of [40]. To approach the complexity
classification for the Emp achievability problem, the strictly simpler problem of target
reachability in stopping games can be considered first [124].
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In this chapter we present PRISM-games 2.0, a tool for strategy synthesis from
the multi-objective queries discussed in this thesis [86]. The tool implements our
algorithms from Chapters 5 and 6 for strategy synthesis within the assume-guarantee
framework of Chapter 4, and thus provides comprehensive support for compositional
modelling and analysis of stochastic games.

PRISM-games 2.0 is based on the PRISM-games tool, which supports the verifi-
cation of turn-based multi-player stochastic games with single-objective rPATL ob-
jectives [38], and includes non-compositional strategy synthesis [39]. We extend the
native PRISM modelling language to support fully compositional game models. A
composed game, which we call here the top-level system, may consist of several sub-
systems (the component games), and each subsystem comprises one or more modules.
The assignment of actions to players can be done individually per subsystem, using
a syntax inspired by input/output automata [46], marking outputs (controlled by
Player 1) with an exclamation mark (!) and inputs (controlled by Player 2) with a
question mark (?). We also extend the property specification language, so that each
component game can be assigned its local goal specification. Further, the individual
objectives of multi-objective queries can be named, so that it is clear which objectives
are related across subsystems, as is required, for example, in the (Asym) rule. By
visualising Pareto sets in the graphical user interface (GUI), the user can conveniently

143
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explore which targets are achievable globally, and how to instantiate the local targets.
Finally, we implement the (monolithic) synthesis algorithms for Pmp, Pratio, Emp,
and ratioE objectives developed in this thesis, as well as for Erew objectives based on
our work in [41, 43].

In Section 7.1 we describe the modelling and property specification language used
in the tool, highlighting the new features for assume-guarantee strategy synthesis and
multi-objective property specification. Then, in Section 7.2, we briefly discuss how
the main synthesis algorithms are implemented. We also give details of the fixpoint
computations of the FM,~r operator for expected energy defined in Section 6.2, and the
F

rew,M operator for expected total rewards defined in Section 3.5.3, and we explain
the approximations that were introduced in order to improve performance. Finally,
in Section 7.3, we give a walkthrough of the tool’s functionality.

PRISM-games 2.0 is available at http://www.prismmodelchecker.org/games/,
and is open source under the GPL licence. Earlier prototype implementations were
presented and used in [10, 11, 43, 63]. We describe several case studies in Chapter 8,
demonstrating the effectiveness and versatility of PRISM-games 2.0.

7.1 Modelling and Property Specification Language

PRISM-games 2.0 offers a flexible framework for compositional modelling of stochastic
games, extending the native PRISM language, which is based on the reactive modules
formalism of [1]. Below, we describe our modelling language extensions, and refer to
Figure 7.1 as an example, which models our running example of Section 3.6.

Top-Level System. PRISM-games 2.0 supports the modelling of games by com-
posing several smaller games. In a composed game G = S1 k S2 k · · · , we call G the
top-level system, and each of the component games S1, S2, . . . a subsystem. Subsys-
tems S1, S2, . . ., modelling normal form games, are composed to the top-level system
using the game composition operator from Definition 4.3, which is written as

system

“S1” || “S2” || · · ·
endsystem

PRISM-games 2.0 requires the top-level system to be specified first in the file, just
after the keyword smg, which designates the model as a stochastic (multi-player)
game. In Figure 7.1, for example, the preamble (in the box on the top left) defines
the top-level system consisting of the subsystems S1 and S2.
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smg

system

“S1” || “S2”
endsystem

system “S1”
G1

endsystem

module G1

s : [0..2] init 1;

[d!] s=0 ! (s’=1);
[q1!] s=0 ! (s’=1);

[a?] s=1 ! (s’=2);
[b?] s=1 ! 0.5 : (s’=1)

+ 0.5 : (s’=2);

[] s=2 ! (s’=0);
[a?] s=2 ! (s’=2);

endmodule

system “S2”
G2

endsystem

module G2

t : [0..2] init 1;

[a!] t=0 ! 0.5 : (t’=1)
+ 0.5 : (t’=2);

[q1!] t=0 ! (t’=1);

[b?] t=1 ! (t’=2);
[b?] t=1 ! 0.5 : (t’=1)

+ 0.5 : (t’=2);

[] t=2 ! (t’=0);

endmodule

rewards “r1”
[a] true : 1;

endrewards

rewards “r2”
[d] true : 1;
[b] true : 1;

endrewards

rewards “r3”
[b] true : 1;

endrewards

rewards “c”
[a] true : 1;
[b] true : 1;

endrewards

Figure 7.1: A PRISM-games 2.0 model of the composed game from the running example in
Section 3.6, including the reward structures used to define the specifications, see Figure 7.2.

Subsystems. Each subsystem consists of one or more modules, and each module is
itself a game. PRISM-games 2.0 composes modules using the module composition,
which synchronises on shared actions, but does not distinguish between players. The
module composition is the standard parallel composition in PRISM and PRISM-
games, and is performed by first interpreting the modules as PAs, composing them
using the PA composition [119], and then assigning the states of the composition to
players. Thus, the module composition requires that Player 1 states only compose
with Player 1 states, and symmetrically for Player 2 states.

Definition 7.1. Given games Gi = hSi, (Si
⌃, S

i
⇤, S

i
�), siinit,Ai,�i,�ii, i 2 I, the

module composition is hS, (S⌃, S⇤, S�), sinit,A,�,�i, derived from the composed PA
hS, (S⌃ [ S⇤, S�), sinit,A,�,�i =ki2I hSi, (Si

⌃ [ Si
⇤, S

i
�), siinit,Ai,�i,�ii, such that

~s 2 S⌃ if and only if si 2Si
⌃ for some i, and ~s 2 S⇤ if and only if si 2Si

⇤ for some i.

The module composition does not support assume-guarantee synthesis, which requires
that no Player 1 states are put in parallel, see the discussion of compatibility and
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strategy composition in Sections 4.1.3 and 4.1.4. Modules G1, G2, . . ., are composed
to a subsystem S1 using the construct

system “S1”
G1 || G2 || · · ·

endsystem

Note that each subsystem must carry a name (here S1), which is used to define the
top-level system. In our example in Figure 7.1, each component consists of only one
module, that is, S1 is made up of G1, and S2 is made up of G2.

Modules. Modules are the basic building blocks in the modelling of games. The
state space of a module is determined by a set of variables, each of which has a
domain, and may (optionally) be initialised to a value in the domain using the init

keyword. For example, in Figure 7.1, the variable s in the module G1 is defined over
the domain [0..2], corresponding to the set of integers from 0 to 2, and is initialised
to 2 using the statement init 2. The transition and labelling functions of a module
are specified using a set of guarded commands, which are of the form

[a⇤] guard ! p1 : update1 + p2 : update2 · · · ;

and we explain in the following the components of a guarded command. Firstly, the
label a is either an action a 2 A, or empty for ⌧ , and these labels define the labelling
function � of the game. If no ⌧ -transition is present in a subsystem, the transformation
to normal form is performed automatically. Secondly, when composing games, often
the same action name in the model needs to be assigned to different players in different
subsystems, when it is controlled by one game, and regarded as external to the other,
for instance, when modelling interfaces. Using ⇤ 2 {!, ?} in [a⇤], transitions can be
assigned to Player 1 by !, or to Player 2 by ?. Since we are concerned with turn-based
games, no state can have outgoing transitions labelled by both ! and ?. Within a
subsystem, no action can be assigned to more than one player, which is only a slight
restriction in practice over the more general game composition in Definition 4.3.
Thirdly, the guard guard is a predicate that has to be satisfied for the transition to
be enabled. Finally, the probabilistic update p1 : (update1) + p2 : (update2) · · ·
specifies that with probability pi the variables in the next state are determined by
updatei, which is a list of updates of the form s’=v, meaning that s is updated to
the value v. We require that

P
i pi = 1. For example, in Figure 7.1, the command

[b?] s=1 ! 0.5 : (s’=1) + 0.5 : (s’=2);
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defines Player 2 transitions labelled with b from states where s = 1 to states where
s is updated with equal probability to either 1 or 2, and all other variables stay the
same. A guarded command enables a transition in each state where the guard holds.

Rewards. Models can be augmented with reward structures, using the syntax

rewards “r”
[a] guard : value;
...

endrewards

This reward structure is named r, and it contains a list of reward assignments as
guarded statements: the (optional) label [a] specifies an action a 2 A, the guard guard

restricts the states the reward is applied to, and value defines the reward. Reward
structures defined on actions only contain assignments of the form [a] true : value,
that is, with trivially satisfied guard, since the reward must not depend on the state
via the guard. For example, in Figure 7.1, the reward structures are given in the box
on the right, where we define r1, r2, r3, and c on actions.

Specification Language. PRISM-games 2.0 supports specifications expressed as
Boolean combinations of objectives, as discussed in Section 3.4.3. As in other versions
of PRISM, specifications are called properties. We now describe the syntax for defining
multi-objective queries: the syntax for the various objectives is given in the following
table, where we take r and c to be reward structures satisfying the requirements of
the respective objectives.

Objective PRISM-games 2.0 syntax
Pmp(r)(v) P>=1 [ R(path){“r”}>=v [ S ] ]

Pratio(r/c)(v) P>=1 [ R(path){“r”}/{“c”}>=v [ S ] ]

Emp(r)(v) R{“r”}>=v [ S ]

ratioE(r/c)(v) R{“r”}/{“c”}>=v [ S ]

Erew(r)(v) R{“r”}>=v [ C ]

A target v can either be fixed as a number within the objective, or left as a named
constant. Below, in Section 7.2.4, we explain how the constants allow us to compute
compositional Pareto sets. The letters S and C stand for mean-payoff (dividing by
the path length) and cumulative, respectively. Ratio objectives take the keyword C,
as no division by the path length is performed.

To express Boolean combinations of objectives, PRISM-games 2.0 provides the
infix symbols & (conjunction), | (disjunction), ! (negation), and => (implication).
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const double v1 = 1/4;
const double v2 = 9/8;
const double v3 = 3/4;

“phi1” : <<1>> (R{“r1”}/{“c”}<=v1 [ S ] => R{“r2”}/{“c”}>=v2 [ S ])
“phi2” : <<1>> (R{“r1”}/{“c”}<=v1 [ S ] & R{“r3”}/{“c”}<=v3 [ S ])
“psi” : comp(“phi1”, “phi2”)
“phi” : <<1>> (R{“r2”}/{“c”}>=v2 [ S ] & R{“r3”}/{“c”}<=v3 [ S ])

Figure 7.2: Properties for the PRISM-games 2.0 model in Figure 7.1, for the running
example in Section 3.6.

For example, (O1 | !O2)&O3 expresses the specification (O1 _ ¬O2) ^ O3. Arbi-
trary Boolean combinations can be expressed, which are converted automatically
to conjunctive normal form (CNF) in order to apply the reduction to CQs from
Theorem 5.17. Each property can receive a label, for example phi in “phi” :

not(O1), and so properties can be reused to define other properties. Strict inequali-
ties in objectives are ignored (after issuing a warning), and interpreted as non-strict
inequalities. For example, ratioE

(r1/c)(v1) ! ratioE

(r3/c)(v3) is equivalent to
ED[mp(r1)]/ED[mp(c)] > v1_ED[mp(�r1)]/ED[mp(c)] � �v1, in an (induced) DTMC
D, but is interpreted as ED[mp(r1)]/ED[mp(c)] � v1_ED[�mp(r1)]/ED[mp(c)] � �v1.

For our assume-guarantee framework (synthesis and Pareto set computation),
PRISM-games 2.0 offers the keyword comp in order to specify a property for each com-
ponent game individually. For example, for a game G1 k G2, we can write comp('1,'2)

to indicate that we want to analyse the model compositionally, using '1 for G1 and
'2 for G2. A property not using the comp keyword is interpreted as a global property
and used with the full product game.

Examplere 7.1. In Figure 7.2, we list the properties for our running example of
Section 3.6. The figure shows the properties file, which starts by defining the con-
stants v1, v2 and v3 to be used in the properties. If no values are specified, they are
queried in the GUI before the synthesis algorithm is invoked. Note that properties
are evaluated on the top-level system, and so “phi1” and “phi2” on their own would
mean evaluating G1

re k G2
re |= '1

re and G1
re k G2

re |= '2
re, respectively, which is not the

intention in the example. Rather, we use the compositional property “psi”, which,
by virtue of the comp keyword, evaluates G1

re |= '1
re and G2

re |= '2
re, correctly assigning

the local specifications to components. The global property 're is given in “phi”.
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7.2 Implementation Details

In this section we describe the implementation of our strategy synthesis methods. We
begin by describing in Section 7.2.1 the data structures underlying our implementa-
tion. In Section 7.2.2 we then give details about our fixpoint computation for the FM,~r

and F
rew,~r operators. In Section 7.2.3 we discuss how the transformations between

the various multi-objective properties from Chapter 5 are implemented in order to
synthesise strategies according to Chapter 6. Finally, in Section 7.2.4 we present how
we approximate and visualise Pareto sets, both monolithically and compositionally.

7.2.1 Data Structures

We explain the most important data structures used in our implementation.

Explicit Game Representation. The current implementation relies on an explicit-
state representation of the stochastic game models, building on the PRISM “explicit”
engine. We extend the representation to accommodate games that are composed
of several components, by adding a composition procedure implementing Defini-
tion 4.3, the (optional) compatibility check of Definition 4.4, and the normal form
transformation of Definition 4.2. Further, to support strategy composition via Def-
inition 4.5, we augment the data structure for stochastic games so that from each
state ~s = (s1, s2, . . .) we can reconstruct the states s1, s2, . . . of the individual com-
ponents, and which component controls a Player 1 state, in order to reconstruct the
components involved in the transitions (that is, the set �(a,~t) for the successor ~t).

Representation of Polytopes. When performing the finite-step fixpoint approxi-
mation for expected energy objectives in Section 6.2.3, as well as for expected total
rewards in Section 3.5.3, the sets we operate on are convex and closed polytopes. We
use the Parma Polyhedra Library (PPL) [3] to perform the set-theoretic operations of
convex union and intersection, and hence we use the polytope representation provided
by the library. The PPL represents each polytope by both its vertices and the set of
bounding hyperplanes, called the Motzkin double description method [3]. The vertex
representation also allows for rays, which we use for the downward closure operation:
a ray is a vector ~y such that, for any point ~x in a polytope X, any point ~x + ↵ · ~y
is also in X, for any ↵ > 0. Both representations are equally expressive, but differ
in how efficient operations are performed: intersection of polytopes is more efficient
using hyperplanes (by taking the union of the bounding hyperplanes); convex union
is more efficient using the vertices (by taking the union of the vertices).
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The PPL automatically performs transformations between the representations,
and can minimise the representation size. This representation of the polytopes is
symbolic in the sense that we represent a polytope, an infinite set of points, by a
finite set of vertices and hyperplanes. A similar approach in a discrete topology is
representing sets as antichains [36], that is, by the extreme points of the sets.

Weighted Minkowski Sum. The weighted Minkowski sum operation for the
stochastic states is not directly supported by the PPL, and we implement it us-
ing the vertex representation. We explain the process for two polytopes P1 and P2.
Let Pi

def
= {~x 2 Rn | 9~y 2 Rm

i

�0 . Vi~y = ~x ^ ~1T~y = 1} for i 2 {1, 2}, where Vi is an
n⇥mi matrix defining the vertices of the polytope. The idea behind computing their
weighted Minkowski sum is the following. First, lift the space to dimension n + 1

and place P1 and P2 at a distance of � 1
1�↵

and 1
↵

from the origin respectively. Their
convex hull, shown with dashed lines in Figure 7.3, can then be computed as

{~x 2 Rn+1 | 9~y 2 Rm
1

+m
2

+1 .

"
V1 V2

~1T/↵ �~1T/(1� ↵)

#
~y = ~x ^~1T~y = 1}.

Constraining this polytope to xn+1 = 0, we get ~1T~y1 = ↵ and ~11~y2 = 1 � ↵, and
hence we define ↵~z1 = ~y1 and (1 � ↵)~z2 = ~y2, so that ~x = ↵V1~z1 + (1 � ↵)V2~z2

and ~1T~z1 = ~1T~z2 = 1. This corresponds to computing the weighted Minkowski sum
↵⇥P1+(1�↵)⇥P2, as illustrated by the hatched polytope in Figure 7.3. Computing
the convex hull and constraining to xn+1 = 0 are supported by the PPL. This method
extends to more than two polytopes in a similar fashion by introducing an extra
dimension per polytope [76].

Note that the weighted Minkowski sum is the most computationally expensive
operation that we have to implement, as the number of vertices of the polytope
↵P1 + (1� ↵)P2 is O(|P1| · |P2|), see Theorem 4.1.1 of [136]. In contrast, the number
of vertices of the polytopes P1 \P2 and conv(P1 [P2) is O(|P1|+ |P2|) in both cases.
The performance of our synthesis algorithms is therefore dependent on the outgoing
branching degree of the states.

Strategies. We represent SU strategies by simply encoding the next choice function
and memory update functions as maps. In the assume-guarantee framework, the
synthesised strategies are not explicitly composed, but the individual strategies are
stored separately. When simulating a composed game under a composed strategy, the
memory update is performed at each step only for the strategies corresponding to the
involved components in the set �(a,~t) defined in Section 4.1.4, and the next choice
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x2

x1

x3

P1

P2

↵⇥ P1 + (1� ↵)⇥ P2

Figure 7.3: Illustrating the computation of the weighted Minkowski sum. P1 is shifted
from the origin by x3 = � 1

1�↵ , P2 is shifted from the origin by x3 =
1
↵ .

Table 7.1: Summary of algorithm parameters used in PRISM-games 2.0.

Parameter Set by User Description
" X termination accuracy
a0 X baseline rounding accuracy
ak rounding accuracy for iteration k
⌘ X increase factor for rounding accuracy
Mmin, Mmax X minimum and maximum box size
kmax X maximum iteration count for conjunctions
dmax X maximum iteration count for disjunctions
xinit initial weight vector
accinit initial weight vector accuracy

in a Player 1 state ~s is determined by the strategy controlling ~s. Thus, as mentioned
above, when composing games, we keep track of the underlying structure of the states
and moves, in order to be able to extract �(a,~t), and the components si of states ~s.

7.2.2 Fixpoint Computation

At the heart of our implementation is the shortfall fixpoint computation of the FM,~r

operator from Section 6.2.1 for Pmp objectives, as well as the Pareto set approximation
for Erew objectives using the F

rew,~r operator from Section 3.5.3. We give the details
of our implementation, focusing on how to make the strategy synthesis more efficient.
The parameters used in the algorithms are summarised in Table 8.1.

Long-Run Objectives. For strategy synthesis of Pmp objectives we compute the
sequence X0, X1, X2, . . .,using Xk = F k

M,~r(?M), for which we have Xk v Xk+1 for all
k � 0. From Proposition 6.27 we can construct "-optimal strategies for Pmp objectives
from the sets Xk, if Xk+1+" v Xk and Xk

sinit
6= ;. This stopping criterion ensures that
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the expected energy does not degrade by more than " per step, yielding a degradation
of at most " in the mean-payoff. The same computation is used for strategy synthesis
of Pratio, Emp and ratioE objectives, via the transformations described in Chapter 5.

Expected Total Rewards. For non-negative rewards in stopping games, the opera-
tor F

rew,~r of Section 3.5.3 defines a ✓-monotonic sequence (F k
rew,~r(dwc(~0)))k�0, and we

show in Theorem 4 of [41] that we can compute "-approximate Pareto sets for Erew

after a finite number of iterations of F
rew,~r. To achieve a target ~v 2 F k+1

rew,~r(dwc(~0)),
under the condition that F k

rew,~r(dwc(~0)) ✓ F k+1
rew,~r(dwc(~0)), Theorem 3 of [43] shows

a strategy construction, which is a special case of our Definition 6.2, where choice
functions are Dirac distributions. This latter requirement is, however, not necessary.

If ~r assigns negative rewards, then the sequence (F k
rew,~r(dwc(~0)))k�0 may not be

non-decreasing with respect to ✓. We handle negative rewards by starting at the
lowest possible expected total reward for each objective i, assuming that these rewards
are bounded, that is, we define ? 2 (P(Rn))|S| by

?s
def
= {~x 2 Rn | 8i . xi  inf

⇡
inf
�
E⇡,�

G,s [rew(ri)]},

for all s 2 S. Letting Y k def
= F k

rew,~r(?), the sequence (Y k)k�0 is non-decreasing with
respect to ✓, and we can construct strategies for any ~v 2 Y k+1 as follows.

Theorem 7.1. Let Y 2 (P(Rn))|S|, and let ~v 2 Frew,~r(Y ), for ~r : S ! Rn. If Y ✓
Frew,~r(Y ), then the strategy ⇡(Frew,~r(Y ),~r, 0) of Definition 6.2 satisfies Erew(~r)(~v).

Proof. A direct consequence of Theorem 3 of [43] and the above discussion.

For stopping games, inf⇡ inf� E⇡,�
G,s [rew(ri)] in the definition of ? = Y 0 is bounded,

and so can be computed using the MDP methods of PRISM. Since the only difference
between F

rew,~r and FM,~r is the restriction to BoxM , so we unify the implementation of
the two operators: we perform the same operations on the polytopes, and additionally
intersect with BoxM in the case of strategy synthesis of long-run objectives.

Note that an alternative method for handling negative rewards is to introduce an
"-degradation in the strategy construction, which is the approach in [124].

Gauss-Seidel Update. The following discussion is presented for the sequence
(Xk)k�0, but applies likewise to (Y k)k�0. During the fixpoint computation with FM,~r,
we compute Xk+1

s from Xk
s for all states s 2 S, before computing Xk+2

s from Xk+1
s

for all states s, and so on, and similarly for the computation of Y k using F
rew,~r. This
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process can be accelerated by allowing in-place updates, also called Gauss-Seidel up-
dates. That is, when Xk+1

s is computed from Xk, the result is stored in the same
memory location as Xk

s . Subsequently, after Xk+1
t has been computed, and Xk+1

s is
being computed for s 6= t, where t is a successor of s, then Xk+1

t is used instead of
Xk

t . Correctness of this method follows from the monotonicity of the operator FM,~r,
shown in Proposition 6.19, and respectively from the monotonicity of the operator
F

rew,~r, shown in [43]. Without the Gauss-Seidel update, we can interpret the fix-
point computation as a backward computation exploring the tree of paths through
the game in a strictly step-by-step fashion. The Gauss-Seidel update allows for some
of these steps to be skipped, and thus the same depth in the tree can be explored
with fewer steps. Due to this skipping of steps, the Gauss-Seidel update is not appli-
cable to our method of approximating Pareto sets for Emp and ratioE objectives (see
Section 5.5.1).

Stopping Criteria. For the synthesis of Pmp CQs, we can construct a strategy when
the fixpoint computation of FM,~r satisfies Xk+1 + " v Xk and Xk

sinit
6= ;, which is a

relative stopping criterion. For synthesis of Erew CQs, the stopping criterion for F
rew,~r

relies on the monotonicity of the operator. Then, a strategy achieving ~v is sufficient,
even if the Pareto set contains a point ~w > ~v. We thus obtain the (absolute) stopping
criterion ~v 2 Y k+1

sinit
, and, for completeness of the algorithm for "-optimal strategies,

we add the (relative) stopping criterion Y k 6✓ Y k�1 + ". To compute Pareto sets for
Erew CQs, we terminate when Y k+1 ✓ Y k + ", which is a relative stopping criterion.
Pareto sets for Emp CQs are computed using the Erew Pareto set algorithm, and
hence use the same stopping criterion. Note that we are not interested in achieving
specific shortfalls for EE computed by FM,~r.

Rounding. The following discussion is presented for the sequence (Xk)k�0, but
applies likewise to (Y k)k�0. The number of extreme points |C(Xk

s )| of the sets Xk
s may

increase exponentially with k, due to the weighted Minkowski sum and convex union
operators. To mitigate this complexity, at every step k, we can fix some accuracy
ak � 0, and round down each coordinate i of each extreme point of Xk

s to a multiple
of bk

def
= ⇢⇤

a
k

, where ⇢⇤ is the largest magnitude reward in the game, as in Lemma 5.20,
and where ak is the accuracy for step k. Formally, we define the rounding bXk

s cb
k

def
=

{~y 2 Rn | 9~x 2 Xk
s . 8i . yi = bxicb

k

}, and thus compute the rounded sequence X̃k+1 def
=

bFM,~r(X̃k)cb
k

[X̃k. When computing X̃k+1 from X̃k, we must round down (and in the
case of Ỹ k+1 take the union with Ỹ k), in order to ensure that the resulting sequence
is monotonic with respect to v, that is, X̃0

s = ?M v X̃1
s v X̃2

s v · · · . To select the
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$SU.strat� v0.1

startstrategy

States :
3
InitState :
1
Init :
{0 = 1.0}
Next :
0 0 {0 = 1.0}
0 1 {1 = 1.0}
MemUpdStates :
0 0 0 {0 = 1.0}
0 1 1 {0 = 1.0}
1 0 0 {0 = 1.0}
1 0 1 {0 = 1.0}
2 0 0 {0 = 1.0}
2 1 0 {1 = 1.0}
MemUpdMoves :
0 0 0 1 {0 = 1.0}
0 0 0 2 {1 = 1.0}
0 1 0 1 {0 = 1.0}
1 0 0 2 {0 = 1

3

, 1 = 2

3

}
1 1 0 1 {0 = 1.0}
1 1 0 2 {0 = 2

3

, 1 = 1

3

}
2 0 0 0 {0 = 1.0}
2 0 1 0 {1 = 1.0}
Info :
maximum C-iterations: 100

relative termination threshold: 0.00001

endstrategy

Figure 7.4: Strategy computed for the game in Figure 7.1 under property '2
re

of Section 3.6,
as exported by PRISM-games 2.0. We approximate decimals as fractions, and memory
reachable due to rounding errors is removed. This is the strategy shown in Figure 6.4.

accuracies ak, we start by selecting a0 � 0, together with some increase factor ⌘ � 1,
and let ak = ⌘ · ak�1 for all k > 0. This leads to a dynamically increased accuracy,
with the benefit that the polytope computation is accelerated initially by performing
large steps towards convergence, and, as the sets grow, their accuracy is improved.
Setting ⌘ = 1 disables this dynamically increased accuracy. With this approach, we
obtain under-approximations of the Pareto frontiers with a small number of points
that are gradually refined by allowing more points in the polytopes. Note that some
parts of the implementation use floating point operations, limiting the accuracy.

Strategy Construction. We implement the strategy construction of Definition 6.2,
which we parameterise for Pmp and Erew objectives using Proposition 6.27 and The-
orem 7.1, respectively. Using the implemented transformations of Chapter 5, we
obtain strategies for all objective types studied in this thesis. We find the distribu-
tions ↵ and �t of Definition 6.2 by converting the conditions imposed on them by
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the memory mapping into linear programs, which can be efficiently solved. During
the strategy construction, we only consider the reachable memory elements, which
yields more compact strategies, and reduces the computation time. In the strategy
of Example 6.3, shown in Figure 6.4, we have already demonstrated this idea. We
solve the linear programs to a limited accuracy, meaning that rounding errors are
introduced, which may change the memory elements that are accessed, but, by the
same argument as in the strategy discretisation in Section 6.3.3, this does not affect
the quality of the strategy beyond a bounded deviation.

Examplere 7.2 (Synthesised Strategy). In Figure 7.4, we show an example strategy
computed by PRISM-games 2.0 as exported to a file. The strategy is the one shown
in Figure 6.4, synthesised for G2

re under '2
re in our running example of Section 3.6.

The output consists of seven sections. Under the heading States, the memory size
is given. PRISM-games 2.0 models have a specific initial state, and the strategy is
specific to this state, given under the heading InitState. Under Next the next choice
function is given: ⇡c(s,m)(t) = p is a line of the form “s m i = p”, where i stands
for the ith move t from s. Under MemUpdStates the next memory update function at
states is given: ⇡u(m, t)(n) = p is a line of the form “s m i n = p”, where s is the state
that m is associated with, and i stands for the ith move t from s. Similarly, under
MemUpdMoves the next memory update function at moves is given: ⇡u(m, u)(n) = p

is a line of the form “s i m u = p”, where i is the ith move t at state s, and m is
associated with the move t. Finally, under the heading Info additional information
about the strategy is presented; here, for example, the accuracy " is recorded.

7.2.3 Synthesis Algorithms

We now give the pseudo code for the main algorithms implemented in PRISM-games
2.0, both for strategy synthesis and Pareto set computation. We summarise the algo-
rithms in Figure 7.5, which we refer to throughout this section for further explanation.

First, the synthesis algorithm for Pmp CQs, as developed in Section 6.4, is given
as Algorithm 1. It is based on the FM,~r operator, where we initialise the box size M to
some Mmin > 1. For the sake of user convenience, we also implement an upper bound
on the box size, Mmax, and on the number of fixpoint iterations, kmax. The same
algorithm is applicable to Pratio CQs, and for CM games to Emp and ratioE CQs,
using the transformations of Chapter 5. We do not implement the decision procedure
from Section 6.1, because even if it reports that the specification is achievable, for
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PRISM property

convert MQ into CNF

Compute Pareto Set

if Emp or Pmp MQ then

CheckCM(G)
ParetoEmpMQ(G, ~r, ")

else if ratioE or Pratio MQ then

CheckCM(G)
ParetoRatioEMQ(G, ~r, ~c, ")

else if Erew MQ then

Check if G is stopping
ParetoErewMQ(G, ~r, ")

Synthesis

if Pratio or ratioE then

Let ~r  ~r � ~v • ~c
if Emp or ratioE then

CheckCM(G)
if Pmp or Emp then

SynthPmpMQ(G, ~r, ~v, ")
else if Erew then

SynthErewMQ(G, ~r, ~v, ")

Fixpoint Computation

if mp then

use F

M,~r

else if rew then

use F

rew,~r

Figure 7.5: Algorithms implemented in PRISM-games 2.0. The dashed arrows indicate
subroutine calls.

Algorithm 1 Strategy Synthesis for CQ
Vn

i=1 Pmp(ri)(vi)

1: function SynthPmpCQ(G, ~r, ~v, ")
2: M  Mmin;
3: while M < Mmax do
4: ⇡  SynthPmpCQ(G, ~r, ~v, ", M);
5: if ⇡ 6= null then return ⇡;
6: M  M2;

7: function SynthPmpCQ(G, ~r, ~v, ", M)
8: ~r0  ~r � ~v + "

2
; k  0; X0  ?M ;

9: do
10: Xk+1  FM,~r0(Xk); k++;
11: while Xk + "

2
6v Xk�1 and k < kmax . convergence condition

12: if Xk
sinit
6= ; then

13: return ⇡(Xk�1,~r0, "
2
);

14: return null; . if diverged to empty sets

efficiency reasons rounding is typically used, which limits the accuracy. Finally, the
algorithm for Erew CQs, based on the F

rew,~r operator, is shown as Algorithm 2.
In the rest of this section we focus on strategy synthesis for general MQs, which we

assume here are given in CNF. Consider a specification  =
Vn

i=1

Wm
j=1 Emp(ri,j)(vi,j).
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Algorithm 2 Strategy Synthesis for CQ
Vn

i=1 Erew(ri)(vi)

1: function SynthErewCQ(G, ~r, ~v, ")
2: Let k  0; Y 0  ?;
3: do
4: Y k+1  F

rew,~r(Y k); k++;
5: if ~v 2 Y k

sinit
then . stopping criterion

6: return ConstructStrategy(Y k, 0);
7: while Y k 6✓ Y k�1 + " and k < kmax . convergence condition
8: return null; . if converged without achieving ~v

By Theorem 5.17, we can convert this MQ into a CQ ' =
Vn

i=1 Emp(~xi · ~ri)(~xi · ~vi),
so that, if a winning strategy exists for ', the same strategy is winning for  . The
caveat is that we need to select the weights ~x1, . . . , ~xn appropriately in order for ' to
be achievable. Since the weights cannot be known a-priori, we develop a heuristic to
iterate over them, as already outlined in [11] and Section 5.5.

Weight Selection. For a MQ in CNF with n conjuncts of m objectives each, the
basic idea is to iterate over weight vectors ~x of dimension n ·m, gridding the entire
search space, as suggested in Lemma 5.20. We observe that, due to the linearity of
expectations, a CQ

Vn
i=1 Emp(↵i · ri)(↵i · vi) has the same achievability result for any

~↵ 2 Rn
>0. Hence, for each conjunct i, only the direction of the weight vectors ~xi is

relevant, and so we reduce the search space from n ·m to n · (m� 1) dimensions. We
show the algorithm for selecting weights as Algorithm 3. The NextWeight function
takes the current weight vector ~x, the accuracy acc, and a parameter ~E indicating
which dimensions are currently excluded from being iterated over (according to the
mentioned reduction of the search space). ~E is an n-dimensional tuple of indices
between 1 and m, which initially is set to (1, 1, . . . , 1), that is, initially we grid all
dimensions except the first for every conjunct. We also assume that acc is initialised
to accinit

def
= 1

2
, and that ~x is initialised to ~xinit

def
= ((3

4
, 3
4
, 3
4
, . . .), (3

4
, 3
4
, 3
4
, . . .), . . .). In

lines 2–3, the next weight is selected by gridding the next available dimension with
the accuracy acc. If all dimensions (except the ones excluded by ~E) are exhaustively
gridded, we change the excluded dimensions in lines 5–6, unless all dimensions were
already excluded under this setting of accuracy; in this case, we increase the accuracy
in line 8, and reset ~E. In line 9, since ~E has changed, we re-initialise the weight ~x
with the new accuracy.

We refer to Figure 7.6 to illustrate the weight selection algorithm. The pattern of
selected vectors is shown for n = 1 and m = 2, that is, for a disjunction consisting
of two objectives. Figure 7.6 shows the weight vectors ~x as dots for the accuracies
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Algorithm 3 Weight Vector Selection

1: function NextWeight(~x, acc, ~E)
2: if there are indices (i, j) such that Ei 6= j and xi,j > acc then
3: pick the lexicographically least such pair (i, j) and set xi,j  xi,j � acc;
4: else
5: if there are indices (i, j) such that Ei = j and j < m� 1 then
6: pick the lexicographically least such pair (i, j) and set Ei  j + 1;
7: else
8: acc acc/2; ~E  (1, 1, . . . , 1); . increase accuracy
9: for all indices (i, j), let xi,j  1� acc/2;

10: return (~x, acc, ~E);
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Figure 7.6: The first 25 weight vectors selected using Algorithm 3 for n = 1 and m = 2,
with the sequence number written next to the weights.

acc = 0.5, acc = 0.25 and acc = 0.125, and demonstrates that Algorithm 3 selects
weights in a way that grids the space of weight vectors with increasingly refined
accuracy, and realises the ⌧ -discretisation of Weights

MQ

(~⇢⇤) of Lemma 5.20.

Synthesis of MQs. Using our weight selection algorithm, we now show how to
synthesise Boolean combinations of objectives. We show the algorithm for Emp MQs
as Algorithm 4, which is applicable to CM games. We use the notation [qi]ni=1 to stand
for the vector ~q with [~q] = qi. For ratioE MQs in CM games, the same algorithm can be
applied. Note that, when iteratively searching over weight vectors, we have to iterate
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over the size M of BoxM as the outermost iteration, since we are not guaranteed that
the algorithm terminates for any choice of M , see the discussion of our algorithm in
Section 6.4. For MQs of Erew objectives in stopping games, the same method for
synthesis via our weight selection is applicable, which we give as Algorithm 5.

Algorithm 4 Strategy Synthesis for MQ
Vn

i=1

Wm
j=1 Emp(ri,j)(vi,j)

1: function SynthEmpMQ(G, ~r, ~v, ")
2: ~x ~xinit; acc accinit; ~E  (1, 1, . . . , 1); M  Mmin;
3: while M < Mmax do
4: for d 0; d < dmax; d++ do
5: (~x, acc, ~E)  NextWeight(~x, acc, ~E)
6: ⇡  SynthPmpCQ(G, [~xi · ~ri]ni=1, [~xi · ~vi]ni=1, ", M)
7: if ⇡ 6= null then return ⇡;
8: M  M2;

Algorithm 5 Strategy Synthesis for MQ
Vn

i=1

Wm
j=1 Erew(ri,j)(vi,j)

1: function SynthErewMQ(G, ~r, ~v, ")
2: ~x ~xinit; acc accinit; ~E  (1, 1, . . . , 1);
3: for d 0; d < dmax; d++ do
4: (~x, acc, ~E)  NextWeight(~x, acc, ~E)
5: ⇡  SynthErewCQ(G, [~xi · ~ri]ni=1, [~xi · ~vi]ni=1, ")
6: if ⇡ 6= null then return ⇡;

7.2.4 Pareto Set Computation

We show our algorithms for approximating Pareto sets, and explain how we visualise
higher dimensional Pareto sets.

Pareto Sets for CQs. For Erew objectives, the algorithm is shown as Algorithm 6.
For stopping games, we may leave the parameter kmax to its default value of (con-
ceptually) 1, since the Pareto computation is guaranteed to converge (Theorem 4
of [41]). The Pareto set computation for Emp CQs, as discussed in Section 5.5, is
based on computing approximations of Pareto sets for Erew CQs, and dividing each
vector in the resulting sets by the number of computation steps. Hence, we use the
ParetoErewCQ algorithm to approximate Pareto sets for Emp CQs in CM games
by bounding the number of iterations with a finite kmax, leading to bounded Pareto
sets also in non-stopping games. We show the algorithm as Algorithm 7. Note that
in CM games the Pareto sets for Pmp CQs are equivalent to those for Emp CQs, but
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PRISM-games 2.0 does not support computing Pareto sets for Pmp CQs in general
games.

Algorithm 6 Pareto Set Computation for CQ
Vn

i=1 Erew(ri)(vi)

1: function ParetoErewCQ(G, ~r, ")
2: Let k  0; Y 0  ?;
3: do
4: Y k+1  F

rew,~r(Y k); k++;
5: while Y k 6✓ Y k�1 + " and k < kmax . convergence condition
6: return Y k;

Algorithm 7 Pareto Set Computation for CQ
Vn

i=1 Emp(ri)(vi)

1: function ParetoEmpCQ(G, ~r, ")
2: Y  ParetoErewCQ(G, ~r, ");
3: return 1

k
max

⇥ Y ;

For ratioE CQs, we approximate Pareto sets by gridding the space and testing
for every point if it is achievable, see Section 5.5.2. Since the Pareto sets for ratioE

CQs are convex, we can make this method slightly more efficient by including the
convex downward closure of the points that were found achievable, and excluding the
upward closure of the points that were found not achievable. We show the algorithm as
Algorithm 8. The gridding is implemented using the weight selection of Algorithm 3.

Algorithm 8 Pareto Set Computation for CQ
Vn

i=1 ratioE(ri/ci)(vi)

1: function ParetoRatioECQ(G, ~r, ~c, ")
2: Initialise P = ;, Q = ;
3: for ~v 2 Rn finitely gridded do
4: if ~v 2 P [Q then
5: continue; . value already subsumed
6: if SynthPmpCQ(G, ~r � ~c • ~v, ~0, ") 6= null then
7: P  dwc(conv(P [ {~v}));
8: else
9: Q  upc(Q [ {~v});

10: return P ;

Pareto Sets for MQs. To compute Pareto sets for MQs, every point ~v 2 Rn in a CQ
Pareto set with weights ~x1, . . . , ~xn 2 Rm

�0 corresponds to intersection of half-spaces
~xi · ~z  vi, and the union over all choices of weight vectors is the "-approximation
of the corresponding MQ Pareto set. We show the algorithm to compute Pareto sets
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Algorithm 9 Pareto Set Computation for MQ
Vn

i=1

Wm
j=1 Emp(ri,j)(vi,j)

1: function ParetoEmpMQ(G, ~r, ~v, ")
2: ~x ~xinit; acc accinit; ~E  (1, 1, . . . , 1); P  ;
3: for d 0; d < dmax; d++ do
4: (~x, acc, ~E)  NextWeight(~x, acc, ~E)
5: P~x  ParetoEmpCQ(G, [~xi · ~ri]ni=1, ")
6: P  P [ conv(

S
~v2P

~x

Tn
i=1{~u 2 Rn⇥m | ~xi · ~ui  vi});

7: return P ;

Algorithm 10 Pareto Set Computation for MQ
Vn

i=1

Wm
j=1 ratioE(ri,j/ci,j)(vi,j)

1: function ParetoRatioEMQ(G, ~r, ~v, ")
2: ~x ~xinit; acc accinit; E  (1, 1, . . . , 1); P  ;
3: for d 0; d < dmax; d++ do
4: (~x, acc, ~E)  NextWeight(~x, acc, ~E)
5: Q~x  ParetoRatioECQ(G, ~⇢, ~�, ")
6: P  P [ conv(

S
~2Q

~x

Tn
i=1{~u 2 Rn⇥m | ~xi · ~ui  ~xi · ~wi(i)});

7: return P ;

for Emp MQs as Algorithm 9, which is based on Equation (5.7). In stopping games,
the same algorithm can be used for MQs of Erew objectives. The corresponding
algorithm for ratioE MQs is shown as Algorithm 9, which is based on Equation (5.9).
Since we evaluate the union of the convex Pareto sets computed for CQs, the Pareto
sets obtained for the MQs might not be convex, and so, internally, we store the
Pareto sets as lists of convex polytopes, ensuring no set in this list is fully contained
in another.

Visualisation. In order to pick a target conveniently, as in step (S3) of Sec-
tion 4.4, we implement a visualisation of Pareto set approximations. Pareto sets
of two dimensions can be straightforwardly plotted in a coordinate system. For
higher dimensions, we use a method based on displaying two-dimensional slices of
the Pareto set to the user, also advocated in [88]. The user can select two dimen-
sions to plot against each other, and the other dimensions will be either sliced at
a given value, or projected. Projecting out a dimension i of X ✓ Rn means com-
puting {~y 2 Rn�1 | 9~x 2 X . (y1, . . . , yn�1) = (x1, . . . , xi�1, xi+1, . . . , xn)}. A single
slicing operation of a set X ✓ Rn means fixing a dimension i to a value v, that is,
{~y 2 Rn | 9~x 2 X . xi = v ^ 8j 6= i . yj = xj}, and projecting out i. We illustrate the
visualisation of Pareto sets in Figure 7.10, where a three-dimensional Pareto set is
shown with its first dimension projected out.
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Compositional Pareto Sets. To obtain compositional Pareto sets, we use the
approach of Section 4.3. The operations of lifting, intersecting and projecting of the
local Pareto sets are performed using the PPL. The key challenge here is to ensure that
the correct dimensions are associated with each other. For example, in the (Asym)
rule, one component has a specification ratioE(r1/c)(v1) ! ratioE(r2)(v2), and the
other component has a specification ratioE(r1/c)(v1), and we want the compositional
Pareto set to contain all values of v2, such that there exist values for v1 that make the
specifications achievable (recall that we under-approximate Pareto sets for ratioE MQs
using Eratio MQs.) In PRISM-games 2.0, we use named constants for this purpose,
which specify which dimensions are intersected. An example is the properties file in
Figure 7.2. If constant names are not used, a warning is issued that the corresponding
dimensions cannot be associated for intersection. An example of a compositional
Pareto set is shown in Figure 7.10 in the tool demonstration below.

7.3 Tool Demonstration

We give a brief overview of the usage of PRISM-games 2.0 [86]. More details, down-
load and installation instructions are available at http://www.prismmodelchecker.
org/games/. We demonstrate the operation of the tool on the running example of
Section 3.6, focusing on the multi-objective and compositional features. The following
is a step-by-step walkthrough of the tool. All file paths are relative to the installation
directory of PRISM-games 2.0.

1. After installing, the PRISM-games 2.0 GUI is started by executing xprism, or
by navigating to the installation directory and executing ./bin/xprism.

2. We now load the model of a stochastic game. When selecting from the top menu
bar the item Model!Open model . . ., a dialogue opens, in which we select the
file examples/compositional/comp_example.prism. The model is given in
Figure 7.1, representing the games in Figure 3.8, and Figure 7.7 shows the tool
in the Model tab.

3. We now load a properties file with the specifications we are interested in,
by selecting from the menu bar the item Properties!Open properties list . . .,
and in the dialogue choosing examples/compositional/comp_example.props.
PRISM-games 2.0 automatically switches to the Properties tab, shown in Fig-
ure 7.8, displaying the properties we intend to check.
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Figure 7.7: Screenshot of PRISM-games 2.0 showing the compositional model.

Figure 7.8: Screenshot of PRISM-games 2.0 showing the menus for strategy generation.

4. The properties labelled “phi1” and “phi1” are the local specifications for the
components S1 and S2, and we check them using the compositional prop-
erty “psi”. Right-clicking on “psi” opens a menu, in which we select Strate-
gies!Generate Strategy, see Figure 7.8. After PRISM-games 2.0 finishes the
computation, a dialogue appears showing the result of (in our case successful)
strategy generation.



164 CHAPTER 7. TOOL IMPLEMENTATION

Figure 7.9: Screenshot of PRISM-games 2.0 showing the game simulated under the com-
puted strategy.

5. We can inspect details of the computation by navigating to the Log tab, shown
at the bottom of the screen. The log also includes the resulting strategies for
each component.

6. We now inspect the model under the strategy by simulating it. From the menu
bar we select Simulator!New path, and the Simulator tab automatically ap-
pears. Figure 7.9 shows the simulation of the composed game for a few steps.
In the lower half of the screen, the table shows, in its respective columns: (1)
the action of the move chosen by the strategy; (2) the memory of the composed
strategy; (3) the step number along the path; (4-5) the state of the component
games; and (6-9) the reward in the step (action plus state, but here we work
with rewards defined on actions). Further, in the upper half of the screen, the
table shows in each row a successor state, and in its respective columns: (1) the
memory update of the synthesised strategy, and, if a Player 1 state, the choice;
(2) the player controlling the state, and, if a Player 1 state, the game in which
Player 1 controls the state; (3) the label of the transition; (4) the probability
of the move to lead to the successor; and (5) the update of the variables when
transitioning to the successor. Note that rows which the strategy never selects
are disabled, because only choices in the reachable state space are computed.
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Figure 7.10: Screenshot of PRISM-games 2.0 showing an approximation of the composi-
tional Pareto set.

7. We now synthesise a strategy directly on the composed system. In the properties
tab, by right-clicking on the “phi” property, a menu opens in which we select
Strategies!Generate Strategy.

8. We now compute compositional Pareto set approximations. In the properties
tab, by right-clicking on “psi”, a menu opens in which we select Compute
Pareto set. After completion, three Pareto sets (approximations) are shown on
the right of the screen. Graph 1 and Graph 2 are for S1 under “phi1” and
for S2 under “phi2”, respectively. Graph 3 shows the compositional Pareto set
for “psi”, before projecting it for the global property “psi”. By default the
dimensions v1 and v2 are selected. We can select the dimensions v2 and v3

using the radio buttons, and checking the box for Project associated with v1.
The resulting Pareto set is the approximation of the compositional Pareto set,
shown in Figure 7.10.

9. To compute the Pareto set for the global property directly, we right-click on
“phi” and select Compute Pareto set, to generate a new graph, Graph 4, which
is an approximation of the global Pareto set for “phi”.
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7.4 Summary

We implemented the assume-guarantee strategy synthesis framework in PRISM-games
2.0. The tool provides a versatile modelling environment for stochastic games com-
posed of multiple components. For monolithic games (that is, component games),
our main contributions are threefold: (i) we added support for the analysis of multi-
objective queries consisting of Emp, ratioE, Pmp, Pratio and Erew objectives; (ii)
Pareto sets are displayed to give an indication of the achievable targets, even for
higher dimensions, via slicing and projecting; and (iii) strategies can be synthesised,
exported, and inspected using the simulator that also displays the stochastic mem-
ory updates. We highlight the following main contributions for the assume-guarantee
framework: (i) we extended the modelling language of PRISM-games so that stochas-
tic games can be defined as a composition of several component games, with indepen-
dent player assignments; (ii) we added the keyword comp to the property specification
language, in order to specify local properties for the individual components, and in-
voke the compositional routines; and (iii) in compositional models, Pareto sets can be
computed compositionally, to instantiate the local targets in assume-guarantee rules.

Several steps in the strategy synthesis are implemented using numerical opera-
tions with finite accuracy. For example, computing the distributions in the strategy
construction is performed using linear programming. However, using the (optional)
rounding operations, for Erew objectives, at each step we still obtain an under-
approximation to the Pareto set, but convergence is slower, while for Pmp objec-
tives, rounding means that, at every iteration of the FM,~r operator, the sets might be
smaller by some � > 0. For Pmp the sets thus could diverge even if the specification
is achievable, but, if convergent, the constructed strategies achieve the desired target.

There are several directions for future development. A key challenge is to improve
the performance of the algorithm implementations. Compositional analysis itself
addresses some scalability issues, and we use the PPL for efficient polytope compu-
tations. However, a symbolic representation of the state space, rather than just the
polytopes, could speed up the fixpoint computations. More fundamentally, it would
be interesting to investigate other ways of computing "-optimal strategies, for example
via limiting the memory size a-priori and developing a linear program characterisation
for the now bounded-memory strategies. Given that MD Player 2 strategies suffice
for Pmp, another approach would be to consider counterexample-guided abstraction
refinement (CEGAR) [30]. Finally, for the Pareto set computations, alternative ap-
proximation algorithms could be investigated, in particular for the ratioE objectives.
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We demonstrate in this chapter our assume-guarantee strategy synthesis frame-
work on four case studies. The case studies evince the applicability of our methods,
and further demonstrate the effectiveness of our tool implementation from Chap-
ter 7. We give two case studies that use the assume-guarantee framework to obtain
strategies compositionally and demonstrate scalability. To comprehensively display
the synthesis capabilities of our tool, these case studies use multi-objective ratios of
rewards, and we give two further case studies with conjunctions of expected total
reward objectives. However, care must be taken when employing total rewards in the
context of assume-guarantee synthesis under fairness, since they apply mainly to the
transient states in a game (see the discussion in Section 3.4.1). In [11] we gave an
example with total rewards for our assume-guarantee framework, and noted that this
requires all components to synchronise on entering terminal states, since otherwise
there are no fair strategies for Player 2 and the global property is trivially satisfied.

Firstly, in Section 8.1, synthesis for multi-dimensional total expected rewards is
explored in a case study concerning controller synthesis for autonomous urban vehi-
cles [43]. The scenario, modelled as a stochastic game, is that of a car moving over
road segments in a potentially adverse environment, with the objective of maximising
safety, while also maximising the likelihood to arrive at the intended goal location

167
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with the highest comfort on the roads. Secondly, in Section 8.2, we consider path
planning for unmanned aerial vehicles interacting with a human operator [63]. In this
model, we also particularly study the effects of probability and nondeterminism, us-
ing the probability of the operator delegating the flight choices to the UAV. Thirdly,
in Section 8.3, synthesis for multi-dimensional ratios of rewards in a compositional
setting is demonstrated in a case study for controlling the power distribution network
on a more electric aircraft [10]. The system is partitioned into several components
for increased reliability and scalability, which is exploited by our assume-guarantee
strategy synthesis method. Employing quantitative specifications (via rewards) and
a model based on stochastic games allows us to achieve improved performance over
previous studies [140]. Lastly, in Section 8.4, we present an investigation of a com-
positional model for temperature control in several rooms, in which controllers have
to maintain a given setpoint in the presence of outside temperature uncertainty and
potentially changing room dynamics, for example, from people entering the room or
windows being opened. The analyses of the case studies were carried out using our
PRISM-games 2.0 tool presented in Chapter 7, on a 2.80 GHz x86 CPU with 32 GB
of memory. This chapter is mainly based on [10, 43, 63].

8.1 Autonomous Urban Driving

Autonomous driving has the potential to fundamentally transform our transportation
infrastructure. We present a case study of autonomous vehicle navigation in an
urban setting, which is motivated by the DARPA Urban Challenge 2007 (henceforth
referred to as the Challenge), a competition for autonomous cars to navigate safely
and effectively in an urban setting [51]. In the Challenge, cars were exposed to a
set of traffic situations, and had to plan routes, avoid hazards, and cope with the
presence of other vehicles. This section is mainly based on the work in [43].

8.1.1 Problem Setting

We identify desired functions of vehicle controllers from the Challenge, and focus on a
scenario of a car driving in an urban context. We model the problem as a two-player
stochastic game, where Player 1 represents the car controls, and Player 2 represents
the environment. The game setting allows us to model the nondeterministic, ad-
versarial nature of hazards selected by the environment, and the car reacts to the
hazards according to the synthesised strategy. The topology of the roads is obtained
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Table 8.1: Model parameters for the autonomous driving case study.

Hazard Abbreviation Weight (⇣) Reaction Accident Probability
pedestrian p 0.05 brake 0.01

honk 0.04
change lane 0.03

jam j 0.1 honk 0.01
U-turn 0.02

obstacle o 0.02 change lane 0.02
U-Turn 0.02

by importing maps from OpenStreetMap [103]. Probabilities are used to model the
relative frequency of events in a given road segment and between different road seg-
ments. Further, considering multiple objectives enables the exploration of trade-offs
when constructing controllers.

Our model is based on the Challenge event guidelines and technical evaluation
criteria [51]. Each road segment is modelled as part of a stochastic game between
the environment that selects from a set of available hazards, and the car that selects
reactions to the hazards, as well as making route selection (steering) decisions. Haz-
ards occur with certain probabilities depending on the properties of the road segment
the car is on, and each decision the car takes is only successful with a given proba-
bility. We consider three types of hazards with the corresponding reactions the car
can take (see Table 8.1): for example, if a pedestrian is on the road, the controller
can choose to brake, honk, or change the lane, each with a different probability of an
accident occurring. The probabilities in the model are understood to be parameters
obtained from statistical observations; for example, certain road types are more prone
to accidents. Finally, we model the road quality using rewards.

8.1.2 Model

We represent the road network as a directed graph G = (V,E), where each edge e 2 E

represents a road segment, see Figure 8.1 (a). To each edge e 2 E, we associate an
edge-game Ge, parameterised by the properties of the corresponding road segment
(for example, length, quality of the road, number of lanes).

Edge Games. An example illustrating an edge-game Ge is shown in Figure 8.2,
where we use the abbreviations for hazards introduced in Table 8.1. The states of Ge

are of the form hs, ei, where s can be seen as an offset into the state space of Ge; when
the edge e is clear from context, we simply write s. For each Ge, in state s0, a set of
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Figure 8.1: Illustrating the graph G = (V,E) representing the road network and the
corresponding edge-game connections.

at most two hazards is selected probabilistically, from which Player 2 can then choose.
We put the distribution over hazards before the Player 2 choice, since otherwise it
is always possible to select a pedestrian hazard, even if there may be no pedestrian
present on the current road segment. To each hazard h 2 {p, j, o} we associate a
tuning parameter ⇣h, given in Table 8.1. We model that hazards are more likely the
longer the road segment e, and we use len(e) for the length in metres of e. The weights
⇣h tune the relative frequency of hazard occurrence. To achieve a valid probability
distribution, we use the hyperbolic tangent as a sigmoid function. Thus, we define
the probability of a set of hazards {h1, h2} by ph

1

h
2

def
= tanh(⇣h

1

· ⇣h
2

· len(e))/K, and
of a single hazard h by ph

def
= tanh(⇣h · len(e))/K, where K = 6 is the number of

nonempty sets of at least two hazards. Finally, the empty set of hazards is chosen
with the residual probability, denoted pnone. Once a set of possible hazards is chosen
in s0, and Player 2 has selected a specific one in s1, s2 and s3, Player 1 must select
an appropriate reaction in s4, s5 and s6. Then the game enters either the terminal
accident state “acc”, or a Player 1 state “sink”, where the next edge can be chosen.
If the reaction is not appropriate in the given road segment (for instance, changing
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Figure 8.2: Edge-game Ge with reverse edge f of e. States of the form hs, ei are abbre-
viated by s. For simplicity, we omit stochastic states with Dirac distributions. Hazards
and reactions are indicated using notation from Table 8.1. After a U-turn, the initial state
hs0, fi of the reverse edge gadget Gf is entered (note that this state is not part of Ge, and
shown twice here for clarity of the diagram.)

lane in a single lane road), a terminal “violation” is entered instead with probability
1 (not shown in Figure 8.2), which the car is assumed to naturally try to avoid.

Connecting Games. From the edge-games Ge and the graph G, a game G is con-
structed that connects the games Ge as shown in Figure 8.1 (b). In a sink, for instance,
hsink, ei, Player 1 chooses which edge to go to next and enters the corresponding local
initial state, for example, hs0, f1i. Also, in a U-turn, the edge-game Gf of the reverse
edge f of e is entered at its initial state, for instance, hs0, fi. If a road segment is the
goal egoal, or does not have any successors in G, the local sink for the corresponding
game is made into a terminal state. Thus, Term = {hsink, egoali} [ {hsink, ei | @v00 2
V . e = (v, v0) ^ (v0, v00) 2 E} [ {hacc, ei | e 2 E} [ {hviolation, ei | e 2 E}. Note that
the above construction results in a stopping game.
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8.1.3 Analysis

We study three objectives, derived from the requirements of the Challenge. We fix the
initial state to be hs0, einiti, and consider the following objectives, where Reach(T )(v)

stands for the reachability objective defined as PD(FT ) � v.
Target Location Reachability. From the initial location, the car has to reach a

target location at a particular orientation with probability vtlr, that is, we have the
objective Otlr ⌘ Reach(Ttlr)(vtlr), where Ttlr

def
= {hsink, egoali} is the set of targets

corresponding to reaching the goal on the edge egoal. Note that the orientation of the
car is implicit, as two-way streets are modelled as separate edges. On a high level,
reachability at a correct orientation is a primary goal also in the Challenge.

Accident Avoidance. Further, the car has to avoid accidents, which we encode
by requiring at least a probability vaa of reaching terminal states where no accident
happened, that is, Taa

def
= Term\{hacc, ei | e 2 E}. Note that a traffic rule violation is

not considered an accident, as it is not safety-critical. Hence, we have the objective
Oaa ⌘ Reach(Taa)(vaa). This safety objective is another primary goal of the Challenge.

Road Quality. Finally, we require the car to use roads with some minimum quality
requirements, that is, we have the objective Orq ⌘ Erew(rrq)(vrq), where rrq is the
reward structure corresponding to road quality, and vrq is the required threshold.
We define rrq according to the road type and length extracted from the map data.
Hence, each edge e is assigned a value rval(e), and the reward function rrq is defined
by rrq(hsink, ei) def

= rval(e) · len(e), and zero otherwise. Likewise, in the Challenge,
cars must be able to navigate over different road types, and select adequate roads.

Fixpoint Computation. We consider the conjunctive query ' = Otlr ^ Oaa ^ Orq,
and explain the fixpoint computation. In Figure 8.3 we show the rounded polytopes
Y k = F k

rew,~r(?) computed for the initial state of the game for Charlton-on-Otmoor for
several values of k. To decrease the number of extreme points we have to consider,
we use rounding and the following dynamic accuracy adaptation. Starting from the
baseline accuracy a0 = 50, we dynamically increase the accuracy ak by the factor
⌘ = 1.2 after Nk steps, while at the same time multiplying the number Nk of steps
until the next increase by ⌘, starting at N0 = 5. In the long run, this yields an
additive increase in the accuracy of a

0

(��1)
N

0

per step. With this approach, we obtain
under-approximations of the Pareto frontiers with a small number of points that are
gradually refined by allowing more points in the polytopes. Further, we use Gauss-
Seidel updates, which increase the convergence speed but not the time per iteration.
In Figure 8.4 we show performance indicators of the value iteration of Figure 8.3.



8.1. AUTONOMOUS URBAN DRIVING 173

reach
goal

avoid accident

ro
a
d
q
u
a
li
ty

10

20

30

0.2

0.2

0.6
0.6

1 1

(a) iteration k = 10.

reach
goal

avoid accident

ro
a
d
q
u
a
li
ty

10

20

30

0.2

0.2

0.6
0.6

1 1

(b) iteration k = 20.

reach
goal

avoid accident

ro
a
d
q
u
a
li
ty

10

20

30

0.2

0.2

0.6
0.6

1 1

(c) iteration k = 40.

reach
goal

avoid accident

ro
a
d
q
u
a
li
ty

10

20

30

0.2

0.2

0.6
0.6

1 1

(d) iteration k = 150.

Figure 8.3: Successive (under-)approximations of the Pareto sets in hs0, einiti of G for
Charlton-on-Otmoor, UK (figure adapted from [43]).
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Strategy Evaluation. We perform strategy synthesis for an example choice of the
target vector, ~v = (0.7, 0.7, 6.0), for our objective ', applied to two small villages
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(a) Charlton-on-Otmoor: 43 edges in
G, 501 states in G.

(b) Islip: 125 edges in G, 1527 states in G.

Figure 8.5: Simulation results under synthesised Player 1 strategy and uniform Player 2.
The start and the goal are shown by a plus (+) and a cross (⇥) respectively. The thickness
of the lines represents the expected proportion of trip time spent on the respective road.

in the UK. We evaluate the constructed strategies ⇡ by simulating it in the respec-
tive games together with an environment strategy � that picks hazards uniformly
at random. We illustrate the simulation results in Figure 8.5. The figure is gener-
ated by simulating 10000 paths in the induced DTMC, and for each path extracting
the sequence of edges in the graph G the car goes through. Each such sequence
⇢ = e0e1e2 . . . has an attached probability p⇢ from the simulation, and we then eval-
uate the proportion of the time the car spends in each edge e via te =

P
{p⇢ | e 2 ⇢}.

For each edge e, the thickness of the corresponding line in Figure 8.5 is proportional
to te. Note that, in Figure 8.5 (b), roads are picked whose distance to the goal is not
the shortest, which is because the strategy achieves a trade-off between the objectives:
since maximising road quality is traded off against other goals, it may be beneficial
to take roads with higher quality to improve the expectation, while at the same time
possibly incurring accidents and traffic rule violations with higher probability.

8.1.4 Discussion

To implement a strategy as a controller on an autonomous vehicle, we have to ensure
that the strategy state is consistent with the system state. The strategy’s view of
the system is determined by the game model, which can be thought of as simulating
the game inside the strategy. To update the state, the strategy needs to measure the
system state and trigger the corresponding transitions, both in Player 2 and stochastic



8.1. AUTONOMOUS URBAN DRIVING 175

states. In Player 1 states, the transitions selected by the strategy are interpreted as
changing the actuator settings of the car to control the system. The strategies that
we synthesise have deterministic choice functions ⇡

c

, while the randomisation is part
of the memory update function ⇡

u

. Therefore, a controller based on such a strategy
can choose specific actions, rather than distributions, and yet realise a randomised
strategy achieving the desired objectives.

The total time to compute the strategy for Charlton-on-Otmooor (CoO) is 2627s,
while the time for Islip is only 1934s, even though the state space for the Islip model is
more than three times the size of that for CoO. However, the total time is influenced
by the concrete topology of the respective road graphs. Thus, the synthesis for
CoO took 111 iterations with 133 extreme points at the latest iteration, while for
Islip synthesis took only 87 iterations with 114 extreme points. Larger villages in
experiments resulted in significantly higher computation times.

Possible Extensions. Scalability could be increased by employing domain-specific
techniques: for example, we could consider a receding-horizon control approach, where
only a finite horizon is considered in strategy synthesis, which is extended step by
step as the game advances, see for example [137]. We could thus synthesise a strategy
that only considers the roads up to a given distance. However, with receding-horizon
control global guarantees have to be ensured even if making local planning steps.

Further, with human drivers, there exists a “principle of trust” with other traffic
participants (such as other cars and pedestrians), whom driver can assume to behave
reasonably. For example, other cars obey the traffic rules most of the time, and
pedestrians usually use side- and crosswalks. This trust relationship could be cast as
queries of the form 'A ! ', where 'A expresses the assumptions on the uncontrollable
environment. This is in contrast to our compositional framework, where 'A is satisfied
by another component.

Finally, one could augment the user interface to allow more interactive use: in
addition to selecting the desired target location for the reachability objective Otrl, and
the desired trade-off from the Pareto set as in step (S3) of our synthesis procedure
of Section 4.4, the visualisation of the resulting strategy could be supplemented with
more details, while maintaining clarity and intuitive feedback to a non-technical user.

Availability. The related files are in the games/car subfolder of the examples di-
rectory in the PRISM-games 2.0 release. To run the computations, the model and
properties file can be generated using generate.py (reproduced in Appendix B.1),
which also produces a bash script to run the synthesis.
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Figure 8.6: A road network for UAV ISR missions (adapted from [77]). Anglepoints are
shown as small (blue) rectangles, roadpoints are shown as grey circles between waypoints,
ROZs are shown as (red) rectangles, and checkpoints are indicated by circles.

8.2 UAV Path Planning

Control of unmanned vehicles has received increased attention in recent years, with
versatile applications in both the civilian and military domains. We study the control
of an unmanned aerial vehicle (UAV) in a road network surveillance scenario, where
some decisions are made by the UAV in full autonomy, while other decisions are
dictated by a human operator, for example, via a remote wireless link. This case
study is based on [63], where analysis based on MDPs and stochastic games was
performed, and we focus in this section on the game model.

8.2.1 Problem Setting

We consider the scenario of a UAV performing intelligence, surveillance, and recon-
naissance (ISR) missions over a road network. Figure 8.6 shows a map of the road
network, which has six surveillance waypoints labelled w1, w2, . . . , w6. To take pic-
tures from different angles at a waypoint, we discretise angles of approach in incre-
ments of 45�, obtaining eight anglepoints a1, a2, . . . , a8 around each waypoint. Roads
connecting waypoints are discretised into roadpoints r1, r2, . . . , r9. Red polygons in
Figure 8.6 represent restricted operating zones (ROZs), in which flying the UAV may
be dangerous or compromise stealth requirements.
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We assume the UAV is equipped with the necessary low-level controls to transition
between waypoints and roadpoints, and perform surveillance manoeuvres, such as loi-
tering above waypoints. The UAV performs flying tasks autonomously, and interacts
with a human operator that may give additional input to influence the planning de-
cisions. The human operator is primarily in charge of the sensor tasks, for example
selecting the anglepoints of approach. Moreover, the operator can decide to influence
the UAVs steering decisions at designated checkpoints w2, w5 and w6, marked by cir-
cles in Figure 8.6. The piloting plan for the UAV has to satisfy a high-level mission
specification [77]. We focus on surveillance of the road network with minimum fuel
consumption, while trying to avoid ROZs. We synthesise strategies which can be
implemented on the UAV’s onboard automation interface.

8.2.2 Model

We model the UAV controller synthesis scenario as a stochastic game. Since we want
to find a flying plan for the UAV, we model the UAV as Player 1, and the operator as
Player 2. Figure 8.7 shows a fragment of our game model, in which states controlled by
the UAV and operator are drawn in circles and boxes, respectively. The probability
distributions in the model correspond to choices where statistics about the operator
behaviour are assumed to be known. Player 2 nondeterminism for the operator either
models that we cannot quantify distributions, or that we want to maintain the ability
of the operator to alter the mission dynamically to address previously unforeseen
circumstances. In addition to using Player 2 to model the operator, we could model
Player 2 nondeterminism of truly adversarial nature, for example, if the UAV has to
avoid being detected by an intelligent adversary.

UAV Model. The dotted boxes in Figure 8.7 correspond to fragments of the UAV
model. The UAV moves on roadpoints between waypoints, where the operator per-
forms sensor tasks, potentially requiring the UAV to loiter until exiting the waypoint.
At roadpoints and waypoints that are not checkpoints, the UAV selects where to fly
next, for example, referring to Figure 8.6, at w3, the UAV can go to r6 or w4 (note
that the available choices do not depend on the anglepoint). At checkpoints, the op-
erator has some choice over the flying path of the UAV. If the operator has complete
power at checkpoints (modelled as a nondeterministic choice of Player 2), the game
semantics allows the operator to behave completely adversarially in the worst case.
For example, if the mission requires to visit w3, the operator could ask the UAV to
fly in the loop w2, w6, w5, w2, w6, . . . forever, so that the UAV never completes its mis-
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sion. To avoid such behaviours, we define the delegation probability p
del

, with which
the operator delegates to the UAV the task of picking the next road. The delegation
probability is not specific to any particular map or mission, and thus can be quantified
by obtaining statistics on how often an operator delegates to the UAV automation
during training or past missions.

Operator Model. Our model of the human operator takes into account the be-
haviour and performance of the operator, based, for example, on high-level trends
induced from human factors literature, see [63] for a discussion. The following expla-
nation refers to the dashed boxes in Figure 8.7, corresponding to the operator model.
The operator performs image analysis tasks, which we count using k. Incrementing k

is indicated by k++, and the operator reaches fatigue if k reaches a threshold T . The
workload of the operator is either high or low, with uniform distribution. Analysis
of the images depends on the proficiency of the operator, which depends on k and
the workload: under low workload, images are good with probability pl(k) = pl(0)

if k < T and pl(k) = f · pl(0) if k � T , and we define ph(k) symmetrically for high
workload, where pl(0) and ph(0) are the initial accuracies, and f < 1 is a fatigue
discount factor. If the image is bad then the operator asks the UAV to loiter at the
waypoint to collect more data. If the image is good the operator exits the waypoint,
and enters a flying phase. In waypoints that are not checkpoints, the UAV then takes
over, and at checkpoints the operator can delegate or prescribe the next flying target.

8.2.3 Analysis

We now analyse our model under an example UAV mission of covering the waypoints
w1, w2, and w6 (starting at w1) in minimum time. We are particularly interested in the
trade-offs between the likelihood of visiting ROZs and the mission completion time.
Assume each loiter takes 10 time units and flying each road segment takes 60 time
units, that is, we define a reward structure time(loiter) = 10 and time(fly) = 60. We
also define the reward structure ROZ(s) = 1 for all fly-transitions that are outgoing
from states corresponding to positions in ROZs (see Figure 8.6). To encode the
mission objective, we introduce self-loops with zero rewards at the states w1, w2 and
w6 of the game model to make them terminal states. This does not make the game
stopping, as the UAV may still cycle between, for example, w4 and w5, but, since we
are interested in minimising the mission completion time, the UAV (Player 1) has no
incentive to choose this strategy. Formally, we consider the objectives Erew

(time)

and Erew

(ROZ), and we analyse the qualitative trends for the objectives.
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Delegation Probability. We first analyse the effect of the delegation probability
p

del

on the achievable expected mission completion time, vtime. Figure 8.8 shows a plot
of vtime as a function of p

del

. The higher the delegation probability (that is, the less
operator intervention), the faster the mission can be completed. If we, moreover, vary
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the operator fatigue discount factor f , we observe that vtime increases with fatigue,
that is, with decreasing f . In our current model the operator fatigue only affects
the UAV loitering behaviour, and is independent of p

del

, which is why the curves for
different values of f are parallel to each other.

Trade-offs. We first consider the query of minimising the expected time of mission
completion, and simultaneously minimising the expected number of ROZ visits, vROZ,
that is, we consider the CQ Erew

(time)(vtime)^ Erew

(ROZ)(vROZ). We investigate
the achievable trade-offs by computing approximations of the Pareto sets, using the
F

rew,~r operator; we let a0 = 100, and ⌘ = 1, and terminate after kmax = 100 iterations
(when increasing kmax beyond 100 we observe no significant change in the resulting
sets). Firstly, we show the effect of the operator accuracy parameters pl(0) and ph(0)

in Figure 8.9. While we observe that higher operator accuracy leads to less time
needed to complete the mission (because of less loitering), the UAV performance is
robust to within at most 10% deviation in mission completion time (for the fixed
parameters p

del

= 0.5, T = 10 and f = 0.7). Secondly, we investigate the effect of the
delegation probability p

del

in Figure 8.10, where we fix, for the sake of illustration,
pl(0) = 0.9, ph(0) = 0.8, T = 2 and f = 0.7. The trends show that, as the delegation
probability decreases, longer missions result from mitigating the chances of entering
ROZs. The sensitivity of the UAV performance to the delegation probability is higher
than to the accuracy parameters pl(0) and ph(0). This suggests that, in the design
of UAVs interacting with human operators, a key aspect is deciding under which
circumstances an operator can outright delegate the flying plan, while latent mission
objectives exist for the UAV.

8.2.4 Discussion

We studied the interaction of a UAV with a human operator, and the latter’s influ-
ence on the mission performance. The operator has some freedom to steer the UAV,
and the UAV has to achieve the mission under all possible operator behaviours. We
model human traits of the operator such as fatigue and proficiency, and the optimal
flying plans of the UAV can depend on these characteristics. If models for individual
operators are available, we may even synthesise individualised optimal UAV piloting
plans. Further, by separating the operator and the UAV model, the points of in-
teraction become apparent. We can, for example, model that the operator tends to
delegate to the UAV automation more often under higher workload or fatigue levels.
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Possible Extensions. In order to achieve better UAV performance, we can strengthen
the assumptions on the operator. Consider a (hypothetical) checkpoint c̃ where the
operator can choose waypoints wx, wy, and wz. We call a convex set of distributions
over probabilities to go from c̃ to one of {wx, wy, wz} an admissible operating region
(AOR). A larger AOR represents a weaker assumption on the operator behaviour, re-
sulting in lower performance of UAV flying plans, but increased robustness. The fully
nondeterministic model, shown in Figure 8.11 (left), allows the operator to pick any
distribution with a randomised strategy, and the corresponding AOR is represented
by the green triangle in Figure 8.11 (right). If we know about the possible distribu-
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Figure 8.11: The AOR of the operator modelled fully nondeterministic (left) is endowed
with learned distributions pi (middle), each of which corresponds to a corner of the refined
AOR (right).

tions of the operator’s choices, we may refine the model and obtain, for example, the
one shown in Figure 8.11 (middle), where µa for a 2 {a, b, c} represent probability
distributions (for instance choosing wx with probability µa(wx)); the corresponding
AOR is drawn as the red triangle in Figure 8.11 (right). Note that, if we synthesise
a UAV (Player 1) plan in a PA model (with no Player 2), all distributions for the
operator are fixed, and hence represent an AOR consisting of just a single point.

As in the autonomous driving case study, we can synthesise specifications of the
form 'A ! 'G, where 'A represents assumptions on the operator and 'G represents
guarantees on UAV mission performance. Hence, instead of explicitly encoding as-
sumptions on the operator’s behaviour via concrete probability distributions in the
model, we can use implicit assumptions expressed in the specifications.

Availability. The related files are in the games/uav subfolder of the examples direc-
tory in the PRISM-games 2.0 release. We reproduce the model and properties files
(uav.prism and uav.props, respectively) in Appendix B.2.

8.3 Aircraft Power Control

In avionics, advances in electronics technology have initiated a recent transition to
more-electric aircraft in order to, among other benefits, reduce take-off weight and
optimise power consumption in-flight. We investigate the assume-guarantee strategy
synthesis to control the electric power distribution on an aircraft. Previous studies of
the problem appeared, for example in [140], which is concerned with synthesis from
(non-quantitative) LTL specifications, and in [102], where the controller is synthesised



8.3. AIRCRAFT POWER CONTROL 183

G

1

c

1

B

1

c

3

B

2

G

2

c

2

c

4

c

8

G

3

c

5

B

3

c

7

B

4

G

4

c

6

G1

G2

interface

(a) Single-line diagram of
two AC components.

s

1 Each generator powered in-
dependently with probability
p

g

.

. . .

s

2

⌧

set (G
1

, G

2

)
every Nth iteration

s

2

Set contactor intention. If
c

int

4

= 1 (interface opens),
enforce c

int

1

= c

int

2

= 0 (iso-
late generators).

s

3

Resolve contactor intention.
Turning off possibly delayed
by at most d.

. . .
set (cint

1

, c

int

2

, c

int

3

, c

int

4

)
c

del

j

:=0 if cint
j

changed

s

4 Actions indicating status
of buses. Interface delivers
power from G2 (using I

2

on

)
with probability v

on

.

c

j

:=c

int

j

c

del

j

++
if cdel

j

< d

s

5

s

0
5

Shared actions for interface;
x 2 {on, o↵}.

v

on

1�v
on

s

0
1

s

00
1

I

2

on

&I

1

x

I

2

o↵

&I

1

x

(b) Game model G1. The stages are explained on the right hand side.

Figure 8.12: Aircraft electric power system (adapted from [97]).

under a fixed topology of routing power through the aircraft. This section is mainly
based on our work in [10].

8.3.1 Problem Setting

We model the electrical power system of a more-electric aircraft according to the
Honeywell, Inc. patent [97]. Power is to be routed from generators to buses (and
loads attached to them, not shown in the figure) by controlling the contactors (that
is, controllable switches) connecting the network nodes. The single-line diagram of
the full power system in Figure 8.12 shows how power from the generators (Gi) can be
routed to the buses (Bi) through the contactors (ci). The controllers have to take into
account that the contactors may have a delayed response, and that the generators
available in the system may be reconfigured, or even exhibit failures. The primary
control objectives are to ensure that the buses are powered, while avoiding unsafe
configurations due to short-circuits between power sources.

We extend the approaches of [102, 140] to the compositional stochastic games
setting with multiple objectives, where the behaviour of generators is described via
probability distributions. We demonstrate how our approach yields controllers that
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ensure given reliability levels and higher uptimes than those reported in [140], while
maintaining the flexibility to decide how power is routed between components, albeit
for a smaller model than in [102].

8.3.2 Model

The system comprises several components, each consisting of buses and generators,
and we consider the high-voltage AC subsystem, shown in Figure 8.12 (a), where the
dashed boxes represent the components set out in [97]. Since the aircraft is to be
controlled continually, we use long-run properties to specify correctness. The game
models and control objectives in [140] are encoded using linear temporal logic (LTL)
properties. We extend their models to stochastic games with quantitative specifica-
tions, where the contactors are controlled by Player 1 and the contactor dynamics and
the interfaces are controlled by Player 2. The advantage of stochasticity is that the re-
liability specifications desired in [140] can be faithfully encoded. Further, games allow
us to model truly adversarial behaviour (for example, uncontrollable contactor dy-
namics), as well as nondeterministic interleaving in the composition. The individual
components are physically separated for reliability, and hence allow limited interac-
tion and communication. We model an interface to communicate the status between
components, and compose them by means of our game composition of Definition 4.3.

Repeated Multi-Stage Game Model. We model each component as an infinite
loop of Player 2 and Player 1 actions. The model of one AC subsystem, G1, is shown
in Figure 8.12 (b); G2 is symmetric. One iteration of the loop represents one unit of
time �

d

, and the system steps through several stages, corresponding to the states s1
to s5 in G1, and symmetrically in G2. In s1 the status of the generators is set; in s2

the controller sets the contactors; in s3 the delay is chosen nondeterministically; in
s4 actions specify whether both buses are powered, and whether a failure occurs; and
in s5 information is transmitted over the interface. The ⌧ -labelled Dirac transitions
precede all Player 1 states to enable composition [11]. The loop then starts again at
s1, potentially with some variables changed, indicated as s01 or s001 in Figure 8.12 (b).

Contactors, Buses and Generators. We derive the models based on the LTL
description of [140]: the status of the buses and generators are kept in Boolean
variables B1, . . . , B4 and G1, . . . , G4, respectively, and their truth value represents
whether the bus or generator is powered; the contactor status is kept in Boolean
variables c1, . . . , c8, and their truth value represents if the corresponding contactor
lets the current flow. For instance, if in G1 the generator G1 is on but G2 is off, the
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controller needs to switch the contactors c1 and c3 on, in order to power both buses
B1 and B2. At the same time, short circuits from connecting generators to each other
must be avoided, for example, contactors c1, c2 and c3 cannot be on at the same
time, as this configuration connects G1 and G2. The contactors are, for example,
solid state power controllers [125], which typically have non-negligible reaction times
with respect to the times the buses should be powered. Hence, as in [140], we model
that Player 1 can only set the intent cinti of contactor i, and only after some delay is
the contactor status ci set to this intent. For the purposes of this demonstration, we
only model a delayed turn-off time, d, as it is typically larger than the turn-on time
(for example 40 ms, the turn-off time reported in [57]). Whether or not a contactor
is delayed is controlled by Player 2.

Interface. The components can deliver power to each other via an interface, shown
Figure 8.12 (a), which is bidirectional, that is, power can flow both ways. The original
design in [97] does not include connector c8, and so c4 has to ensure that no short
circuits occur over the interface: if B3 is powered, c4 may only connect if B2 is
unpowered, and vice versa; hence, c4 can only be on if both B2 and B3 are unpowered.
By adding c8, we break this cyclic dependence. Actions shared between components
model transmission of power. The actions I1x and I2y for x, y 2 {on, o↵} model whether
power is delivered via the interface from G1 or G2, respectively. Hence, power flows
from G1 to G2 via c8, and the other direction via c4; the contactors can also ensure
that power cannot flow in the other direction, preventing short circuits.

Generator Assumptions. We assume that the generator status remains the same
for N time steps, that is, after 0, N , 2N , . . . steps (of duration �

d

each) the status may
change, with the generators each powered with probability p

g

, independently from
each other. N and p

g

are understood to be able to be obtained from the mean-time-
to-failure of the generators. These quantitative aspects of the model are in contrast
to [140], where, due to non-probabilistic modelling, the strongest assumption is that
generators do not fail at the same time.

8.3.3 Analysis

The main objective is to maximise uptime of the buses, while avoiding failures due to
short circuits, as in [140]. Hence, the controller has to react to the generator status,
and cannot just leave all contactors connected. The properties are specified as ratio
rewards, since we are interested in the proportion of time the buses are powered. To
use the (Conj) rule from Section 4.2.3, we attach all rewards to the status actions or
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Table 8.2: Strategy synthesis for aircraft case study. A minus (�) for von means the
interface is not used, and for k means that no value is applicable. The timeout (TO) is 4 h.
The forward slash (/) separates values for the two components.

Target Model Properties Parameters Performance
vb vf von N d pg |S| " a0 k Runtime [s]
0.9 0.01 � 0 0 0.8 1152 0.001 1000 16/16 16/15
0.9 0.01 � 1 0 0.8 2304 0.001 1000 26/26 47/46
0.9 0.01 � 1 1 0.8 7600 0.001 1000 �/� TO/TO
0.9 0.01 � 2 0 0.8 3456 0.001 1000 46/46 173/177
0.9 0.01 � 2 1 0.8 11400 0.001 1000 156/156 2269/2291
0.9 0.01 � 2 2 0.8 87240 0.001 1000 �/� TO/TO
0.9 0.01 0.6 0 0 0.8 2432 0.01 100 11/21 41/79
0.9 0.01 0.6 1 0 0.8 4864 0.01 100 21/21 156/160
0.9 0.01 0.6 1 1 0.8 16496 0.01 100 33/40 1420/1511
0.9 0.01 0.6 2 0 0.8 7296 0.01 100 32/22 573/477
0.9 0.01 0.6 2 1 0.8 24744 0.01 100 34/23 3323/2386
0.9 0.01 0.6 2 2 0.8 187560 0.01 100 �/� TO/TO

the synchronised actions I1x and I2y in order to obtain specifications defined on actions
and obey the restrictions on the action alphabets. Moreover, every time step, the
reward structure time attaches �

d

to these actions to measure the progress of time.
For i 2 {1, 2}, the reward structure busesi assigns �

d

for each time unit both
buses of Gi are powered; and the reward structure faili assigns 1 for every time unit
a short circuit occurs in Gi. Since the synchronised actions I1on and I2on are taken
whenever power is delivered over the interface, we attach reward structures, with
the same name, assigning �

d

whenever the corresponding action is taken. For each
component i 2 {1, 2}, the objectives are the following:

• Oi
bus ⌘ Pratio(busesi/time)(vb): to keep the uptime of the buses above vb;

• Oi
safe ⌘ Pratio

(faili/time)(vf): to keep the failure rate below vf ; and

• Oi
int ⌘ Pratio(I ion/time)(von): if used, to keep the interface uptime above von.

We consider the local specification 'i = Oi
bus ^ Oi

safe ^ Oi
int for game Gi, i 2 {1, 2}.

Using the (Conj) rule from Section 4.2.3, we can obtain a strategy composed of
the local strategies to control the full system, satisfying the global specification ' =

O1
bus^O2

safe^O1
bus^O2

safe, that is, both components are safe and the buses are powered.

Strategy Synthesis. Table 8.2 shows, for several parameter choices, the experi-
mental results. When the interface is not used, we consider the simpler specification
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Figure 8.13: Snapshot of simulating the strategy for N = 2 and d = 1, showing the
interface operation against a uniformly randomising environment.

'i = Oi
bus^Oi

safe for game Gi, i 2 {1, 2}. The table shows that the synthesised strate-
gies are making effective use of the redundancy introduced by the two generators
with reliability pg = 0.8, and achieve a bus uptime of at least 0.9. To achieve this,
the strategy cannot just leave all contactors connected, since short circuits have to
be prevented. As the delay d increases, the specification becomes harder to satisfy,
since the generator status may change faster than the contactors are able to compen-
sate. For further illustration, Figure 8.13 shows a simulation trace of the strategy
for N = 2 and d = 1 for the model with interface, against a uniformly randomising
adversary. While the strategy activates the interface only rarely (due to the redun-
dancy of two generators), we can see how the intention to turn c4 on via cint4 is set
only if the interface is powered, and how the turn-off delay affects c4. The contactor
c3 changes status much more frequently, and we can observe that the delay causes
not all intention changes to be realised. Towards minimising wear on the contactors,
a further objective could be added to bound the switching rate.

In [140], the uptime objective was encoded in LTL by requiring that buses are
powered at least every Kth time step, yielding an uptime for the buses of 1/K, which
translates to an uptime of 20% (by letting K = 5). In contrast, using stochastic games
we can utilise the statistics of the generator reliability, and obtain bus uptimes of up
to 90% for generator health pg = 0.8. For the models without delay, the synthesised
strategies approximate memoryless deterministic strategies, but, when adding delay,
randomisation is introduced in the memory updates.
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8.3.4 Discussion

We analysed the control of electric power distribution in components of a more-electric
aircraft. The design of the power system is componentised, which we reflect in our
model by using multiple components that interact via an interface. Our specifications
are formulated using ratio reward objectives with almost sure satisfaction semantics,
and we use rewards to quantify the quality of the synthesised strategies.

Since our model is inspired from the LTL model of [140], all state variables are
Booleans, for example, a bus can only either be powered or unpowered. Hence, if a
bus is powered, all connected loads are assumed to be powered. To obtain a more
accurate model, one could encode electrical current flows through the AC systems in
numerical variables, and use Kirchoff’s current law to ensure that the current flows at
branches are balanced to zero, while interpreting the generators as idealised current
sources with infinite impedance.

A shortcoming of our model is that the interface is not modelled using asymmetric
contracts of the form A ! B. Instead, we encode an assumption using a stochastic
state so that I ion is chosen with probability von. However, this yields to deadlocks
in the composition: for example, if in G1 the interface distribution samples that the
interface delivers power, that is, going to s5 and enabling I2on, then it may be the case
that G2 does not deliver power, and does not have I2on enabled, even if it is ensured
that with probability von I2on is taken. The global property is still satisfied due to the
fairness condition in the assume-guarantee rules, which ensures that the deadlocked
states in the composition are never accessed (see Section 4.2.3). Yet, a more natural
way of modelling the interface is to use nondeterminism on the “receiver” side, and
apply asymmetric contracts. Synthesis of such queries, including disjunctions for
Pratio objectives, is beyond the scope of this thesis, as is resolving the circularity
arising from specifications of the form A! B for G1 and B ! A for G2.

Further, for a safety-critical system such as an aircraft, the target values for the
quoted objectives do not offer satisfactory performance of the strategy synthesis
implementation. Theoretically, our algorithms can achieve arbitrary accuracy, but
would exceed realistic computational performance expectations, as Table 8.2 indi-
cates. Studying model checking for rare events may yield insights towards synthesis
of strategies for such critical systems [9].

Possible Extensions. The electrical power system in [97] consists of further sub-
systems dedicated to low-voltage AC, and both high- and low-voltage DC, that can
all be modelled similarly in our framework. Between each pair of interacting compo-
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nents, an interface is required, and to prevent deadlocks the multi-stage game model
needs to prescribe a fixed order for the interface actions between components. This
is merely a modelling requirement and has no effect on the achievability of the spec-
ification, since each component views all other components as a single environment
(albeit in our current model represented as a distribution over interface actions).

Availability. The model file power_comp.prism and properties file power_comp.props
are available in the games/power directory of the PRISM-games 2.0 examples, and
are reproduced in Appendix B.3.

8.4 Room Temperature Control

We consider a benchmark for temperature control in several rooms of a house, where
we are interested in regulating the temperature in each room as close as possible
around a given setpoint. This case study is inspired by the room temperature control
benchmark of [61]. We consider the continuous dynamics of the temperature in sev-
eral rooms under probabilistic perturbation, and derive a finite-state stochastic game
representation using a discretisation procedure.

8.4.1 Problem Setting

Consider a building with several rooms. The temperature in each room depends on
the adjacent rooms, the outside ambient temperature, and whether or not windows are
opened. Factors such as people in the room radiating heat, or uneven wall isolation,
affect the temperature, which we model as probabilistic uncertainty. Standard models
for temperature regulation are given as stochastic differential equations (SDEs), and
to obtain finite-state turn-based stochastic games we need to discretise the SDEs,
for which we use methods similarly to those in [126, 128]. We thus model the prob-
lem as discrete-time SDEs, where we use familiar physical parameters, discretise the
state space formally to obtain finite games, and then perform strategy synthesis. The
obtained strategies can then be mapped back to the continuous-space model. Further-
more, the error incurred during discretisation can be formally bounded. Our focus is
to demonstrate strategy synthesis on the discretised models.
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Figure 8.14: Room layout. Room indices are shown in circles, coolers are shown as hatched
rectangles, and heat transfer is indicated by arrows.

8.4.2 Model

We first develop the discrete-time, continuous space SDEs, and then show how they
are discretised. Let I be the index set of the rooms, and, for each room i 2 I, let
Ji ✓ I\{i} be the index set of its neighbours. Each room i has a valve, controlled
by u

v,i that can take one of five settings in {0, 1
4
, 2
4
, 3
4
, 1}, corresponding to the extent

it is opened. Each room also has some outward-facing window of size 1.4 ⇥ 1.4m2,
controlled by u

w,i that can be either 0 or 1, corresponding to closed and open, re-
spectively. Note that these controls are discrete. We consider rooms of uniform size
3⇥ 3⇥ 2m3, with the layout of the rooms in Figure 8.14, but this we can straightfor-
wardly generalise. We assume that the inputs u

v,i and u
w,i are kept constant between

time steps, which are of length �
d

. We also assume that walls have negligible dynam-
ics, and that the air is well mixed, that is, the temperature in each room is uniform.
For a room i, the dynamics of its temperature xi as a function of time t is given by

xi(t+ 1) = xi(t) +
�

d

C
r,i

·
P

j2J
i

K
in,i,j · (xj(t)� xi(t)) (8.1)

+
�

d

C
r,i

·K
cw,i · uv,i(t) · (Tcw

� xi(t)) (8.2)

+
�

d

C
r,i

· (K
out,i +K

w,i · uw,i(t)) · (Tout

� xi(t)) (8.3)

+ ⌘
r,i(t), (8.4)

where we define the symbols in Table 8.3. The components of the temperature dynam-
ics are: the head transfer between neighbouring rooms in (8.1); the effect of cooling
in (8.2); the effect of the windows in (8.3); and a disturbance ⌘

r,i(t) in (8.4), which is
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Table 8.3: Symbols used in definition of temperature dynamics of room i.

Symbol Value Units (SI) Description
xi(t) [�C] room temperature at time t
u

v,i [–] control for the valve
u

w,i [–] control for the window
C

r,i 2200 [JK�1] thermal capacity of room
�

d

20 · 60 [s] temporal discretisation period
K

cw,i 2.5 [Wm�2 K�1] convection coefficient of chilled water
K

in,i,j 1.2 [Wm�2 K�1] convection coefficient of
inside wall facing neighbour j 2 Ji

K
out,i (1.8, 1.2, 1.8) [Wm�2 K�1] convection coefficient of outside wall

K
w,i 0.78 [Wm�2 K�1] convection coefficient of window

T
out

30 [�C] nominal outside ambient temperature
T

cw

10 [�C] chilled water temperature
T

set

20 [�C] temperature setpoint
⌘

r,i [�C] room temperature disturbance
�2

r,i 65�2 ·�
d

[�C2 s] variance of room temperature disturbance

a zero-mean stationary random process with variance �2
r,i. The thermal capacity C

r,i

of room i is proportional to the volume of the room, and the thermal convection coef-
ficients K

cw

, K
in

, K
out

and K
w

are proportional to the respective area of the contact
surfaces. We abbreviate the dynamics by writing xi(t+1) = fi(xi, ~xi, u

v,i, uw,i)+⌘r,i(t),
where we denote by ~xi = (xj

1

, xj
2

, . . .) the vector of temperatures of the neighbours
Ji = {j1, j2, . . .} of room i.

Discretisation. We discretise the dynamics by gridding the continuous temperatures
xi, for each room i, into mi uniformly sized bins, and we consider temperatures at
±2�C around the temperature setpoint T

set

. Hence, the bins have diameter �i = 4/mi,
and we define the `th bin for xi by Bi,`

def
= {xi | (` � 1) · �i  xi � T

set

+ 2  ` · �i},
and its representative point by bi,`

def
= Tset � 2 + 2`�1

2
�i, which is at the centre of the

bin. Given xi, we denote by x̃i the representative point bi,` of the bin such that
xi 2 Bi,`. Note that the temperature of each room depends on the temperatures of
its neighbours (see (8.1)), and so we discretise all temperature dimensions per room.
We want to obtain a component game for each room, which we then compose by
synchronising on actions labelling transitions that indicate that the room temperature
changes between bins. For each temperature dimension i, we thus need for each bin
in room i a corresponding bin in all its neighbours Ji, whose boundaries precisely
align. This is why, for each given temperature dimension i, we use the exact same
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grid for each room (but different temperature dimensions can have different grids).
For the presented evaluation, we fix mi = 5 for all i.

The SDE model specifies a probability to go from xi(t) to xi(t+1) for each value
pair. In the discretised model, we need to calculate the probability to transition
between bins, which is calculated by marginalising the distributions. We can evaluate
the probability of transitioning from x̃i to x̃0

i given that the neighbours of room i are
at temperatures ~̃xi, and for fixed controls u

v,i and u
w,i, by

P̃i(x̃
0
i, x̃i, ~̃x

i, u
v,i, uw,i) =

1

⌘
norm

·
Z x̃0

i

+�
i

/2

x̃0
i

��
i

/2

�(x0
i | fi(x̃i, ~̃x

i, u
v,i, uw,i), �

2
r,i) dx

0
i,

where �(x |µ, �2
r,i) is the Gaussian probability density function with mean µ and vari-

ance �2
r,i, and ⌘

norm

def
=
P

x̃0
i

P̃i(x̃0
i, x̃i, ~̃xi, u

v,i, uw,i) is used to normalise the distribution,
since we truncate temperatures outside the range ±2�C in the binning process.

Stochastic Game Formulation. From the discretised transition probabilities P̃i

for the individual rooms i, we now construct stochastic games. Recall that the tem-
perature x̃i is controlled by setting the valve control u

v,i, which has to counteract
the effects of the window setting u

w,i, as well as the temperature in the neighbouring
rooms ~̃xi. Since we model turn-based games, we have to express the temporal sequence
of setting these variables in several stages, which we model similarly to the aircraft
model in Section 8.3. We thus let Player 1 (the controller) set u

v,i, and Player 2 (the
environment) set u

w,i and ~̃xi. The temperature dynamics x̃i are then set without non-
determinism, but stochastically according to P̃i. Furthermore, in our compositional
model, we need to introduce action names to communicate the temperature of the
neighbouring rooms between component games. We introduce communication stages
similarly to the aircraft model, where each component i sends its temperature x̃i

using the tempi_x̃i action, and receives the temperature x̃j from neighbouring room
j 2 Ji by synchronising on the tempj_x̃j action. We show the multi-stage game Gi

for room i in Figure 8.15. Note that the games Gi are controllable multichain, since
the disturbance ⌘

r,i ensures a high degree of connectivity of the discretised game.
Furthermore, the games are compatible and do not deadlock.

Since we are interested in keeping the temperature around a setpoint, we define
reward structures tempdevi for the respective rooms i by tempdevi(xi) = (T

set

�xi)
2.

The reward structures are discretised by considering the representative points, and
so we get tempdevi(x̃i) = (T

set

� x̃i)
2. To measure time, we note that the temp2_x̃2

action is synchronised across all rooms, and so we define the reward structure time by
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Figure 8.15: Discretised multi-stage game. Stages 1–4 correspond to controlling the win-
dow, valve and temperature dynamics of the room, while the receive and send stages corre-
spond to modelling the interaction with the neighbouring rooms. We abbreviate |Ji| = q.

time(temp2_x̃2) = 1 for all x̃2 (alternatively, we could introduce an additional stage
in the games to synchronise time.) We can now consider ratios of rewards that are
independent of the number of stages in the discretised games.

Discretisation Error Computation. We estimate the discretisation errors, which
depend on the reward structures used in a similar way to [129]. We consider the
N -step error of total rewards, where one step is one loop in the multi-stage game,
and then divide by N ·time(temp2_x̃2) = N for the ratios of rewards. We can express
the temperature dynamics of room i in affine form as

xi(t+ 1) = ↵i · xi(t) +
X

j2J
i

↵i,j · xj(t) + �
v,i · uv,i(t) + �

w,i · uw,i(t) + ⌘
r,i(t),

with constants ↵i, ↵i,j, �v,i and �
w,i expressing the influence of the respective variables.

For each room i, Player 1 is interested in optimising a reward function J⇤
i,0, depending

on the (expectation) objective under consideration. Consider a reward structure
yielding a value of Ri,t(xi) at time t for a temperature xi. At time t, J⇤

i,t consists of
the reward Ri,t at time t, up to (including) time N (sometimes called the cost-to-go),
and the reward Hi from time N + 1 to infinity. Hence, we define

J⇤
i,t(xi)

def
= min

uv,i
max
uw,i

max
~xi

✓
Ri,t(xi) +

Z
J⇤
i,t+1(x

0
i) · �(x0

i | fi(xi, ~x
i, u

v,i, uw,i), �
2
r,i) dx

0
i

◆

J⇤
i,N+1(xi)

def
= Hi(xi).
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To obtain a bounded error, we require Lipschitz continuity of the rewards, that is,

|Hi(xi)�Hi(x
0
i)|  hH,i · |xi � x0

i|

|Ri,t(xi)�Ri,t(x
0
i)| 

X

j2J
i

[{i}
hR,j · |xj � x0

j|,

for some hH,i and hR,j. We recursively define hi,t by hi,N+1
def
= hH,i, and hi,t

def
=

hR,i+hi,t+1 · |↵i|, and obtain that the reward J⇤
i,t is also Lipschitz continuous, that is,

��J⇤
i,t(xi)� J⇤

i,t(x
0
i)
��  hi,t · |xi � x0

i|.

The error in discretisation for each individual quantity is at most the diameter
of the bin, that is, �i for xi, multiplied by the Lipschitz constant of that quantity,
hR,i. The error in J⇤

i,t at time t, defined as Ei,t
def
=
��J⇤

i,t(xi(t))� J⇤
i,j(x̃i(t))

��, consists
of three parts: (i) the error related to the reward Ri,t, which is

P
j2J

i

hR,j · �j; (ii)
the error related to the approximate Jt+1, which is Ei,t+1; and (iii) the error related
to the approximation of the stochastic kernel ⌘

r,i inside the integral, which is hi,t+1 ·P
j2J

i

|↵i,j| · �j. Note that the error is independent of the already discretised inputs.
Thus,

Ei,t =
X

j2J
i

hR,j · �j + Ei,t+1 + hi,t+1 ·
X

j2J
i

|↵i,j| · �j, Ei,N+1 = hH,i · �i.

We obtain that

Ei,0 = (N + 1) ·
X

j2J
i

hR,j · �j + hH,i · �i + (
NX

t=0

hi,t+1) ·
X

j2J
i

|↵i,j| · �j,

and, as we consider the long-run ratio with time, that is, the number of steps, in the
denominator, we get the error

lim
N!1

Ei,0

N + 1
=
X

j2J
i

hR,j · �j +
hR,i

1� |↵i|
·
X

j2J
i

|↵i,j| · �j.

To ensure reasonable efficiency of our synthesis implementation, we discretise only
very crudely, obtaining large errors. We emphasise, however, that the errors are over-
estimates, and can be made arbitrarily small by increasing the number of bins mi.
Thus, with the current configuration, we obtain an approximate discretisation error
of 10�C for each temperature dimension, which is magnitudes above the target values
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we are interested in, but we note that these are overestimates and can be tightened
by increasing the number of bins.

8.4.3 Analysis

We now analyse the composed stochastic game G = G1 k G2 k G3. We are interested
in the ratio of the temperature deviation over time, which are defined on traces. We
also want to use the cooling circuits as little as possible to save energy, and hence
introduce the reward structures valvei for room i, defined by valvei(ai_vu

v,i) =
uv,i
4

,
corresponding to the valve setting u

v,i. Lastly, we can impose an assumption on the
time the windows are opened using the reward structure windowi for room i, defined
by windowi(ai_wu

w,i) = u
w,i.

For each room i, we consider the objectives Oi
td ⌘ Eratio

(tempdevi/time)(vitd)

to minimise the temperature deviation, Oi
v ⌘ Eratio

(valvei/time)(viv) to minimise
the energy usage from opening the valve, and Oi

w ⌘ Eratio

(windowi/time)(viw)

to minimise the time the windows are open. We consider two scenarii. Firstly,
 1 = O1

v ^ (O2
td ! O1

td) for G1,  2 = O2
v ^ O2

td for G2, and  3 = O3
v ^ (O2

td ! O3
td)

for G3 bound the temperature deviation and the amount the valve is opened, for each
room independently, assuming the respective neighbours have bounded temperature
deviation. Applying our composition rules from Section 4.2.3, we derive the global
specification  =

V
i2I O

i
v ^ Oi

td, which requires that all rooms have regulated tem-
perature without using excessive cooling. Secondly, '1 = (O1

w ^ O2
td) ! O1

td for G1,
'2 = O2

w ! O2
td for G2, and '3 = (O3

w ^ O2
td) ! O3

td for G3 bound the temperature
deviation under the assumption that the windows are not excessively opened, and
the respective neighbours have bounded temperature deviation. The global specifi-
cation we derive is ' =

V
i2I O

i
w !

V
i2I O

i
td, requiring that all rooms have regulated

temperature, given that the windows in all rooms are not opened for too long. Note
that room 2 does not impose an assumption on its neighbours, since it only has two
outward facing walls, and hence its temperature is more easily regulated than that of
rooms 1 and 3, which have three outward facing walls. The absence of assumptions
on neighbours for room 2 allows us to break the circularity when applying our compo-
sition rules (see the discussion in Section 4.5) when deriving the global specifications.

Strategy Synthesis. We synthesise strategies for the discretised game using our
assume-guarantee framework. The runtimes are reported in Table 8.4. We see that
imposing requirements on the valve means that the achievable temperature deviation
is high. However, if we assume that the windows are closed, the temperature de-
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Table 8.4: Performance for room temperature case study. Mmin = 2, Mmax = 10000 (never
hit). The G column is the total time for assume-guarantee synthesis. Increase factor ⌘ = 1.
The discretised models G1, G2 and G3 have 1478, 1740 and 1478 states, respectively.

Spec. Target Algorithm Parameters Synthesis Time [s]
~vt ~vv ~vw " a0 kmax dmax G1 G2 G3

 0.8 0.8 – 0.05 100 250 10 678 27 621
 0.8 0.8 – 0.02 500 250 10 1115 29 843
 0.8 0.8 – 0.01 1000 250 10 3370 34 8605
' 0.3 – (0.3, 0.2, 0.3) 0.05 100 100 20 829 69 734
' 0.3 – (0.3, 0.2, 0.3) 0.02 500 100 20 852 72 749
' 0.3 – (0.3, 0.2, 0.3) 0.01 1000 100 20 860 92 2480

viation can be considerably lowered (the middle room has a slightly more stringent
requirement here, but also no assumptions on its neighbours.) We do not consider
specifications containing both Oi

v and Oi
w, since the increased dimensionality penalises

performance of the algorithms. The current results are computed in three different
accuracies ", where we adjust the baseline accuracy a0 accordingly, since the expected
truncated energy may diverge with a rate 1/a0 if rounding, even if the specification is
achievable, and so we require 1/a0 < ". However, when not using rounding, the num-
ber of extreme points in the fixpoint computation slows the computation. Even here
we can see that with increased accuracy the time required for synthesis shows a clear
upward tendency. Note also that the execution time depends on the algorithm pa-
rameters, see Table 8.1. Considering the full composed model monolithically, which
has of the order of 109 states, is outright infeasible for the global multi-objective
specifications  and ', and challenging even if only a single objective is considered.

Strategy Exploration. We utilise the simulator of PRISM-games 2.0 to analyse the
synthesised strategies. Figures 8.16 and 8.17 show the temperature in room 1 for  1

and �1 respectively, as well as the relevant reward structures, for the first 35 time steps
of length �

d

seconds of simulating against a uniformly randomising environment. In
Figure 8.16, since the strategy satisfies  1, the valve is not used more than at a rate
0.8. Furthermore, even though the temperature deviation in room 2 is above 0.8, the
strategy still regulates the temperature deviation in room 1 below 0.8. In Figure 8.17,
the window is not open more than 0.3 of the time, but the temperature deviation in
room 2 is above 0.3. Still, the strategy is able to regulate the temperature deviation
in room 1 below 0.3. In both figures we can observe that the strategy opens the valve
if the temperature goes above the setpoint of 20�C, and closes if the temperature falls.
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Figure 8.16: Simulating the strategy for  1. Dashed lines are averages over 150 steps.
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Figure 8.17: Simulating the strategy for �1. Dashed lines are averages over 150 steps.

8.4.4 Discussion

We have derived a compositional stochastic game model for controlling the temper-
ature in several rooms to maintain an overall condition in a building. Having a
strategy per room means also that we assume a cooling circuit in each room that can
be independently controlled, but this can be straightforwardly relaxed since the room
dynamics can be heterogeneous. The model parameters have the expected effect on
the dynamics: lower thermal convection coefficients mean better isolation, and so we
assume that the outside walls are better isolated than the inner walls. Further, if
increasing the room size, the neighbouring rooms have decreased influence, since the
room temperature is controlled primarily by the local cooling circuit.

Comparing this case study with our aircraft electric power system case study of
Section 8.3, we note that the power system is modelled directly as a stochastic game,
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and so the discrete dynamics are overt and can be analysed and augmented if neces-
sary. In contrast, after discretising the room temperature dynamics, the finite-state
model no longer has a straightforward correspondence to the original equations. The
multi-step model also needs to reflect the control dynamics; for example, swapping
the order in which the window and valve status are set may yield different achiev-
ability results. A key advantage of considering the SDE formulation, however, is that
the dynamics can be expressed in a formalism familiar to engineers, and hence the
precise encoding as a stochastic game does not have to be examined.

Possible Extensions. A straightforward extension is to consider different room
topologies, rather than the one we analyse in the concrete instance studied in this
section. When a room has several neighbours, their temperature deviations can be
lumped together as a single assumption, that is, instead of requiring tempj

1

and
tempj

2

to be below vj1t and vj1t we could require that tempj
1

+ tempj
2

is below vj1t +

vj1t , ensuring that the dimensionality of the specifications does not increase with the
number of neighbours. Our formulation already provides for such extensions, but care
has to be taken to avoid circularity in deriving the global specification. Further, the
control of temperatures in rooms can be generalised to other thermo- or fluid-dynamic
systems that require control against an unknown environment.

Availability. The related files are in the games/temperature subfolder of the ex-
amples directory in the PRISM-games 2.0 release. To run the computations, the
model and properties file can be generated using temperature.m (reproduced in Ap-
pendix B.4), which also produces a bash script to run the synthesis.

8.5 Summary

We have presented four case studies of controller synthesis for systems modelled as
stochastic games. In the study of autonomous driving in an urban setting (Section 8.1)
and path planning by an UAV (Section 8.2), we investigated strategy synthesis for
multi-objective specifications with expected total rewards in monolithic models. We
then employed our assume-guarantee framework to synthesise strategies controlling
the electrical power distribution in an aircraft (Section 8.3), and regulating the tem-
perature in several rooms of a building (Section 8.4), both using multi-objective spec-
ifications with ratios.

Our synthesis methods are highly dependent on the size of the state space and
the desired accuracy parameters of our algorithm implementation. A key factor de-
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termining the efficiency of our implementation is that the number of extreme points
in the computed polytopes may increase exponentially with the iteration count (see
also Section 7.2.1). The number of extreme points also affects the time for the strat-
egy construction. However, we also observe that the memory that is used in the
constructed strategies is generally small compared to the full memory size resulting
from using all extreme points at each state, suggested in the strategy construction of
Definition 6.2. When restricting the memory a-priori to a certain size, an approach
that does not use the geometric interpretation may be possible. Such an approach
could improve efficiency, but also sacrifice completeness in the most general case.

In particular, in the room temperature control case study, we demonstrated that
we can obtain stochastic game models from standard physical models used in control
system design. This modelling capability allows us to shift the design and debug-
ging effort to the overt model, and the effects are then transferred to the game via
a “correct-by-construction” discretisation. This alleviates the effort of working with
hard-coded discrete dynamics in the game that do not have a straightforward corre-
spondence with the original physical processes that are being modelled. The current
discretisation method uses uniform bin sizes, leading to high (albeit conservative)
discretisation error estimates. Finding tighter error bounds and adapting bin sizes
according to the error, as in the monolithic setting (see, for example, [126]), is an
attractive topic of further research.

The case studies demonstrated that our assume-guarantee framework has the po-
tential to greatly improve scalability of strategy synthesis. The most significant ad-
vantage of assume-guarantee strategy synthesis is that the complexity grows linearly
with the number of components, compared to an exponential growth in the monolithic
setting (the number of players stays constant during composition, and therefore does
not influence complexity). For the mulit-component systems considered in the case
studies of Sections 8.3 and 8.4, the fully compositional models have in the order of
106 to 1010 states, and we see in Table 8.2 that the synthesis times out at 4 h already
for models of state space size in the order of 103 to 105 states, depending on the
selected accuracy and number of objectives. An experimental analysis demonstrat-
ing that our assume-guarantee approach can greatly reduce the runtime of synthesis
compared to directly synthesising for the full monolithic system appeared in [11], but
with expected total reward objectives only. Note, however, in the monolithic setting
only the immediately required objectives have to be included in the specification,
while in the assume-guarantee setting objectives are required from the designer to
specify the interface contracts between components, which additionally may lead to
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higher synthesis times per component. Also note that finding the weight vectors (see
Section 5.4) for specifications involving disjunctions adds further complexity, and is
required mostly in the assume-guarantee setting. Yet, since the local specifications
do not have to scale with the number of components, the scalability benefits in our
assume-guarantee framework dominate as the number of components increases.



Chapter 9
Conclusions

9.1 Summary

The central question examined in this thesis is how to automatically find controllers
for systems that operate in an unpredictable, potentially adverse environment. We
assume that some of the uncertainty in the environment is quantifiable, so that we
can assume that it behaves according to a probability distribution, while some of the
uncertainty may be entirely unknown, which we model as nondeterminism, obtaining
models that are more general than MDPs. We therefore model a system as a stochastic
game, and consider the problem of finding a strategy that wins the game against the
environment, which can then be interpreted as a controller for the modelled system.

Often, a system is built from several components in order to manage the complex-
ity in its design and implementation. We have seen in our case studies two examples
of such a compositional design approach (an aircraft electric power system and room
temperature control), illustrating the benefits and challenges in the analysis of multi-
component systems. The most appealing benefit of a compositional approach is that
large systems can be more efficiently analysed component by component, with clearly
defined interfaces, rather than having to take the whole system into consideration at
the same time, and hence scalability of the analyses is improved. In order to utilise
the compositionality of the system in strategy synthesis, we introduce, in Chapter 4,
a formal framework for composing subsystems, and for specifying the interactions be-
tween them. To synthesise a strategy for the full, global system, the assume-guarantee
synthesis approach amounts to synthesising a local strategy for each component, and
then composing these strategies to obtain a strategy for the global system. We can
then employ assume-guarantee synthesis rules to ensure that the global strategy sat-

201



202 CHAPTER 9. CONCLUSIONS

isfies the required specification: a synthesis rule guarantees a global specification for
the full system under the assumption that the components satisfy their local specifi-
cations. Using assume-guarantee rules we can formally define the interaction between
components, and, in particular, define interfaces, or contracts, between the compo-
nents.

Applying assume-guarantee synthesis rules requires finding strategies for the in-
dividual components. We develop strategy synthesis methods for specifications that
consist of multiple quantitative objectives. Our motivations for considering Boolean
combinations of objectives are, on the one hand, to specify contracts between sub-
systems, which make use of logical implications such as A ! B, and, on the other
hand, to achieve trade-offs between conflicting goals, such as optimising the output
of a plant, while keeping the costs at a minimum. Synthesising strategies for multi-
objective queries is challenging because all objectives have to be considered at the
same time. We develop a set of transformations allowing one to analyse Boolean
combinations of objectives (such as expected mean-payoff and ratio of expectations)
by considering conjunctions of almost sure mean-payoff objectives, for which we give
a strategy synthesis algorithm. The synthesis methods we develop focus on long-run
objectives, but our tool implementation also supports expected total rewards.

Contributions. We can summarise our contributions in two domains:

• We develop the theoretical foundations for an assume-guarantee strategy syn-
thesis framework for stochastic games. Our work supports modelling systems
as stochastic games, strategy synthesis for Boolean combinations of quanti-
tative objectives, assume-guarantee rules for analysing strategies of composed
games, and computing compositional Pareto sets to instantiate targets for the
local specifications. While previous work has focused on subsets of these as-
pects, to the best of our knowledge, this thesis provides the first comprehensive
framework. In Chapter 4, we address the composition of stochastic games for
synthesis, where the key challenge is to ensure that winning strategies for the
individual components can be composed to a winning strategy for the full game.
Further, previous work on strategy synthesis largely considers combinations of
only two aspects among (i) multiple quantitative objectives, (ii) the presence of
an adversary (Player 2), and (iii) probabilities. Combining all three aspects is a
non-trivial extension over either set of two, and is the focus of Chapters 5–6.

• We demonstrate the effectiveness of our approach by implementing our algo-
rithms in the PRISM-games 2.0 tool, which we describe in Chapter 7. Using



9.2. FUTURE WORK 203

our tool, the user can model a system as multiple components, assign local
specifications, and synthesise strategies for the individual components and the
composed game. Pareto set visualisation and simulation provide insight about
the system model and the synthesised strategies to the designer. We demon-
strate the viability of our synthesis methods on a set of case studies in Chapter 8.
The autonomous driving and UAV path planning case studies explore the mod-
elling of autonomous systems as stochastic games and the strategy synthesis
for expected total rewards. The aircraft power control and room temperature
control case studies employ our assume-guarantee synthesis techniques for ratio
rewards, demonstrating improved scalability.

9.2 Future Work

Several directions for future research arise from the work in this thesis. We highlight
in this section directions that are of particular relevance.

Relaxing Compatibility. To facilitate componentised model development, we
would like to impose minimal restrictions on the components, and ensure that these
restrictions can be checked efficiently. Ideally such compatibility conditions can be
checked in linear time in the size of the individual components, in particular, without
requiring to build the full composition. An improvement to both the versatility of our
framework and the efficiency of modelling components would be to relax our compat-
ibility condition in Section 4.1.3, which is needed to ensure that Player 1 strategies
of different components cannot suggest contradicting moves at a Player 1 state in
the composition. Using permissive strategies that can suggest several choices in a
state [58] may be a way of weakening out compatibility condition, if we can find a
local condition on the components that ensures that there is a choice in the composi-
tion that all local strategies can agree on, and hence remain winning for the composed
game.

Rule Inference. The ultimate goal of compositional methods is to be able to directly
synthesise local strategies for the subsystems from the global system specification, or,
in a similar vein, to automatically decompose the global specification into appropri-
ate local specifications that are easier and faster to analyse. In our assume-guarantee
framework, we provide the necessary formalism for composing local strategies, but
it remains an open question how to find the local specifications automatically. We
expect the general problem of automatic synthesis from a global specification to be



204 CHAPTER 9. CONCLUSIONS

undecidable for our quantitative objectives, as this is also the case for LTL specifica-
tions [108]. Manually decomposing specifications could be facilitated by considering a
set of composition rules such as the ones presented in this thesis, and by automatically
inferring which rules are applicable to derive the global specification.

Strategy Classification. Development of synthesis methods greatly benefits from
understanding the classes of strategies that are necessary and sufficient for the re-
spective players to win a game. For example, showing that Player 2 only requires
MD strategies allowed us to prove decidability for Pmp CQs in Section 6.1. Another
consideration is that different representations of the same strategy can affect the dif-
ficulty and elegance of proofs, for example we use DU strategies in most of our proofs,
but we recourse to SU strategies in the strategy construction we propose, which is
also motivated by the practical consideration of needing a succinct representation.
A key open question is understanding for which models and specifications finite SU
strategies are strictly more powerful than finite DU strategies. A preliminary discus-
sion is given in [50], but does not address quantitative objectives or multi-objective
queries.

Counterexample-Guided Abstraction Refinement. In order to address scala-
bility limitations in terms of the state space size when analysing formal models, a
popular approach is to group similar states together and perform analysis only on
these groups, obtaining a smaller model. The suitability of the smaller model can be
justified by developing appropriate (probabilistic bi-)simulations for stochastic games
(see [120] for PAs). Since the smaller model should yield the same answer as the
original full-sized model, selecting an appropriate grouping (or abstraction) is a key
problem, and in our case of synthesis for two-player stochastic games it is exacerbated
by the presence of different kinds of states. One solution is to start with a very coarse
abstraction, test if there is a counterexample to the feasibility of synthesis on the
abstract model, and if so, gradually refining it, that is, splitting up groups, until the
synthesis problem is feasible. The three key requirements for this approach are an
abstraction for stochastic games; a method to produce finite counter-examples; and a
refinement procedure based on the counter-examples. For games where both players
have MD strategies, [30] addresses these three requirements, but as we already noted
in Section 4.5, in multi-objective stochastic games, counterexamples may not exist
due to non-determinacy, or might not be representable as MD strategies. A fruitful di-
rection for further work would be to explore this approach of counterexample-guided
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abstraction refinement (CEGAR), in particular how to find, represent, and utilise
counterexamples.

General Specifications. To give a system designer more flexibility, we suggest
extending the class of specifications that can be synthesised, with particular empha-
sis on specifications defined on traces, for use in the assume-guarantee framework.
We note at this point that the types of objectives that we consider, Pmp, Pratio,
Emp, Eratio, ratioE and EE, can be combined arbitrarily in conjunction, and Emp,
Eratio and ratioE can be combined in MQs. Allowing both expected total rewards
and long-run objectives would help to control both the transient and the recurrent
behaviour of systems. Further, by using Boolean combinations of !-regular objec-
tives with arbitrary probability thresholds, one could specify communication pro-
tocols similarly to using GR1 specifications [107], but with the ability to tune the
relative importance or criticality of assumptions and guarantees: for example, if a
GR1 specification ⇤⌃A! ⇤⌃G is not satisfiable, but strengthening the assumption
⇤⌃A to ⇤⌃ (A^B) means that it can no longer be satisfied by the environment (for
instance, by another component in the system), then one solution could be to con-
sider a specification P(⇤⌃ (A ^ B)) � 0.9 ! P(⇤⌃G) � 0.9. Also, properties useful
for the development of autonomous systems could be conditional expectations and
quantiles [4], as well as minimising the variance of the mean-payoff [20]. Of similar
importance to providing synthesis for more general specifications is establishing the
complexity classes of the related achievability, synthesis, and Pareto set computation
problems. For multi-objective stochastic games, few results are known, and the devel-
oped algorithms mostly compute approximate solutions. The complexity of synthesis
in stochastic games for expected mean-payoff objectives remains to be investigated,
and subsumes reachability of multiple targets, of which the complexity classification
is a long standing open problem.

Bidirectional Interfaces. In order to develop bidirectional interfaces between com-
ponents, it might be necessary that each component guarantees an assumption for
the respective other component, that is G1 |= '1 ! '2 and G2 |= '2 ! '1. We
noted in Section 4.5 that the circular rule (Circ) does not allow to resolve this case
satisfactorily. A more natural view could be to operate with non-zero-sum games,
where, in G1, Player 1 only cares about satisfying '1, assuming that Player 2 only
cares about satisfying '2, and vice versa for G2. The desired behaviour would be that
Player 1 in G1 tries to satisfy '1 but not at the price of violating '2, which in turn is
left to be satisfied by Player 1 in G1. In [28] the authors explore such an approach for
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non-stochastic systems, but it remains an open problem how to encode the interaction
of players between components, so that they can be considered in isolation.

Concurrent Games. Finally, towards a more natural framework for componentised
systems, and systems interacting with an uncontrollable environment, synthesis for
concurrent games is a further important direction. Composing turn-based games
requires preservation of the turn-based nature in the composition. This requirement
restricts the versatility of our assume-guarantee framework, since strong conditions
need to be imposed to ensure compatibility and non-blocking of the components.
To address this, compositional frameworks typically assume input-enabledness of the
components, that is, all environment actions are enabled in all states. However, when
interpreting subsystems as games, input-enabledness means that the move chosen at a
state may depend on the strategies of both players. Concurrent stochastic games with
single quantitative !-regular objectives have been analysed by defining a Bellman-
style operator as a solution to a matrix game [56], but we are not aware of research
in the multi-objective setting with quantitative properties. Furthermore, a synthesis
framework for concurrent games could allow more flexibility in how continuous-space
models are discretised and encoded in finite state games.

9.3 Outlook

This thesis has developed a comprehensive framework to synthesise strategies for
the control of autonomous systems. Compared to traditional engineering disciplines,
strategy synthesis from quantitative temporal logic objectives is currently in relative
infancy. However, with vital infrastructure depending increasingly on the reliable
operation of computer systems, we believe that formal strategy synthesis has the
potential to fundamentally transform the design, certification, and operational pro-
cesses, and will constitute a key element of the digital future.
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Appendix A
Proofs

A.1 Proof of Lemma 3.4

Proof. Fix a game G and strategies ⇡, �. We use induction on the length i of paths
� 2 ⌦fin

G . In the base case, for i = 1, we have that P(⇡,�)
G (s

init

) = 1 = P⇡,�
G (s

init

). Now
assume P(⇡,�)

G (�s) = P⇡,�
G (�s) for all paths �s 2 ⌦fin

G of odd length i � 1, and consider
a path �s(a, µ)t of length i+ 2. Let D = G(⇡,�). We have that

P(⇡,�)
G (�s(a, µ)) =

X

 s.t. pathG()=�s(a,µ)

PD() (A.1)

from the definition of the measure P(⇡,�)
G . The measure PD is defined such that PD() =Qi

l=0 �D(l,l+1), where l is the lth element on the path  in D. From the definition
of the path mapping pathG, we have i�1 = (s,mi�1, ni�1), i = ((a, µ),mi, ni), and
i+1 = (t,mi+1, ni+1). Hence, the right hand side of (A.1) equals

X

 s.t. pathG() = �s

m

i

,m

i+1

, n

i

, n

i+1

PD() ·�D(i�1,i) ·�D(i,i+1).

The memory of ⇡ and � after seeing history �s is distributed according to d

⇡
�s and

d

�
�s, respectively. Since �s is fixed, the right hand side of (A.1) further becomes

X

 s.t. pathG()=�s

PD() ·
X

m

i�1

,m

i

,m

i+1

n

i�1

, n

i

, n

i+1

d

⇡
�s(mi�1) · d��s(ni�1) ·�D(i�1,i) ·�D(i,i+1).
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From the induction hypothesis we substitute
P

 s.t. pathG()=�s PD() by P⇡,�
G (�s). Let

D0 = G⇡,�. We can then further substitute P⇡,�
G (�s) =

P
0

s.t. pathG(
0)=�s PD0(0), from

the definition of the measure PD0 .
Consider the case s 2 S⌃. From the definition of D (Definition 3.5), we have

P
m

i

,n
i

�D(i�1,i) = ⇡
c

(t,mn�1)(a, µ) and
P

m

i+1

,n
i+1

�D(i,i+1) = µ(t). Moreover,
the d

�
�s(ni�1) terms sum to one. The right hand side of (A.1) becomes

X

0
s.t. pathG(

0)=�s

PD0(0) ·
X

m

i�1

in 
i�1

d

⇡
�s(mi�1) · ⇡c

(s,mi�1)(a, µ) · µ(t).

We now consider the states along paths 0 of D0, where we denote 0l the lth element
along 0 (starting at l = 0). To induce D0, Definition 3.5 is applied twice, and for
notational convenience in the following, we omit the path mappings.

(K1) If |�| > 0, we have 0i�2 = (⌫⇡� )
�
�, for the distribution ⌫ in last(�), and if

|�| = 0, we have 0i�2 = (⌫⇡)� with ⌫ = s
init

. We have �D0(0i�2,
0
i�1) = ⌫(s) ·

P
m

i�1

d

⇡
�s(mi�1)·⇡c

(s,mi�1)(a, µ). When summing over 0 such that pathG(
0) =

�s, the summation over the outgoing moves of s is included. To be able to fix
the move (a, µ) we let

PD0((a, µ)|�s) def
= PD0(s(a, µ)|�)/PD0(s|�) = �D0(0i�2,

0
i�1)/⌫(s).

(K2) From the states 0l of D0 with even indices l, there is only a single outgoing
move, as they originate from player states in G. Thus, �D0(0i�1,

0
i) = 1.

(K3) We have 0i = (a, (µ⇡
d

�s(a,µ)

)�
d

�s(a,µ)

), and hence
P

(b,⌫)2�(t) �D0(0i,
0
i+1) = µ(t).

Applying (K1)–(K3), the right hand side of (A.1) becomes

X

0
s.t. pathG(

0)=�s

PD0(0) · PD0((a, µ)|�s) ·�D0(0i�1,
0
i) ·

0

@
X

(b,⌫)2�(t)

�D0(0i,
0
i+1)

1

A .

Redistributing the summations, and noting that �s(a, µ)t is fixed, this equals

X

0
s.t. pathG(

0)=�s(a,µ)

iY

l=1

�D0(0l,
0
l+1) =

X

0
s.t. pathG(

0)=�s(a,µ)

PD0(0) = P⇡,�
G (�s(a, µ)),

concluding the induction step for s 2 S⌃. The case for s 2 S⇤ is symmetric. The
equivalence between the path distributions holds for infinite paths due to Carathéodory’s
extension theorem (Theorem 1.53 of [79]).
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A.2 Proof of Proposition 5.1

Proof. The proof method is based on similar results in [36, 124]. Consider the game
G in Figure 5.4 with objective Pmp(~r)(~0). From s0, when Player 2 chooses a sequence
w of actions with |w|  n+1, the total rewards are shifted by the vector �(↵w, 2|w|�
1�↵w), where ↵w

def
=
P|w|

j=1 �wj

=a

2j�1 is the number corresponding to the binary word
w represented with the least significant bit first, with a coding for 1 and b for 0.

Exponential memory DU strategy. We show that there is a winning DU strategy
⇡ for Player 1 with exponential memory M

def
= {a, b}n+1, which at state sn+1 plays the

distribution ⌫w defined by ⌫w(a)
def
= ↵

w

2n+1�1
and ⌫w(b)

def
= 1�⌫w(a), where w 2M is the

current memory, determining ↵w. This strategy compensates the shift incurred while
going through the Player 2 states, and hence, for every loop, the expected total reward
is (0, 0). Thus also the overall average reward is (0, 0). As the strategy ⇡ has finite
memory, the induced PA G⇡ is finite, and it suffices to consider MD strategies for
Player 2 in G⇡, see Lemma 3.7. Let Rk be the random variable on the total reward of
the kth loop. The random variables (Rk)k�0 are independent identically distributed
and of expectation zero, and we apply the strong law of large numbers to obtain
that 1/N

PK
k=0 Rk converges almost surely towards the common mean 0. Hence, ⇡ is

winning for almost sure convergence.

No sub-exponential DU strategy. We show that every finite DU strategy achieving
Pmp(~r) requires at least exponential memory. Consider a finite DU strategy ⇡ with
less than 2n+1�1 memory elements. We show that it loses against some finite strategy
�. For every memory element m 2M, there exist at least two distinct sequences w1

m

and w2
m

such that the memory updated from m is the same after seeing either w1
m

or w2
m

, denoted f(m), and such that rew(w1
m

) � rew(w2
m

) + 1 for r1. Consider the
finite memory strategy �1 (respectively �2) that simulates the deterministic memory
of ⇡ and plays the actions in w1

m

(respectively w2
m

) from s0 and memory m. The
strategy ⇡ reacts to f(m) at state sn+1, and so compensates either for w1

m

or w2
m

. Let
Di

def
= G⇡,�i . We extend the reasoning to K loops as follows. For pairwise associated

sequences wi = wi
m

1

l1wi
m

2

l2 · · ·wi
m

K

lK with i 2 {1, 2}, where ⇡ plays lk after the kth
loop, it holds that rew(r1)(w1) � rew(r1)(w2) + K and PD

1

(w1) = PD
2

(w2). Hence
the average reward in the two DTMCs are separated by 1/L where L is the length of
a loop. Hence, if ⇡ wins against �1, then PD

1

(mp(r1) = 0) = PD
1

(mp(r2) = 0) = 1,
and hence, PD

2

(mp(r1)  �1/L) = 1. The strategy ⇡ loses against �1 or �2.
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Linear memory SU strategy. We now show how the distribution ⌫w can be sim-
ulated by an SU strategy ⇡ that contains only 2(n + 1) memory elements. Let
M

def
=
Sn+1

i=0 {ai, bi}, and let ⇡
c

(sn+1, ln+1)
def
= l for l 2 {a, b}, that is, li is the memory

at state si corresponding intuitively to the intention of Player 1 to play the action l.
We denote by P(li|w) the probability of Player 1 being in memory li after having read
the sequence w of length i, starting from s0.

We now inductively define a memory update function such that, for i  n+1 and
w 2 {a, b}i, P(ai|w) = ↵

w

2i�1
(and P(bi|w) = 1� P(ai|w)), so that, in particular, when

i = n + 1, Player 1 chooses the next move according to the distribution ⌫w. In the
base case (when i = 0), P(a0|") = 1 necessitates that the initial memory as well as
the memory when returning after each loop to s0 is ⇡

d

(s0)
def
= ⇡

u

(ln+1, l0)
def
= a0. When

going from si to si+1 via an action q, the memory li 2 {ai, bi} in si is updated to l0i+1

in si+1, under the condition

P(l0i+1|wq) = P(ai|w) · ⇡u

(ai, q)(l
0
i+1) + P(ai|w) · ⇡u

(bi, q)(l
0
i+1). (A.2)

Taking l0 = a and taking q to be a or b in (A.2) gives as necessary conditions

P(ai+1|wa) =
↵w + 2i

2i+1 � 1
=

↵w

2i � 1
· ⇡

u

(ai, a)(ai+1) +

✓
1� ↵w

2i � 1

◆
· ⇡

u

(bi, a)(ai+1)

(A.3)

P(ai+1|wb) =
↵w

2i+1 � 1
=

↵w

2i � 1
· ⇡

u

(ai, a)(ai+1) +

✓
1� ↵w

2i � 1

◆
· ⇡

u

(bi, b)(ai+1);

(A.4)

taking l0 = b in (A.2) gives symmetric conditions.
We now define the memory update function according to these conditions. Define

⇡
u

(ai, a)
def
= ai+1 and ⇡

u

(bi, b)
def
= bi+1, following the intuition that there is no need to

change the intention to play a or b, corresponding to the current memory ai and bi,
respectively, when the intention is followed. Further, using the conditions in (A.3),
we obtain, for l, l̄ 2 {a, b} with l̄ 6= l that ⇡

u

(li, l̄)(li+1)
def
= 2i�1

2i+1�1
and ⇡

u

(li, l̄)(l̄i+1)
def
=

2i

2i+1�1
. We thus have defined ⇡ so that at sn+1 the choices it made according to ⌫w.

Then, as shown above, this strategy is winning. Moreover, ⇡ contains 2(n+1) memory
elements, and is therefore exponentially smaller than the DU strategy described above,
concluding the proof.



Appendix B
Case Study Files

B.1 Autonomous Urban Driving
#!/usr/bin/python -O
from __future__ import division
import datetime , math , sys
import copy
import osm2graph

# default map:
filename = "islip"
goal = 46 # Middle Street (right) ... islip
init = 124 # Kidlington Road (top left) ... islip

if(len(sys.argv) >=2):
if(int(sys.argv [1]) ==1):

filename = "islip"
goal = 46 # Middle Street (right) ... islip
init = 124 # Kidlington Road (top left) ... islip

elif(int(sys.argv [1]) ==2):
filename = "charlton"
goal = 33 # road right top ... charlton
init = 43 # road left bottom ... charlton

else:
print "Unknown map ID specified ... usage:"
print "Call generate.py n, where n stands for one of the following:"
print "\t1 ... islip"
print "\t2 ... charlton"
print "If n is not specified , islip is taken as default."
sys.exit (1);

smg = open("%s.prism" % (filename), "w");
prop = open("%s.props" % (filename), "w");
bash = open("%s.sh" % (filename), "w");

mapfile = "%s.osm" % (filename)

#########################################################################
# Prepare Graph #
#########################################################################

G = osm2graph.read_osm(mapfile)
usedvalues = {}
# calculate distances and assign to links
for e in G.edges(data=True):

db = osm2graph.calculateDistanceAndBearing(G.node[e[0]]["data"], G.node[e[1]]["data"])
# fill in relevant tags
name = ’’
if "name" in e[2]["data"].tags:

name = e[2]["data"].tags["name"]
oneway = False
if "oneway" in e[2]["data"].tags and e[2]["data"].tags["oneway"]=="yes":

oneway = True
lanes = 1
if "lanes" in e[2]["data"].tags:

lanes = e[2]["data"].tags["lanes"]
value = 0; # give the road a value depending on its type
values = {’motorway ’: 20,

’motorway_link ’: 19,
’trunk’: 15,
’trunk_link ’: 14,
’primary ’: 10,
’primary_link ’: 9,
’secondary ’: 8,
’secondary_link ’: 7,
’tertiary ’: 6,
’tertiary_link ’: 5,
’living_street ’: 0.5,
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’pedestrian ’: 0, # never use
’residential ’: 3,
’unclassified ’: 1,
’service ’: 1,
’track’: 0.2,
’bus_guideway ’: 0, # never use
’raceway ’: 0, # never use
’road’: 0.5}

if "highway" in e[2]["data"].tags:
if e[2]["data"].tags["highway"] in values:

value = values[e[2]["data"].tags["highway"]]
usedvalues[e[2]["data"].tags["highway"]] = True

e[2]["data"] = {"dist": db[0], "init_bearing": db[1], "final_bearing": db[1], "oneway": oneway , "value":
value , "name": name}

# first , remove zero -value edges (they are never used , e.g. train tracks)
to_remove = []
for e in G.edges(data=True):

if e[2]["data"]["value"] == 0:
to_remove.append(e)

for e in to_remove:
G.remove_edge(e[0],e[1])

# collapse graph to not contain several edges where no intersection is
changed = True
while changed:

changed = False
for e in G.edges(data=True):

edges = G.edges(e[1],data=True)
if len(edges)==1 and not edges [0]==e:

# need to prevent roads coming in to be ignored
collapse = True
for f in G.edges(data=True):

if (f[0] != e[0]) and f[1]==e[1]:
collapse = False

if(collapse):
name = ’’
if e[2]["data"]["name"] is not "":

name = e[2]["data"]["name"]
elif edges [0][2]["data"]["name"] is not "":

name = edges [0][2]["data"]["name"]
oneway = e[2]["data"]["oneway"] or edges [0][2]["data"]["oneway"]
# connect e to edges [0]
init_bearing = e[2]["data"]["init_bearing"]
final_bearing = edges [0][2]["data"]["final_bearing"]
value = min(e[2]["data"]["value"], edges [0][2]["data"]["value"])
G.add_edge(e[0],edges [0][1] , attr_dict ={’data’: {’dist’: e[2]["data"]["dist"]+ edges [0][2]["data"][

"dist"], ’name’: name , ’oneway ’: oneway , ’init_bearing ’: init_bearing , ’final_bearing ’:
final_bearing , ’value’: value }})

G.remove_edge(e[0],e[1])
G.remove_edge(edges [0][0] , edges [0][1])
changed = True
break

# for each edge also introduce the reverse edge
# moreover , assign which edge to go to for a u-turn
# note that lanes do not get assigned separate edges
for e in G.edges(data=True):

if not e[2]["data"]["oneway"] and not G.has_edge(e[1],e[0]):
new_data = copy.deepcopy(e[2])
new_data["data"]["init_bearing"] = ((180 - e[2]["data"]["final_bearing"]) % 360)
new_data["data"]["final_bearing"] = ((180 - e[2]["data"]["init_bearing"]) % 360)
G.add_edge(e[1],e[0], attr_dict=e[2])

# identify which edge has how many successors
successors = {}
for e in G.edges(data=True):

succ = 0;
for f in G.edges([e[1]]):

if (f[1],f[0]) == (e[0],e[1]): # no uturn in intersection
continue

succ = succ + 1
if succ not in successors:

successors[succ] = [e]
else:

new_succs = successors[succ]
new_succs.append(e)
successors[succ] = new_succs

# here identify which transitions are left turns , which ones right turns , and which ones go straight.
for e in G.edges(data=True):

for f in G.edges([e[1]], data=True):
# going from e to f
angle = (e[2]["data"]["final_bearing"] - f[2]["data"]["init_bearing"] + 180) % 360
if angle < 135: # right turn

pass
elif angle >= 135 and angle < 225: # straight

pass
else: # left

pass

#########################################################################
# Hazards and Reactions #
#########################################################################

hazards = [’pedestrian ’, ’obstacle ’, ’jam’]
# control ocurrence probability , one for each hazard , the larger , the more likely
alphas = {’roadblock ’: 0.002 ,

’pedestrian ’: 0.05,
’obstacle ’: 0.02,
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’jam’: 0.1}
reactions = {’roadblock ’: [’uturn ’],

’pedestrian ’ : [’brake ’, ’honk’, ’changelane ’],
’obstacle ’: [’changelane ’, ’uturn’],
’jam’: [’honk’, ’uturn ’]}

accident_prob = {(’pedestrian ’, ’brake ’) : 0.01,
(’pedestrian ’, ’honk’) : 0.04,
(’pedestrian ’, ’changelane ’) : 0.03,
(’obstacle ’, ’changelane ’) : 0.02,
(’obstacle ’, ’uturn ’) : 0.02,
(’jam’, ’honk’) : 0.01,
(’jam’, ’uturn’) : 0.02 }

# all possible reactions
reacts = set ([])
for r in reactions.itervalues ():

reacts = reacts | set(r)
reacts = list(reacts)

def powerset(S):
if len(S) <= 1:

yield S
yield []

else:
for s in powerset(S[1:]):

yield [S[0]]+s
yield s

# all possible combinations of hazards
haz = []
for i1 in xrange(0,len(hazards)):

haz.append ([ hazards[i1]])
for i2 in xrange(i1+1, len(hazards)):

haz.append ([ hazards[i1],hazards[i2]])
haz.append ([])

#########################################################################
# Output PRISM Model #
#########################################################################

# one field per edge
N = len(G.edges ())
M = 3*(len(haz) -1) - 2*len(hazards)

# build a dictionary of edges and the associated ids , and do the same in reverse as well
edgeid = {}
idedge = {}
# also record lanes of each road
lanes = {}
i = 0
for e in G.edges(data=True):

edgeid [(e[0],e[1])] = i
idedge[i] = (e[0],e[1])
if "lanes" in e[2]["data"]:

lanes[i] = e[2]["data"]["lanes"]
else:

lanes[i] = 1
i = i + 1

smg.write("// PRISM model for autonomous car case study\n")
smg.write("// Two player stochastic game with three objectives .\n")
smg.write("//\n")
smg.write("// This is a machine -generated file\n")
smg.write("// Author: Clemens Wiltsche\n")
today = datetime.date.today()
smg.write("// Generated: %s\n" % (today.strftime(’%d/%m/%Y’)))
smg.write("\n\n")
smg.write("smg\n\n")

# initialize player actions
smg.write("player p1\n")
first = True
for e in G.edges():

i = edgeid[e]
if(not first):

smg.write(",\n")
first = False
smg.write("\t")
# reactions
for r in reacts:

smg.write("[%s_%i], " % (r, i))
# steering
j = 0
first_ = True
onlyuturn = True
for f in G.edges([e[1]]):

if (f[1],f[0]) == (e[0],e[1]): # no uturn in intersection
continue

onlyuturn = False
if(not first_):

smg.write(", ")
first_ = False
smg.write("[move_%i_%i]" % (j, i))
j = j + 1

# alternatively , termination
if onlyuturn or len(G.edges([e[1]]))==0:

smg.write("[term_%i]" % (i))
smg.write("\nendplayer\n\n")

smg.write("player p2\n")
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first = True
for e in G.edges():

i = edgeid[e]
if(not first):

smg.write(",\n")
first = False
smg.write("\t")
# hazard
for h in hazards:

smg.write("[%s_%i], " % (h, i))
smg.write("[hazard_%i]" % (i))

smg.write(",\n\t[term]")
smg.write("\nendplayer\n\n")

# positions in topology
smg.write("const int POS_init = %i;\n" % (init))
smg.write("const int POS_goal = %i;\n" % (N))
smg.write("const int POS_term = %i;\n" % (N+1))
for e in G.edges(data=True):

i = edgeid [(e[0],e[1])]
name = ’’
if "name" in e[2]["data"]:

name = e[2]["data"]["name"]
if not "name" == ’’:

smg.write("const int POS_%i = %i;\t// name: %s\n" % (i, i, name))
else:

smg.write("const int POS_%i = %i;\n" % (i, i))

smg.write("\n")

# the topology
for e in G.edges(data=True):

ie = edgeid [(e[0],e[1])]
if len(G.edges ([e[1]]))==0:

if ie==goal:
smg.write("const int DEST_%i = POS_goal ;\n" % (ie))

else:
smg.write("const int DEST_%i = POS_term ;\n" % (ie))

else:
j = 0
onlyone = False
if len(G.edges([e[1]]))==1:

onlyone = True
for f in G.edges([e[1]], data=True):

if ie != goal and (f[1],f[0]) == (e[0],e[1]): # no uturn in intersection
if onlyone:

smg.write("const int DEST_%i = POS_term ;\n" % (ie))
continue

i_f = edgeid [(f[0],f[1])]
if ie==goal and onlyone:

smg.write("const int DEST_%i = POS_goal ;\n" % (ie))
elif ie==goal:

smg.write("const int DEST_%i_%i = POS_goal ;\n" % (j, ie))
else:

name_to = ’’
if "name" in f[2]["data"]:

name_to = f[2]["data"]["name"]
name_from = ’’
if "name" in e[2]["data"]:

name_from = e[2]["data"]["name"]
if not name_to == ’’ and not name_from == ’’:

smg.write("const int DEST_%i_%i = POS_%i;\t// from %s to %s\n" % (j, ie, i_f , name_from ,
name_to))

elif not name_to == ’’:
smg.write("const int DEST_%i_%i = POS_%i;\t// to %s\n" % (j, ie, i_f , name_to))

elif not name_from == ’’:
smg.write("const int DEST_%i_%i = POS_%i;\t// from %s\n" % (j, ie, i_f , name_from))

else:
smg.write("const int DEST_%i_%i = POS_%i;\n" % (j, ie, i_f))

j = j + 1
smg.write("\n")

# returns a distribution of hazard probabilities given the length of a road
def distr(length):

# how many hazard combinations are there?
dist = {} # nothing in distribution yet
cumulative = 0.0
empty_i = 0
# fill distribution - one entry for each hazard combination
for i in xrange(0,len(haz)):

hs = haz[i]
if hs==[]:

empty_i = i
else:

Alpha = 1
for h in hs:

Alpha = Alpha*alphas[h]
dist[i] = math.tanh(Alpha*length)/len(haz)
cumulative = cumulative + dist[i]

# probability of nothing happening
dist[empty_i] = 1 - cumulative
# return distribution
return dist

# write hazard probabilities for each edge
for e in G.edges(data=True):

ie = edgeid [(e[0],e[1])]
d = distr(e[2]["data"]["dist"])
for j in xrange(0, len(haz)):

smg.write("const double DISTR_%i_%i = %f;\n" % (j, ie, d[j]))
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smg.write("\n")

for e in G.edges(data=True):
ie = edgeid [(e[0],e[1])]
if (e[1],e[0]) in edgeid or lanes[ie]>1: # changelane possible if not single -lane oneway

smg.write("const int CHANGELANE_0_%i = -1;\n" % (ie)) # accident first option
smg.write("const int CHANGELANE_1_%i = -2;\n" % (ie)) # changing is second option

else: # changelane illegal - go to violation state in any case
smg.write("const int CHANGELANE_0_%i = -3;\n" % (ie))
smg.write("const int CHANGELANE_1_%i = -3;\n" % (ie))

# write uturn reactions for each edge
for e in G.edges(data=True):

ie = edgeid [(e[0],e[1])]
if (e[1],e[0]) in edgeid: # uturn possible if not one -way (this also means highways)

revedgeid = edgeid [(e[1],e[0])]
smg.write("const int UTURN_0_%i = -1;\n" % (ie)) # accident first option
smg.write("const int UTURN_1_%i = -2;\n" % (ie)) # turning is second option
smg.write("const int UTURNPLAYER_%i = 1;\n" % (ie)) # if in -2, need player 1
smg.write("const int REVEDGE_%i = %i;\n" % (ie, revedgeid)) # reverse edge exists

else: # uturn illegal - go to violation state in any case
smg.write("const int UTURN_0_%i = -3;\n" % (ie))
smg.write("const int UTURN_1_%i = -3;\n" % (ie))
smg.write("const int UTURNPLAYER_%i = 2;\n" % (ie)) # if in -3, need player 2
smg.write("const int REVEDGE_%i = %i;\n" % (ie, ie)) # reverse edge doesn’t exist but is irrelevant

smg.write("\nglobal p : [1..2] init 2;\n") # players
smg.write("global car_position : [0..%i] init POS_init ;\n" % (N+2))
# special states:
# -1: accident (terminal)
# -2: sink - goto next edge
# -3: traffic violation (terminal)
# -4: braking
# -5: uturning
# -11: game terminated
smg.write("global s : [ -11..%i] init 0;\n" % (M))

def subhazard(from_s , to_s , subhaz , k):
if len(subhaz)==1:

carreact(from_s , subhaz [0], k)
else:

for i in xrange(0, len(subhaz)):
smg.write("\t[%s_%i] p=2 & s=%i & car_position=POS_%i-> (p ’=1) & (s ’=%i);\n" % (subhaz[i], k, from_s ,

k, to_s[i]))

def carreact(from_s , hazz , k):
for i in xrange(0, len(reactions[hazz])):

if (reactions[hazz][i]==’brake’): # brake action is special (need to insert state to let time pass)
smg.write("\t[brake_%i] p=1 & s=%i & car_position=POS_%i -> %f : (p ’=2) & (s ’=-1) + %f : (p ’=1) & (s

’=-2);\n" % (k, from_s , k, accident_prob [(hazz ,’brake ’)], 1.0- accident_prob [(hazz ,’brake’)]))
elif(reactions[hazz][i]==’uturn’): # uturn action is special

smg.write("\t[uturn_%i] p=1 & s=%i & car_position=POS_%i -> %f : (p ’=2) & (s’=UTURN_0_%i) + %f : (p’=
UTURNPLAYER_%i) & (s’=UTURN_1_%i) & (car_position ’=REVEDGE_%i);\n" % (k, from_s , k,
accident_prob [(hazz ,’uturn ’)], k, 1.0- accident_prob [(hazz ,’uturn’)], k, k, k))

elif(reactions[hazz][i]==’changelane ’): # changelane action is special
smg.write("\t[changelane_%i] p=1 & s=%i & car_position=POS_%i -> %f : (p ’=2) & (s ’=CHANGELANE_0_%i) +

%f : (p ’=1) & (s ’=CHANGELANE_1_%i);\n" % (k, from_s , k, accident_prob [(hazz ,’changelane ’)], k,
1.0- accident_prob [(hazz ,’changelane ’)], k))

else: # standard actions
smg.write("\t[%s_%i] p=1 & s=%i & car_position=POS_%i -> %f : (p ’=2) & (s ’=-1) + %f : (p ’=1) & (s

’=-2);\n" % (reactions[hazz][i], k, from_s , k, accident_prob [(hazz ,reactions[hazz][i])], 1.0-
accident_prob [(hazz ,reactions[hazz][i])]))

# the base cases - one for each number of successors (taking no uturn at intersection into account)
for i, succs in successors.iteritems ():

# k is the first edge with i successors
k = edgeid [( succs [0][0] , succs [0][1])]
# the corresponding distribution
smg.write("\n\nmodule field_%i\n\n" % (k))
smg.write("\t[hazard_%i] p=2 & s=0 & car_position=POS_%i -> DISTR_0_%i+DISTR_1_%i+DISTR_2_%i+DISTR_5_%i : (s

’=-6) + DISTR_3_%i+DISTR_4_%i+DISTR_6_%i : (s ’=-7);\n" % (k, k, k, k, k, k, k, k, k))

# jam or pedestrian
smg.write("\t[hazard_%i] p=2 & s=-6 & car_position=POS_%i -> (DISTR_2_%i+DISTR_5_%i)/( DISTR_0_%i+DISTR_1_%i+

DISTR_2_%i+DISTR_5_%i) : (s ’=-8) + (DISTR_0_%i+DISTR_1_%i)/( DISTR_0_%i+DISTR_1_%i+DISTR_2_%i+DISTR_5_%i)
: (s ’=-9);\n" % (k, k, k, k, k, k, k, k, k, k, k, k, k, k))

# obstacle or nothing
smg.write("\t[hazard_%i] p=2 & s=-7 & car_position=POS_%i -> (DISTR_3_%i+DISTR_4_%i)/( DISTR_3_%i+DISTR_4_%i+

DISTR_6_%i) : (s ’=-10) + (DISTR_6_%i)/( DISTR_3_%i+DISTR_4_%i+DISTR_6_%i) : (s ’=-2) & (p ’=1);\n" % (k, k,
k, k, k, k, k, k, k, k, k))

# jam&pedestrian or jam only
pj = 0
if [’pedestrian ’,’jam’] in haz:

pj = haz.index ([’pedestrian ’,’jam’])
else:

pj = haz.index ([’jam’,’pedestrian ’])
j = haz.index([’jam’])
smg.write("\t[hazard_%i] p=2 & s=-8 & car_position=POS_%i -> DISTR_2_%i/( DISTR_2_%i+DISTR_5_%i) : (s ’=%i) +

DISTR_5_%i/( DISTR_2_%i+DISTR_5_%i) : (s ’=%i) & (p ’=1);\n" % (k, k, k, k, k, pj+1, k, k, k, j+1))

# pedestrian&obstacle or pedestrian only
po = 0
if [’pedestrian ’,’obstacle ’] in haz:

po = haz.index ([’pedestrian ’,’obstacle ’])
else:

po = haz.index ([’obstacle ’,’pedestrian ’])
p = haz.index([’pedestrian ’])
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smg.write("\t[hazard_%i] p=2 & s=-9 & car_position=POS_%i -> DISTR_1_%i/( DISTR_0_%i+DISTR_1_%i) : (s ’=%i) +
DISTR_0_%i/( DISTR_0_%i+DISTR_1_%i) : (s ’=%i) & (p ’=1);\n" % (k, k, k, k, k, po+1, k, k, k, p+1))

# obstacle&jam or obstacle only
oj = 0
if [’jam’,’obstacle ’] in haz:

oj = haz.index ([’jam’,’obstacle ’])
else:

oj = haz.index ([’obstacle ’,’jam’])
o = haz.index([’obstacle ’])
smg.write("\t[hazard_%i] p=2 & s=-10 & car_position=POS_%i -> DISTR_4_%i/( DISTR_3_%i+DISTR_4_%i) : (s ’=%i) +

DISTR_3_%i/( DISTR_3_%i+DISTR_4_%i) : (s ’=%i) & (p ’=1);\n" % (k, k, k, k, k, oj+1, k, k, k, o+1))

# instantiate hazard and pick reaction - bad guy followed by good guy
for j in xrange(0, len(haz) -1):

if len(haz[j]) == 1:
subhazard(j+1, [], haz[j], k)

if len(haz[j]) == 2:
subhazard(j+1, [haz.index ([haz[j][0]])+1, haz.index([haz[j][1]]) +1], haz[j], k)

# pick destination - good guy
for j in xrange(0,i):

smg.write("\t[move_%i_%i] p=1 & s=%i & car_position=POS_%i-> (car_position ’=DEST_%i_%i) & (s ’=0) & (p ’=2)
;\n" % (j, k, -2, k, j, k))

if i == 0:
smg.write("\t[term_%i] p=1 & s=%i & car_position=POS_%i -> (car_position ’=DEST_%i) & (s ’=0) & (p ’=2);\n"

% (k, -2, k, k))

smg.write("\nendmodule\n\n\n")

# iterate through topology
for i, succs in successors.iteritems ():

# if just one edge with i successors , then have it covered already
if len(succs) > 1:

l = edgeid [( succs [0][0] , succs [0][1])]
for e in succs [1:]: # start iterating at seccond edge

k = edgeid [(e[0],e[1])]
# module and position
smg.write("module field_%i = field_%i [POS_%i=POS_%i" % (k, l, l, k))
# hazard
for h in hazards:

smg.write(", %s_%i=%s_%i" % (h, l, h, k))
smg.write(", hazard_%i=hazard_%i" % (l, k))
# reactions
for r in reacts:

smg.write(", %s_%i=%s_%i" % (r, l, r, k))
# steering
for j in xrange(0,i):

smg.write(", move_%i_%i=move_%i_%i, DEST_%i_%i = DEST_%i_%i" % (j, l, j, k, j, l, j, k))
# hazard -set distribution
for j in xrange(0,len(haz)):

smg.write(", DISTR_%i_%i=DISTR_%i_%i" % (j, l, j, k))
# uturn reactions
smg.write(", UTURN_0_%i=UTURN_0_%i, UTURN_1_%i=UTURN_1_%i, REVEDGE_%i=REVEDGE_%i, UTURNPLAYER_%i=

UTURNPLAYER_%i" % (l, k, l, k, l, k, l, k))
# changelane reactions
smg.write(", CHANGELANE_0_%i=CHANGELANE_0_%i, CHANGELANE_1_%i=CHANGELANE_1_%i" % (l, k, l, k))
# alternatively , termination
if i == 0:

smg.write(", term_%i=term_%i, DEST_%i=DEST_%i" % (l, k, l, k))
smg.write("] endmodule\n")

# terminal states
smg.write("\nmodule terminals\n")
smg.write("\t[term] s=-1 -> (car_position ’=POS_term) & (p ’=2) & (s ’=-11);\n") # accident
smg.write("\t[term] s=-3 -> (car_position ’=POS_term) & (p ’=2) & (s ’=-11);\n") # illegal action
smg.write("\t[term] car_position=POS_goal -> (car_position ’=POS_term) & (p ’=2) & (s ’=-11);\n")
smg.write("\t[term] car_position=POS_term -> (car_position ’=POS_term) & (p ’=2) & (s ’=-11);\n")
smg.write("endmodule\n\n")

# REWARDS
# reaching goal
smg.write("\nrewards \" reach_goal \"\n")
smg.write("\tcar_position=POS_goal : 1;\n")
smg.write("endrewards\n\n")
# avoiding accidents
smg.write("\nrewards \" accidents \"\n")
smg.write("\ts=-1 : 1;\n")
smg.write("endrewards\n\n")
# road value
smg.write("\nrewards \" road_quality \"\n")
for e in G.edges(data=True):

ie = edgeid [(e[0],e[1])]
smg.write("\tcar_position =%i & s=-2: %f;\n" % (ie, e[2]["data"]["value"]*e[2]["data"]["dist"]/1000))

smg.write("endrewards\n\n")

#########################################################################
# Properties File #
#########################################################################

# write the property - a three -objective conjunctive goal
if(len(sys.argv) >=2):

if(int(sys.argv [1]) ==1): # islip
prop.write("<<1>> (R{\" reach_goal \"} >=0.7 [ C ] & R{\" accidents \"} <=0.3 [ C ] & R{\" road_quality

\"} >=6.0 [ C ])");
elif(int(sys.argv [1]) ==2): # islip

prop.write("<<1>> (R{\" reach_goal \"} >=0.7 [ C ] & R{\" accidents \"} <=0.3 [ C ] & R{\" road_quality \"} >=6.0
[ C ])");
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else: # islip is default
prop.write("<<1>> (R{\" reach_goal \"} >=0.7 [ C ] & R{\" accidents \"} <=0.3 [ C ] & R{\" road_quality \"} >=6.0 [ C

])");

#########################################################################
# Bash File #
#########################################################################

# write the command to execute
bash.write("#!/bin/bash\n\n")
bash.write("../../ bin/prism %s{.prism ,.props} -prop 1 -multirounding -multimaxciter 500 -baselineaccuracy 200 -

increasefactor 1.01 -paretoepsilon 0.001 -logcpareto -gs -exportstrat %s.strat 2>&1 1> %s.log &\n" % (
filename , filename , filename))

#########################################################################
# Wrap up #
#########################################################################

# close down files - flush
smg.close()
prop.close()
bash.close()

B.2 UAV Path Planning

uav.prism

smg

// operator parameters
const double p=0.5; // probability of increasing workload due to other uncertain tasks
const double accu_load1; // accuracy at workload level 1 (low)
const double accu_load2; // accuracy at workload level 2 (high)
const double fd; // accuracy discount due to fatigue
const int COUNTER; // fatigue threshold
const double del; // probability of operator to delegate

// uav variables
global stop : bool init false; // done visiting all waypoints
global c : [0..3] init 0; // choices at the checkpoint
formula roz = (r=8) | (w=3&a=1) | (w=3&a=2) | (w=5&a=2); // restricted operating zones

//players
global pl : [1..2] init 1; // 1 ... UAV, 2 ... operator
player p1

UAV, [camera], [fly], [delegated], [uav_stop]
endplayer

player p2
operator, [image], [process], [wait], [delegate], [prescribe], [operator_stop]

endplayer

// OPERATOR MODEL
module operator

k : [0..100] init 0; // fatigue level measured by completed tasks
t : [0..2] init 0; // workload level
s : [0..2] init 0; // status of image processing, 0: init, 1: good, 2: bad
q : [0..2] init 2; // delegation status: don’t care if 2, delegation if 0, no delegation if 1

// image processing, the workload may increase due to other unknown tasks
[image] !stop & t=0 & s=0 ! (1 � p) : (t’=1) & (s’=0) + p : (t’=2) & (s’=0);

// not fatigue, workload level 1
[process] !stop & pl=2 & t=1 & s=0 & k<=COUNTER ! accu_load1 : (s’=1)&(k’=k + 1) + (1 � accu_load1) : (s’=2)&(k’=k + 1);

// fatigue, workload level 1
[process] !stop & pl=2 & t=1 & s=0 & k>COUNTER ! accu_load1 ⇤ fd : (s’=1) + (1 � accu_load1 ⇤ fd) : (s’=2);

// not fatigue, workload level 2
[process] !stop & pl=2 & t=2 & s=0 & k=>COUNTER ! accu_load2 : (s’=1)&(k’=k + 1) + (1 � accu_load2) : (s’=2)&(k’=k + 1);

// fatigue, workload level 2
[process] !stop & pl=2 & t=2 & s=0 & k>COUNTER ! accu_load2 ⇤ fd : (s’=1) + (1 � accu_load2 ⇤ fd) : (s’=1);

// image analysis is bad, UAV needs to wait at the waypoint and take another image
[wait] !stop & pl=2 & s=2 ! (pl’=1) & (t’=0) & (s’=0);

// if image analysis is good, UAV can continue flying
// at checkpoints, operator may suggest route for the UAV

// with probability del, the operator delegates the decision of the next cornerpoint to the UAV,
[] !stop & pl=2 & s=1 & (w=2 | w=5 | w=6) & (q=2) ! del : (q’=0) + (1 � del) : (q’=1);

[delegate] !stop & pl=2 & s=1 & (w=2 | w=5 | w=6) & (q=0) ! (pl’=1) & (t’=0) & (s’=0) & (q’=2); // allow UAV to choose

// w2 ! r5 (c=0) |r6 (c=1) |r7 (c=2)|r9 (c=3)
[prescribe] !stop & pl=2 & s=1 & w=2 & (q=1) ! (pl’=1) & (c’=3) & (t’=0) & (s’=0)& (q’=2);

[prescribe] !stop & pl=2 & s=1 & w=2 & (q=1) ! (pl’=1) & (c’=2) & (t’=0) & (s’=0)& (q’=2);

[prescribe] !stop & pl=2 & s=1 & w=2 & (q=1) ! (pl’=1) & (c’=1) & (t’=0) & (s’=0)& (q’=2);

[prescribe] !stop & pl=2 & s=1 & w=2 & (q=1) ! (pl’=1) & (c’=0) & (t’=0) & (s’=0)& (q’=2);
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// w5 ! r3 (c=0)| r4 (c=1)| w4 (c=2)
[prescribe] !stop & pl=2 & s=1 & w=5 & (q=1) ! (pl’=1) & (c’=2) & (t’=0) & (s’=0)& (q’=2);

[prescribe] !stop & pl=2 & s=1 & w=5 & (q=1) ! (pl’=1) & (c’=1) & (t’=0) & (s’=0)& (q’=2);

[prescribe] !stop & pl=2 & s=1 & w=5 & (q=1) ! (pl’=1) & (c’=0) & (t’=0) & (s’=0)& (q’=2);

// w6 ! r2 (c=0)| r3 (c=1) |r8 (c=2)
[prescribe] !stop & pl=2 & s=1 & w=6 & (q=1) ! (pl’=1) & (c’=2) & (t’=0) & (s’=0)& (q’=2);

[prescribe] !stop & pl=2 & s=1 & w=6 & (q=1) ! (pl’=1) & (c’=1) & (t’=0) & (s’=0)& (q’=2);

[prescribe] !stop & pl=2 & s=1 & w=6 & (q=1) ! (pl’=1) & (c’=0) & (t’=0) & (s’=0)& (q’=2);

// at non-check-points, UAV has full autonomy to choose flying route
[delegate] !stop & pl=2 & s=1 & (w!=2 & w!=5 & w!=6) ! (pl’=1) & (t’=0) & (s’=0);

// operator stops
[operator_stop] stop & pl=2 ! true;

endmodule

// UAV MODEL
module UAV

// UAV positions:
// inside a waypoint: w!=0, a=0, r=0
// fly through certain angle of a waypoint: w!=0, a!=0, r=0
// fly through a road point: w=0, a=0, r!=0
w : [0..6] init 1; // waypoint
r : [0..9] init 0; // road points
send : bool init true;

in : bool init true;

// flag which waypoints were visited
w1 : bool init true;

w2 : bool init false;

w3 : bool init false;

w4 : bool init false;

w5 : bool init false;

w6 : bool init false;

// if operator delegated decision at checkpoint
delegated : bool init false;

// at any waypoint:
// send image to operator for analysis
[image] pl=1 & w!=0 & a=0 & r=0 & send ! (pl’=2) & (send’=false);

// wait at the waypoint and send another image
[wait] !send ! (send’=true);

// fly into a waypoint and take an image
[camera] pl=1 & w=1 & a!=0 & r=0 & in & !delegated ! (send’=true) & (w1’=true);

[camera] pl=1 & w=2 & a!=0 & r=0 & in & !delegated ! (send’=true) & (w2’=true);

[camera] pl=1 & w=3 & a!=0 & r=0 & in & !delegated ! (send’=true) & (w3’=true);

[camera] pl=1 & w=4 & a!=0 & r=0 & in & !delegated ! (send’=true) & (w4’=true);

[camera] pl=1 & w=5 & a!=0 & r=0 & in & !delegated ! (send’=true) & (w5’=true);

[camera] pl=1 & w=6 & a!=0 & r=0 & in & !delegated ! (send’=true) & (w6’=true);

// fly out of the waypoint via any anglepoint
[prescribe] w!=0 & a=0 & r=0 ! (in’=false);

[delegate] w!=0 & a=0 & r=0 & (w=2 | w=5 | w=6) ! (delegated’=true);

[delegate] w!=0 & a=0 & r=0 & !(w=2 | w=5 | w=6) ! (in’=false);

// UAV flying plans (based on the road map)
// checkpoints: receiving commands from the operator
// w2 ! r5 |r6 |r7 |r9
[delegated] pl=1 & w=2 & a!=0 & r=0 & delegated=true ! (in’=false) & (c’=0) & (delegated’=false);

[delegated] pl=1 & w=2 & a!=0 & r=0 & delegated=true ! (in’=false) & (c’=1) & (delegated’=false);

[delegated] pl=1 & w=2 & a!=0 & r=0 & delegated=true ! (in’=false) & (c’=2) & (delegated’=false);

[delegated] pl=1 & w=2 & a!=0 & r=0 & delegated=true ! (in’=false) & (c’=3) & (delegated’=false);

[fly] pl=1 & c=0 & w=2 & (a!=0) & r=0 & !in ! (r’=5);

[fly] pl=1 & c=1 & w=2 & (a!=0) & r=0 & !in ! (r’=6);

[fly] pl=1 & c=2 & w=2 & (a!=0) & r=0 & !in ! (r’=7);

[fly] pl=1 & c=3 & w=2 & (a!=0) & r=0 & !in ! (r’=9);

// w5 ! r3 | r4 | w4 (at any anglepoint)
[delegated] pl=1 & w=5 & a!=0 & r=0 & delegated=true ! (in’=false) & (c’=0) & (delegated’=false);

[delegated] pl=1 & w=5 & a!=0 & r=0 & delegated=true ! (in’=false) & (c’=1) & (delegated’=false);

[delegated] pl=1 & w=5 & a!=0 & r=0 & delegated=true ! (in’=false) & (c’=2) & (delegated’=false);

[fly] pl=1 & c=0 & w=5 & (a!=0) & r=0 & !in ! (r’=3);

[fly] pl=1 & c=1 & w=5 & (a!=0) & r=0 & !in ! (r’=4);

[fly] pl=1 & c=2 & w=5 & (a!=0) & r=0 & !in ! (w’=4) & (r’=0) & (in’=true);

// w6 ! r2 | r3 |r8
[delegated] pl=1 & w=6 & a!=0 & r=0 & delegated=true ! (in’=false) & (c’=0) & (delegated’=false);

[delegated] pl=1 & w=6 & a!=0 & r=0 & delegated=true ! (in’=false) & (c’=1) & (delegated’=false);

[delegated] pl=1 & w=6 & a!=0 & r=0 & delegated=true ! (in’=false) & (c’=2) & (delegated’=false);

[fly] pl=1 & c=0 & w=6 & (a!=0) & r=0 & !in ! (r’=2);

[fly] pl=1 & c=1 & w=6 & (a!=0) & r=0 & !in ! (r’=3);

[fly] pl=1 & c=2 & w=6 & (a!=0) & r=0 & !in ! (r’=8);

// non-checkpoints: fly autonomously
// w1 ! r1 | r9
[fly] pl=1 & w=1 & (a!=0) & r=0 & !in ! (r’=1);

[fly] pl=1 & w=1 & (a!=0) & r=0 & !in ! (r’=9);

// w3 ! r6 | w4 (any anglepoint)
[fly] pl=1 & w=3 & (a!=0) & r=0 & !in ! (r’=6);
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[fly] pl=1 & w=3 & (a!=0) & r=0 & !in ! (w’=4) & (r’=0) & (in’=true);

// w4 ! w3 | w5
[fly] pl=1 & w=4 & (a!=0) & r=0 & !in ! (w’=3) & (r’=0) & (in’=true);

[fly] pl=1 & w=4 & (a!=0) & r=0 & !in ! (w’=5) & (r’=0) & (in’=true);

// r1 ! r2 | w1
[fly] pl=1 & r=1 ! (r’=2);

[fly] pl=1 & r=1 ! (w’=1) & (r’=0) & (in’=true);

// r2 ! r1 | w6
[fly] pl=1 & r=2 ! (r’=1);

[fly] pl=1 & r=2 ! (w’=6) & (r’=0) & (in’=true);

// r3 ! w5 | w6
[fly] pl=1 & r=3 ! (w’=5) & (r’=0) & (in’=true);

[fly] pl=1 & r=3 ! (w’=6) & (r’=0) & (in’=true);

// r4 ! r5 | w5
[fly] pl=1 & r=4 ! (r’=5);

[fly] pl=1 & r=4 ! (w’=5) & (r’=0) & (in’=true);

// r5 ! r4 | w2
[fly] pl=1 & r=5 ! (r’=4);

[fly] pl=1 & r=5 ! (w’=2) & (r’=0) & (in’=true);

// r6 ! w2 | w3
[fly] pl=1 & r=6 ! (w’=2) & (r’=0) & (in’=true);

[fly] pl=1 & r=6 ! (w’=3) & (r’=0) & (in’=true);

// r7 ! w2 | r8
[fly] pl=1 & r=7 ! (w’=2) & (r’=0) & (in’=true);

[fly] pl=1 & r=7 ! (r’=8);

// r8 ! w6 | r7
[fly] pl=1 & r=8 ! (w’=6) & (r’=0) & (in’=true);

[fly] pl=1 & r=8 ! (r’=7);

// r9 ! w1 | w2
[fly] pl=1 & r=9 ! (w’=1) & (r’=0) & (in’=true);

[fly] pl=1 & r=9 ! (w’=2) & (r’=0) & (in’=true);

// stop if target reached
[uav_stop] stop & pl=1 ! true;

endmodule

// CHOICE OF ANGLEPOINTS
module angle_choice

a : [0..8] init 0; // anglepoints

// 3 – 4 – 5
// | | |
// 2 o 6
// | | |
// 1 – 8 – 7

[prescribe] true ! (a’=1);

[prescribe] true ! (a’=2);

[prescribe] true ! (a’=3);

[prescribe] true ! (a’=4);

[prescribe] true ! (a’=5);

[prescribe] true ! (a’=6);

[prescribe] true ! (a’=7);

[prescribe] true ! (a’=8);

[delegate] true ! (a’=1);

[delegate] true ! (a’=2);

[delegate] true ! (a’=3);

[delegate] true ! (a’=4);

[delegate] true ! (a’=5);

[delegate] true ! (a’=6);

[delegate] true ! (a’=7);

[delegate] true ! (a’=8);

[camera] true ! (a’=0);

endmodule

// MISSION OBJECTIVE
module waypoint_check

// check if waypoints w1, w2 and w6 have been visited
[fly] w1 & w2 & w6 ! (stop’=true);

[camera] w1 & w2 & w6 ! (stop’=true);

[camera] !(w1 & w2 & w6) ! true;

[fly] !(w1 & w2 & w6) ! true;

endmodule

rewards “time” // flight time
[wait] true : 10;
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[fly] true : 60;

endrewards

rewards “ROZ” // ROZ occupancy
[fly] roz : 1;

endrewards

uav.props

const double v_ROZ;
const double v_time;

<<p1>> R{“time”}min=? [ Fc w1&w2&w6 ]

<<p1>> and(R{“ROZ”}<=v_ROZ [ C ], R{“time”}<=v_time [ C ]);

B.3 Aircraft Power Control

power.prism

smg

/////////////////////////////// TOP-LEVEL SYTEM (200) ////////////////////////////////////

system “MEV”
“HVAC_LEFT” || “HVAC_RIGHT“

endsystem

// MODEL PARAMTERS
const double sample_time = 1; // [s] every sample_time seconds, the reactive loop is performed

// generator dynamics
const N; // [#] number of timesteps generator configuration stays the same
const double pg = 0.8; // [prob] probability of generator being healthy per max_gc time steps

// interface dynamics
const double I1_health; // [prob] probability of interface being powered

// connector dynamics
const del_max; // [#] maximum turn-off delay in loop itarations of connector, turn-on delay is (floor of) half this

//////////////////////////// HIGH VOLTAGE AC, LEFT (210a) ///////////////////////////////

system ”HVAC_LEFT“
C1_switch || C2_switch || C3_switch || C4_switch || GEN_LEFT || HVAC_LEFT || GEN_COUNTER_LEFT

endsystem

const C1_init = 0;

const C2_init = 0;

const C3_init = 0;

const C4_init = 0;

const C1_turn_off_int = 1; // need to turn off when interface opens
const C2_turn_off_int = 1; // need to turn off when interface opens
const C3_turn_off_int = 0; // no need to turn off when interface opens

module C1_switch
C1 : [0..1] init C1_init; // connector status for C1
C1_int : [0..1] init C1_init; // intention for C1
C1_del : [0..max(del_max, 1)] init del_max; // delay for switching

// change intention to switch off
[switch_left] C1_int!=0 ! (C1_int’=0) & (C1_del’=0);

[switch_left_int_on] C1_int!=0 ! (C1_int’=0) & (C1_del’=0);

// change intention to switch on
[switch_left] C1_int!=1 ! (C1_int’=1) & (C1_del’=ceil(del_max/2));
[switch_left_int_on] C1_int!=1 & C1_turn_off_int=0 ! (C1_int’=1) & (C1_del’=ceil(del_max/2));
// do nothing
[switch_left] true ! true;

[switch_left_int_on] C1_int=0 | C1_turn_off_int=0 ! true;

// resolve connector status
[conn_res_left] true ! (C1’=C1_int) & (C1_del’=del_max);
// not resolved - increase counter
[conn_res_left] C1_del<del_max & (C1!=C1_int) ! (C1_del’=C1_del + 1);

endmodule

module C2_switch = C1_switch [C1=C2, C1_int=C2_int, C1_init=C2_init, C1_del=C2_del, C1_turn_off_int=C2_turn_off_int] endmodule
module C3_switch = C1_switch [C1=C3, C1_int=C3_int, C1_init=C3_init, C1_del=C3_del, C1_turn_off_int=C3_turn_off_int] endmodule
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// switch over interface is special
// C4 should only be switched on if no power could flow out of HVAC_left,
// so due to delays we need to make sure that C1 and C2 are off,
// and their intention is off as well
module C4_switch

C4 : [0..1] init C4_init; // connector status for C4
C4_int : [0..1] init C4_init; // intention for C4
C4_del : [0..max(del_max, 1)] init del_max; // delay for switching

// change intention to switch off
[switch_left] C4_int!=0 ! (C4_int’=0) & (C4_del’=0);

// change intention to switch on
[switch_left_int_on] C4_int!=1 ! (C4_int’=1) & (C4_del’=ceil(del_max/2));
// no change if save to leave on
[switch_left] true ! true;

// resolve connector status
[conn_res_left] true ! (C4’=C4_int) & (C4_del’=del_max);
// not resolved - increase counter
[conn_res_left] C4_del<del_max & (C4!=C4_int) ! (C4_del’=C4_del + 1);

endmodule

module GEN_COUNTER_LEFT
GC_left : [0..max(N, 1)] init 0;

[gen_left] GC_left<N ! (GC_left’=GC_left + 1);

[gen_left] GC_left=N ! (GC_left’=0);

endmodule

module GEN_LEFT
// generators
G224a : [0..1] init (pg=0.0 ? 0 : 1); // G1
G252a : [0..1] init (pg=0.0 ? 0 : 1); // G2

[gen_left] GC_left=0 ! pg ⇤ pg : (G224a’=1) & (G252a’=1) // both generators work
+ pg ⇤ (1 � pg) : (G224a’=1) & (G252a’=0) // G2 fails
+ (1 � pg) ⇤ pg : (G224a’=0) & (G252a’=1) // G1 fails
+ (1 � pg) ⇤ (1 � pg) : (G224a’=0) & (G252a’=0); // both generators fail

[gen_left] GC_left>0 ! true; // no change in generator status
endmodule

// interface I1 (left to right direction)
formula i1l_pow = C4=0 & bus_214a2=1; // need C4=0, because want to avoid circularity
formula i1l_off = !i1l_pow;

module HVAC_LEFT
// status of power delivered over interface I1 to left side
I1_left : [0..1] init (I1_health=1.0 ? 1 : 0);

// players / stages:
pL : [1..7] init 1;

// 1: generators
[gen_left?] pL=1 ! (pL’=2);

// 2: tau for normal form
[] pL=2 ! (pL’=3);

// 3: contactors
[switch_left!] pL=3 ! (pL’=4);

[switch_left_int_on!] pL=3 ! (pL’=4);

// 4: resolve connector status nondeterministically
[conn_res_left?] pL=4 ! (pL’=5);

// 5: status - also sample interface distribution
[stat_buses_safe_left?] pL=5 & buses_left & safe_left ! I1_health : (pL’=6) + (1 � I1_health) : (pL’=7);

[stat_buses_left?] pL=5 & buses_left & !safe_left ! I1_health : (pL’=6) + (1 � I1_health) : (pL’=7);

[stat_safe_left?] pL=5 & !buses_left & safe_left ! I1_health : (pL’=6) + (1 � I1_health) : (pL’=7);

[stat_left?] pL=5 & !buses_left & !safe_left ! I1_health : (pL’=6) + (1 � I1_health) : (pL’=7);

// 6&7: interfaces - set incoming power according to previously drawn sample
[i1l_pow__i1r_pow?] pL=6 & i1l_pow ! (I1_left’=1) & (pL’=1);

[i1l_pow__i1r_off?] pL=7 & i1l_pow ! (I1_left’=0) & (pL’=1);

[i1l_off__i1r_pow?] pL=6 & i1l_off ! (I1_left’=1) & (pL’=1);

[i1l_off__i1r_off?] pL=7 & i1l_off ! (I1_left’=0) & (pL’=1);

endmodule

// SAFETY SPECIFICATIONS - HVAC LEFT

// no paralleling of sources
formula safe_left = (C1=0 | C3=0 | C2=0) &

(C1=0 | C3=0 | C4=0 | I1_left=0) &

(C2=0 | C4=0 | I1_left=0);

// buses
formula bus_214a1 = (G224a=1 & C1=1)

| (G252a=1 & C3=1 & C2=1)

| (C3=1 & C4=1 & I1_left=1)
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? 1 : 0;

formula bus_214a2 = (G224a=1 & C1=1 & C3=1)

| (G252a=1 & C2=1)

| (C4=1 & I1_left=1)

? 1 : 0;

// both buses on left side powered
formula buses_left = bus_214a1=1 & bus_214a2=1;

// REWARDS - HVAC LEFT
// defined over actions

rewards ”fail_l“
// left side fails
[stat_buses_left] true : sample_time;
[stat_left] true : sample_time;

endrewards

rewards ”i1_l“
// both buses on left side are powered
[i1l_pow__i1r_pow] true : sample_time;
[i1l_pow__i1r_off] true : sample_time;

endrewards

rewards ”buses_l“
// left side powers interface
[stat_buses_safe_left] true : sample_time;
[stat_buses_left] true : sample_time;

endrewards

rewards ”time“
[i1l_pow__i1r_pow] true : sample_time;
[i1l_pow__i1r_off] true : sample_time;
[i1l_off__i1r_pow] true : sample_time;
[i1l_off__i1r_off] true : sample_time;

endrewards

//////////////////////////// HIGH VOLTAGE AC, RIGHT (210b) ///////////////////////////////

system ”HVAC_RIGHT“
C5_switch || C6_switch || C7_switch || C8_switch || GEN_RIGHT || HVAC_RIGHT || GEN_COUNTER_RIGHT

endsystem

const C5_init = 0;

const C6_init = 0;

const C7_init = 0;

const C8_init = 0;

const C5_turn_off_int = 1; // need to turn off when interface opens
const C6_turn_off_int = 1; // need to turn off when interface opens
const C7_turn_off_int = 0; // no need to turn off when interface opens

module C5_switch = C1_switch [C1=C5, C1_int=C5_int, C1_init=C5_init, C1_del=C5_del, conn_res_left=conn_res_right,
switch_left=switch_right, switch_left_int_on=switch_right_int_on, C1_turn_off_int=C5_turn_off_int] endmodule

module C6_switch = C1_switch [C1=C6, C1_int=C6_int, C1_init=C6_init, C1_del=C6_del, conn_res_left=conn_res_right,
switch_left=switch_right, switch_left_int_on=switch_right_int_on, C1_turn_off_int=C6_turn_off_int] endmodule

module C7_switch = C1_switch [C1=C7, C1_int=C7_int, C1_init=C7_init, C1_del=C7_del, conn_res_left=conn_res_right,
switch_left=switch_right, switch_left_int_on=switch_right_int_on, C1_turn_off_int=C7_turn_off_int] endmodule

module C8_switch = C4_switch [C4=C8, C4_int=C8_int, C4_init=C8_init, C4_del=C8_del, conn_res_left=conn_res_right,
switch_left=switch_right, switch_left_int_on=switch_right_int_on] endmodule

module GEN_COUNTER_RIGHT = GEN_COUNTER_LEFT[gen_left=gen_right, GC_left=GC_right] endmodule

module GEN_RIGHT = GEN_LEFT[G224a=G224b, G252a=G252b, gen_left=gen_right, GC_left=GC_right] endmodule

// interface I1 (right to left direction)
formula i1r_pow = C8=0 & bus_214b2=1; // need C8=0, because want to avoid circularity
formula i1r_off = !i1r_pow;

module HVAC_RIGHT
// status of power delivered over interface I1 to right side
I1_right : [0..1] init (I1_health=1.0 ? 1 : 0);

// players / stages:
pR : [1..7] init 1;

// 1: generators
[gen_right?] pR=1 ! (pR’=2);

// 2: tau for normal form
[] pR=2 ! (pR’=3);

// 3: contactors
[switch_right!] pR=3 ! (pR’=4);

[switch_right_int_on!] pR=3 ! (pR’=4);

// 4: resolve connector status nondeterministically
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[conn_res_right?] pR=4 ! (pR’=5);

// 5: status - also sample interface distribution
[stat_buses_safe_right?] pR=5 & buses_right & safe_right ! I1_health : (pR’=6) + (1 � I1_health) : (pR’=7);

[stat_buses_right?] pR=5 & buses_right & !safe_right ! I1_health : (pR’=6) + (1 � I1_health) : (pR’=7);

[stat_safe_right?] pR=5 & !buses_right & safe_right ! I1_health : (pR’=6) + (1 � I1_health) : (pR’=7);

[stat_right?] pR=5 & !buses_right & !safe_right ! I1_health : (pR’=6) + (1 � I1_health) : (pR’=7);

// 6&7: interfaces - set incoming power according to previously drawn sample
[i1l_pow__i1r_pow?] pR=6 & i1r_pow ! (I1_right’=1) & (pR’=1);

[i1l_pow__i1r_off?] pR=7 & i1r_pow ! (I1_right’=0) & (pR’=1);

[i1l_off__i1r_pow?] pR=6 & i1r_off ! (I1_right’=1) & (pR’=1);

[i1l_off__i1r_off?] pR=7 & i1r_off ! (I1_right’=0) & (pR’=1);

endmodule

// both buses on right side powered
formula buses_right = bus_214b1=1 & bus_214b2=1;

// SAFETY SPECIFICATIONS - HVAC RIGHT

// no paralleling of sources
formula safe_right = (C5=0 | C8=0 | I1_right=0) &

(C5=0 | C7=0 | C6=0) &

(C6=0 | C7=0 | C8=0 | I1_right=0);

// buses
formula bus_214b1 = (C8=1 & I1_right=1) |

(G252b=1 & C5=1) |
(G224b=1 & C7=1 & C6=1)

? 1 : 0;

formula bus_214b2 = (G224b=1 & C6=1) |
(I1_right=1 & C7=1 & C8=1) |
(G252b=1 & C5=1 & C7=1)

? 1 : 0;

// safe and buses powered
formula pow_safe_right = safe_right & bus_214b1=1 & bus_214b2=1;

// REWARDS - HVAC RIGHT
// defined over actions

rewards ”fail_r“
// right side fails
[stat_buses_right] true : sample_time;
[stat_right] true : sample_time;

endrewards

rewards ”i1_r“
// right side powers interface
[i1l_pow__i1r_pow] true : sample_time;
[i1l_off__i1r_pow] true : sample_time;

endrewards

rewards ”buses_r“
// both buses on right side are powered
[stat_buses_safe_right] true : sample_time;
[stat_buses_right] true : sample_time;

endrewards

power.props

// Compositional top-level property of full system, without interface
comp(“P210a”, “P210b”);

// Compositional top-level property of full system, using interface
comp(“P210a_int”, “P210b_int”);

// Global top-level property of full system

//////////////////////////////////////////////////////////////////////////////////////////
// Properties of HVAC left (210a)

const double u_fail_l; // guar: upper bound on failures
const double l_buses_l; // guar: lower bound on powering the buses
const double l_i1_l; // guar: lower bound on the left side delivering power over I1

// minimise failures
“safe_210a” : P>=1 [ R(path){“fail_l”}/{“time”}<=u_fail_l [ S ] ]

// maximise uptime for buses
“buses_210a” : P>=1 [ R(path){“buses_l”}/{“time”}>=l_buses_l [ S ] ]

// maximise power over interface
“I1_210a” : P>=1 [ R(path){“i1_l”}/{“time”}>=l_i1_l [ S ] ]



236 APPENDIX B. CASE STUDY FILES

// full property of HVAC left (210a) without interface
“P210a” : <<1>> (“safe_210a” & “buses_210a”)

// full property of HVAC left (210a) with interface
“P210a_int” : <<1>> (“safe_210a” & “buses_210a” & “I1_210a”)

//////////////////////////////////////////////////////////////////////////////////////////
// Properties of HVAC right (210b)

const double u_fail_r; // guar: upper bound on failures
const double l_buses_r; // guar: lower bound on powering the buses
const double l_i1_r; // guar: lower bound on the right side delivering power over I1

// minimise failures
“safe_210b” : P>=1 [ R(path){“fail_r”}/{“time”}<=u_fail_r [ S ] ]

// maximise uptime for buses
“buses_210b” : P>=1 [ R(path){“buses_r”}/{“time”}>=l_buses_r [ S ] ]

// maximise power over interface
“I1_210b” : P>=1 [ R{“i1_r”}/{“time”}>=l_i1_r [ S ] ]

// full property of HVAC right (210b) without interface
“P210b” : <<1>> (“safe_210b” & “buses_210b”)

// full property of HVAC right (210b) with interface
“P210b_int” : <<1>> (“safe_210b” & “buses_210b” & “I1_210b”)

B.4 Room Temperature Control

temperature.m

% Temperature Control Case Study

clc; close all;

%================= Discretisation ===========================
rooms = 3;
w = [3, 3, 3]; % room width (m)
l = [3, 3, 3]; % room length (m)
h = [2, 2, 2]; % room height (m)
Aw = 1.4 * 1.4; % window size (m^2)
% w w w
% |------|-------|------|
% | 1 | 2 | 3 | l
% |------|-------|------|
%

V_el = 10*10^ -3; % chilled water volume (10 liters)
V = V_el;

r = 0.01; % pipeline radius
A = 2 * pi * r * w; % surface area of cooler
h_copp = 13.1; % overall cooper transfer coefficient [W/m^2K]
Kcw = A * h_copp; % chilled water thermal convection coefficient

rho_a = 1.2041; % air density (20řC) [kg/m^3]
cw_a = 1.012e3; % specific heat capacity of air [J/kgK]
Cr = (w .* l .* h) * rho_a * cw_a; % room thermal capacity

% thermal convection coefficients
K1 = ([1 ,1 ,1].*w.*h * 2 + [1,0,1].*l.*h) * 0.1; % closed window
K2 = [1,1,1]* Aw * 0.4; % change for open window
Kwall = [1,1,1].*w.*h * 0.2; % inner wall

Tset = 20; % Temperature setpoint
Tout = 30; % Nominal outside temperature
Tcw = 10; % Nominal cooling water temperature

dt =20*60; % period length in seconds
VarTA =1/65^2; % Disturbance variance
Sigma=VarTA*dt; % Resulting Sigma

% truncating the state space to boxes
thr = [2, 2, 2];
X_l = Tset -thr;
X_u = Tset+thr;
% bins per dimension
bins = 5;
n = [bins ,bins ,bins];
% diameter of bins
delta = (X_u -X_l)./n;
% boundary points of the partition
X = zeros(rooms ,bins +1);
X_rep = zeros(rooms ,bins);
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for r = 1: rooms
X(r,:) = X_l(r):delta(r):X_u(r);
X_rep(r,:) = X(r,1:n(r))+delta(r)/2;

end

% computing transition probabilities
m1 = 5; % control options (valve)
m2 = 2; % control options (window)

% Room 1 -- neighbour is room 2
r = 1;
P1 = zeros(n(r),n(r),n(2),m1,m2);
for u2 = 0:m2 -1

for u1 = 0:m1 -1
for ir=1:n(r)

for i2=1:n(2)
% Expected Value of the Room Temperature
E_xbar=X_rep(r,ir) ... % previous temperature

+ (dt/Cr(r))*Kwall(r)*(X_rep(2,i2)-X_rep(r,ir)) ... % change due to neighbouring room
+ (dt/Cr(r))*u1/(m1 -1)*Kcw(r)*(Tcw -X_rep(r,ir)) ... % change due to valve setting
+ (dt/Cr(r))*(K1(r)+K2(r)*u2)*(Tout -X_rep(r,ir)); % change due to window setting

T = normcdf(X(r,:),E_xbar ,Sigma);
tn = (T(2:n(r)+1) - T(1:n(r)));
P1(1:n(r),ir,i2,u1+1,u2+1) = tn/sum(tn); % normalization because of truncation

end
end

end
end
% error for cost function C(x_1) = [x_1 -Ts]^2
h_c1 = 2*max(abs(X_l(r)-Tset),abs(X_u(r)-Tset)); % differential within box
alpha1 = 1 - (dt/Cr(r))*Kwall(r) - (dt/Cr(r))*Kcw(r) - (dt/Cr(r))*(K1(r)+K2(r));
alpha2 = (dt/Cr(r))*Kwall(r);
error1 = h_c1*delta(r) + h_c1*(abs(alpha1)*delta(r) + abs(alpha2)*delta (2))/(1-abs(alpha1));

% Room 2 -- neighbours are room 1 and 3
r = 2;
P2 = zeros(n(r),n(r),n(1),n(3),m1 ,m2);
for u2 = 0:m2 -1

for u1 = 0:m1 -1
for ir=1:n(r)

for i1=1:n(1)
for i3=1:n(3)

% Expected Value of the Room Temperature
E_xbar=X_rep(r,ir) ... % previous temperature

+ (dt/Cr(r))*Kwall(r)*(X_rep(1,i1)-X_rep(r,ir)) ... % change due to neighbouring room 1
+ (dt/Cr(r))*Kwall(r)*(X_rep(3,i3)-X_rep(r,ir)) ... % change due to neighbouring room 3
+ (dt/Cr(r))*u1/(m1 -1)*Kcw(r)*(Tcw -X_rep(r,ir)) ... % change due to valve setting
+ (dt/Cr(r))*(K1(r)+K2(r)*u2)*(Tout -X_rep(r,ir)); % change due to window setting

T = normcdf(X(r,:),E_xbar ,Sigma);
tn = (T(2:n(r)+1) - T(1:n(r)));
P2(1:n(r),ir,i1,i3 ,u1+1,u2+1) = tn/sum(tn); % normalization because of truncation

end
end

end
end

end
% error for cost function C(x_2) = [x_2 -Ts]^2
h_c2 = 2*max(abs(X_l(r)-Tset),abs(X_u(r)-Tset)); % differential within box
alpha1 = (dt/Cr(r))*Kwall(r);
alpha2 = 1 - 2*(dt/Cr(r))*Kwall(r) - (dt/Cr(r))*Kcw(r) - (dt/Cr(r))*(K1(r)+K2(r));
alpha3 = (dt/Cr(r))*Kwall(r);
error2 = h_c2*delta(r) + h_c2*(abs(alpha1)*delta (1) + abs(alpha2)*delta(r) + abs(alpha3)*delta (3))/(1-abs(alpha2)

);

% Room 3 -- neighbour is room 2
r = 3;
P3 = zeros(n(r),n(r),n(2),m1,m2);
for u2 = 0:m2 -1

for u1 = 0:m1 -1
for ir=1:n(r)

for i2=1:n(2)
% Expected Value of the Room Temperature
E_xbar=X_rep(r,ir) ... % previous temperature

+ (dt/Cr(r))*Kwall(r)*(X_rep(2,i2)-X_rep(r,ir)) ... % change due to neighbouring room
+ (dt/Cr(r))*u1/(m1 -1)*Kcw(r)*(Tcw -X_rep(r,ir)) ... % change due to valve setting
+ (dt/Cr(r))*(K1(r)+K2(r)*u2)*(Tout -X_rep(r,ir)); % change due to window setting

T = normcdf(X(r,:),E_xbar ,Sigma);
tn = (T(2:n(r)+1) - T(1:n(r)));
P3(1:n(r),ir,i2,u1+1,u2+1) = tn/sum(tn); % normalization because of truncation

end
end

end
end
% error for cost function C(x_3) = [x_3 -Ts]^2
h_c3 = 2*max(abs(X_l(r)-Tset),abs(X_u(r)-Tset)); % differential within box
alpha2 = (dt/Cr(r))*Kwall(r);
alpha3 = 1 - (dt/Cr(r))*Kwall(r) - (dt/Cr(r))*Kcw(r) - (dt/Cr(r))*(K1(r)+K2(r));
error3 = h_c3*delta(r) + h_c3*(abs(alpha2)*delta (2) + abs(alpha3)*delta(r))/(1-abs(alpha3));

%======================= Export to PRISM ==========================

% MODEL FILE
fid = fopen(’temperature.prism ’,’w’);

% smg preamble
fprintf(fid ,’smg\r\n’);
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% top level system
fprintf(fid ,’\r\n// top level system\r\n’);
fprintf(fid ,’system\r\n’);
fprintf(fid ,’\t"S1" || "S2" || "S3" \r\n’);
fprintf(fid ,’endsystem\r\n’);

comm_seq = [1,2,3];
export_room(fid , P1 , 1, Tset , X_rep , 2, -1, comm_seq , error1);
export_room(fid , P2 , 2, Tset , X_rep , 1, 3, comm_seq , error2);
export_room(fid , P3 , 3, Tset , X_rep , 2, -1, comm_seq , error3);

% time progress
fprintf(fid ,’\r\n// time\r\n’);
fprintf(fid ,’rewards "time"\r\n’);
for i1=1:n(1)

fprintf(fid ,’\t[temp2_ %02u] true : 1;\r\n’, i1);
end
fprintf(fid ,’endrewards\r\n\r\n’);

fclose(fid);

% PROPERTIES FILE
pid = fopen(’temperature.props ’,’w’);
for r=1: rooms

fprintf(pid , ’const double tv%u = 0.8;\r\n’, r);
fprintf(pid , ’const double va%u = 0.8;\r\n’, r);
fprintf(pid , ’const double tw%u = 0.3;\r\n’, r);
if r==2

fprintf(pid , ’const double wi%u = 0.2;\r\n’, r);
else

fprintf(pid , ’const double wi%u = 0.3;\r\n’, r);
end

end
fprintf(pid , ’\r\n’);

% room 1
fprintf(pid , ’"phi1" : <<1>> ((R{" window1 "}/{" time"}<=wi1 [ S ] & R{" tempdev2 "}/{" time"}<=tw2 [ S ]) => R{"

tempdev1 "}/{" time"}<=tw1 [ S ])\r\n’);
fprintf(pid , ’"psi1" : <<1>> (R{" valve1 "}/{" time"}<=va1 [ S ] & (R{" tempdev2 "}/{" time"}<=tv2 [ S ] => R{" tempdev1

"}/{" time"}<=tv1 [ S ]))\r\n’);
% room 2
fprintf(pid , ’"phi2" : <<1>> (R{" window2 "}/{" time"}<=wi2 [ S ] => R{" tempdev2 "}/{" time"}<=tw2 [ S ])\r\n’);
fprintf(pid , ’"psi2" : <<1>> (R{" valve2 "}/{" time"}<=va2 [ S ] & R{" tempdev2 "}/{" time"}<=tv2 [ S ])\r\n’);
% room 3
fprintf(pid , ’"phi3" : <<1>> ((R{" window3 "}/{" time"}<=wi3 [ S ] & R{" tempdev2 "}/{" time"}<=tw2 [ S ]) => R{"

tempdev3 "}/{" time"}<=tw3 [ S ])\r\n’);
fprintf(pid , ’"psi3" : <<1>> (R{" valve3 "}/{" time"}<=va3 [ S ] & (R{" tempdev2 "}/{" time"}<=tv2 [ S ] => R{" tempdev3

"}/{" time"}<=tv3 [ S ]))\r\n’);

% compositional
fprintf(pid , ’\r\n"phi" : comp("phi1", "phi2", "phi3")\r\n’);
fprintf(pid , ’"psi" : comp("psi1", "psi2", "psi3")\r\n’);

fclose(pid);

% BASH FILE
sid = fopen(’temperature.sh’,’w’);
acc = [100, 500, 1000];
eps = [0.05 ,0.02 , 0.01];
citer = [100 ,250];
diter = [20 ,10];
name = [’phi’; ’psi’];
fprintf(sid , ’TIMEOUT =240\n\n’); % timeout in minutes
fprintf(sid , ’if hash timeout 2>/dev/null; then\n\tTO=timeout\nelse\n\tTO=gtimeout\nfi\n\n’); % timeout program
fprintf(sid , ’{\n’); % sequencing
for j = 1:2

for i = 1:3
fprintf(sid , ’$TO $(( TIMEOUT))m \\\n’); % timeout
fprintf(sid , ’../../ prism/bin/prism temperature {.prism ,. props} \\\n’); % model and properties
fprintf(sid , ’\t-prop %u \\\n’, 6+j); % property index
fprintf(sid , ’\t-multimaxciter %u -multimaxditer %u -gs \\\n’, citer(j), diter(j)); % iteration bounds

and Gauss -Seidel
fprintf(sid , ’\t-multiminm 2 -multimaxm 10000 \\\n’); % box size
fprintf(sid , ’\t-baselineaccuracy %u -increasefactor 1.0 -multirounding \\\n’, acc(i)); % rounding
fprintf(sid , ’\t-logcpareto -logdpareto \\\n’); % logging
fprintf(sid , ’\t-exportstrat temp_%s_%u.strat \\\n’, name(j,:), i); % strategy export
fprintf(sid , ’\t-paretoepsilon %.2f \\\n’, eps(i)); % stopping accuracy
fprintf(sid , ’\t2 >&1 1> temp_%s_%u.log ; \n\n’, name(j,:), i);

end
end
fprintf(sid , ’} &\n’); % end sequencing and execute in background
fclose(sid);

%===================== End of the code ==============================

export_room.m

function [] = export_room(fid , P, roomID , Tset , X_rep , neighborID1 , neighborID2 , comm_seq , error)

if(neighborID2 < 1) % only one neighbour
ns = 1;

else
ns = 2;

end
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if(ns==1)
n1 = size(P,1);
n2 = size(P,3);
n3 = 1;
m1 = size(P,4);
m2 = size(P,5);

else
n1 = size(P,1);
n2 = size(P,3);
n3 = size(P,4);
m1 = size(P,5);
m2 = size(P,6);

end

fprintf(fid ,’\r\n////////////////////// ROOM %u ///////////////////////////////\r\n’, roomID);
fprintf(fid ,’\r\nsystem "S%u"\r\n’, roomID);
fprintf(fid ,’\tG%u\r\n’, roomID);
fprintf(fid ,’endsystem\r\n’);

fprintf(fid ,’\r\nmodule G%u’, roomID);
fprintf(fid ,’\r\n\t// discretisation error estimate: %f\r\n\r\n’, error);

% Definition of the states
fprintf(fid ,’\t// state variables\r\n’);
fprintf(fid ,’\tx%u : [1..%u] init 1; // room %u temperature\r\n’, roomID , n1 , roomID);
fprintf(fid ,’\ty%u : [1..%u] init 1; // ambient temperature (room %u)\r\n’, roomID , n2, neighborID1);
if ns==2

fprintf(fid ,’\tz%u : [1..%u] init 1; // ambient temperature (room %u)\r\n’, roomID , n3, neighborID2);
end
fprintf(fid ,’\tv%u : [0..%u] init 0; // valve setting\r\n’, roomID , m1 -1);
fprintf(fid ,’\tw%u : [0..%u] init 0; // window setting\r\n’, roomID , m2 -1);
fprintf(fid ,’\tp%u : [1..%u] init %u; // stage\r\n’, roomID , 5+ns , 2);

% work out communication sequence
c1 = 4+find(comm_seq == roomID);
c2 = 4+find(comm_seq == neighborID1);
c3 = 4+find(comm_seq == neighborID2);
if(ns==1)

if ((c1==6) && (c2==7))
c1=5; c2=6;

elseif ((c1==7) && (c2==6))
c1=6; c2=5;

elseif ((c1==5) && (c2==7))
c2=6;

elseif ((c1==7) && (c2==5))
c1=6;

end
end

% Stage 4: player 2 sets window
fprintf(fid ,’\r\n\t// Stage 4: set window\r\n’);
for u2 = 0:m2 -1

fprintf(fid ,’\t[a%u_w%u?] p%u=4 -> (w%u’’=%u) & (p%u’’=5);\r\n’,roomID ,u2 , roomID , roomID ,u2 , roomID);
end

% Stage 3: player 1 sets valve
fprintf(fid ,’\r\n\t// Stage 3: set valve\r\n’);
for u1 = 0:m1 -1

fprintf(fid ,’\t[a%u_v%u!] p%u=3 -> (v%u’’=%u) & (p%u’’=4);\r\n’,roomID ,u1 , roomID , roomID ,u1 , roomID);
end

% Stage c1: player 2 sends
fprintf(fid ,’\r\n\t// Stage %u: send temperature\r\n’, c1);
for i1 = 1:n1

% Stage send_stage: send over interface
fprintf(fid ,’\t[temp%u_%02u?] x%u=%u & p%u=%u -> (p%u’’=%u);\r\n’,roomID ,i1, roomID ,i1, roomID ,c1 , roomID ,mod

(c1 ,ns+5) +1);
end

% Stage c2: player 2 receives from neighbour 1
fprintf(fid ,’\r\n\t// Stage %u: receive temperature\r\n’, c2);
for i2 = 1:n2

fprintf(fid ,’\t[temp%u_%02u?] p%u=%u -> (y%u’’=%u) & (p%u’’=%u);\r\n’, neighborID1 ,i2, roomID ,c2, roomID ,i2 ,
roomID ,mod(c2 ,ns+5) +1);

end

% Stage c3: player 2 receives from neighbour 2
if ns==2

fprintf(fid ,’\r\n\t// Stage %u: receive temperature\r\n’, c3);
for i2 = 1:n2

fprintf(fid ,’\t[temp%u_%02u?] p%u=%u -> (y%u’’=%u) & (p%u’’=%u);\r\n’, neighborID2 ,i2, roomID ,c3, roomID
,i2 , roomID ,mod(c3 ,ns+5) +1);

end
end

% Stage 1: temperature dynamics
fprintf(fid ,’\r\n\t// Stage 1: temperature dynamics\r\n’);
for i1=1:n1

for i2=1:n2
for i3=1:n3

for u2 = 0:m2 -1
for u1 = 0:m1 -1

% use rounded distribution
if ns==1

prob = round(P(1:n1,i1 ,i2,u1+1,u2+1) *1000) /1000;
fprintf(fid ,’\t[temp%u?] x%u=%u & y%u=%u & v%u=%u & w%u=%u & p%u=1 -> ’,roomID , roomID

,i1 , roomID ,i2 , roomID ,u1, roomID ,u2, roomID);
elseif ns==2

prob = round(P(1:n1,i1 ,i2,i3,u1+1,u2+1) *1000) /1000;
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fprintf(fid ,’\t[temp%u?] x%u=%u & y%u=%u & z%u=%u & v%u=%u & w%u=%u & p%u=1 -> ’,
roomID , roomID ,i1 , roomID ,i2 , roomID ,i3, roomID ,u1, roomID ,u2, roomID);

end
% re-normalise rounded distribution
if(sum(prob)~=1.0)

[val ,index] = max(prob);
prob(index) = val+(1.0- sum(prob));

end

% Stage 5: set temperature (one action per state)
trans_added = false;
for i1n=1:n1

if prob(i1n) > 0.0
if trans_added

fprintf(fid , ’ + ’);
end
trans_added = true;
fprintf(fid ,’%.3f : (x%u’’=%u) & (p%u’’=2)’,prob(i1n), roomID ,i1n , roomID);

end
end
fprintf(fid ,’;\r\n’);

end
end

end
end
fprintf(fid ,’\r\n’);

end

% Stage 2: tau for normal form
fprintf(fid ,’\r\n\t// Stage 2: tau for normal form\r\n’);
fprintf(fid ,’\t[tau?] p%u=2 -> (p%u’’=3);\r\n’,roomID , roomID);

fprintf(fid ,’\r\nendmodule\r\n\r\n’);

% Rewards

% temperature of room
fprintf(fid ,’\r\n// temperature room %u\r\n’, roomID);
fprintf(fid ,’rewards "temp%u"\r\n’, roomID);
for i1=1:n1

fprintf(fid ,’\t[temp%u_%02u] true : %.3f;\r\n’, roomID , i1, X_rep(roomID ,i1));
end
fprintf(fid ,’endrewards\r\n\r\n’);

% temperature deviation of room
fprintf(fid ,’\r\n// temperature deviation room %u\r\n’, roomID);
fprintf(fid ,’rewards "tempdev%u"\r\n’, roomID);
for i1=1:n1

fprintf(fid ,’\t[temp%u_%02u] true : %.3f;\r\n’, roomID , i1, (Tset - X_rep(roomID ,i1))^2);
end
fprintf(fid ,’endrewards\r\n\r\n’);

% valve setting
fprintf(fid ,’\r\n// valve room %u open\r\n’, roomID);
fprintf(fid ,’rewards "valve%u"\r\n’, roomID);
for i1=0:m1 -1

fprintf(fid ,’\t[a%u_v%u] true : %.3f;\r\n’, roomID , i1, i1/(m1 -1));
end
fprintf(fid ,’endrewards\r\n\r\n’);

% window setting
fprintf(fid ,’\r\n// window room %u open\r\n’, roomID);
fprintf(fid ,’rewards "window%u"\r\n’, roomID);
for i2=0:m2 -1

fprintf(fid ,’\t[a%u_w%u] true : %.3f;\r\n’, roomID , i2, i2/(m2 -1));
end
fprintf(fid ,’endrewards\r\n\r\n’);


