
CONTROLLER DEPENDABILITY ANALYSIS
BY PROBABILISTIC MODEL CHECKING

Marta Kwiatkowska, Gethin Norman and David Parker 1

School of Computer Science, University of Birmingham,
Birmingham, B15 2TT, United Kingdom

Abstract: This paper demonstrates how probabilistic model checking, a formal
verification method for the analysis of systems which exhibit stochastic behaviour,
can be applied to the study of dependability properties of software-based control
systems. By using existing formalisms and tool support from this area, it is
possible to construct large and complex Markov models from an intuitive high-
level description and to take advantage of the efficient implementation techniques
which have been developed for these tools. This paper provides an overview
of probabilistic model checking and of the tool PRISM which supports these
techniques. It illustrates the applicability of the approach through the use of a
case study and demonstrates that a wide range of useful dependability properties
can be analysed in this way.

Keywords: Formal verification, performance analysis, Markov models

1. INTRODUCTION

Industrial use of software-based control systems
is now increasingly widespread. Programmable
controllers can be found in domains as diverse as
the manufacturing, transport, energy and power
industries. In many of these cases, the safety and
reliability of the system is a crucial issue. This
fact is evidenced, for example, by the existence,
and indeed prominence, of the IEC 61508 and
ANSI/ISA S84 standards, which include strict
guidelines as to the functional safety of such
systems.

A key feature of these standards is the definition of
Safety Integrity Levels (SILs). To adhere to a par-
ticular SIL, it is necessary to accurately quantify
the probability or rate of all safety-related faults
which can occur in the system under study. Two
common techniques for performing such depend-

1 Corresponding author. Email: dxp@cs.bham.ac.uk

Phone: +44 (0)121 41 44793 Fax: +44 (0)121 41 44281

ability analysis are reliability block diagrams and
fault tree analysis. Both, however, are relatively
simplistic. For example, it is often necessary to
assume that the probability of a certain fault
arising is independent of the occurrence of other
failures in the system, whereas in practice, this
may be unrealistic and can lead to inaccuracies in
the analysis.

A more sophisticated approach which resolves this
problem is Markov modelling, where a more accu-
rate, state-based model of the system is derived
and analysed. This does, however, have two dis-
advantages. Firstly, it is more complex for the end-
user to implement. Secondly, the size of model
required to represent a system accurately has a
tendency to increase exponentially. This is a phe-
nomenon often known as the state space explosion
problem. Not only does it make the process more
expensive in terms of the time, computing power
and memory required, it can make the reliability
analysis infeasible.

This paper shows how formal verification methods
can be applied to the problem of analysing the
dependability of controller-based systems. In par-
ticular, the focus is on probabilistic model check-
ing, an automatic technique for checking whether
or not probabilistic models satisfy certain specifi-
cations. It is shown how existing formalisms and
tools from this area can facilitate the specification
and analysis of Markov models. In addition, the
efficient implementation techniques which have
been integrated into these tools can be used in
an attempt to curb the effects of state space ex-
plosion.

The remainder of this paper is organised as fol-
lows. Section 2 gives an introduction to probabilis-
tic model checking and Section 3 describes the tool
PRISM, which implements these techniques. Sec-
tion 4 introduces a case study of a simple control
system and Section 5 presents results obtained
from an analysis of this case study using PRISM.
Section 6 concludes the paper.

2. PROBABILISTIC MODEL CHECKING

Model checking (Clarke et al., 1999) is a successful
and well established technique for formally ver-
ifying the correctness of finite-state systems. In
recent years, such methods have become increas-
ingly prevalent in industry, with large companies
such as IBM and Intel devoting considerable re-
sources to this area. Model checking involves the
construction of a formal model of the real-life
system which is to be verified. This is usually a
labelled state transition system, which represents
all the possible configurations which the system
can be in and all the transitions which can occur
between them. The properties of the system to be
verified are then also formally specified, usually
as formulas of a temporal logic, and passed to
a model checker, which automatically determines
whether or not each property is satisfied via a
systematic exploration of the model. In the case of
a negative result, a counterexample is often gen-
erated: an explicit trace of the system’s behaviour
which illustrates why a property was not satisfied.

An extension of this approach which has seen
a significant amount of development of late is
probabilistic model checking , a technique which
permits automatic formal verification of systems
which exhibit stochastic behaviour. Potential can-
didates for such analysis include randomised al-
gorithms, which use probabilistic choices or elec-
tronic coin flipping, and unreliable or unpre-
dictable processes, such as fault-tolerant systems
or communication networks.

Probabilistic model checking is again based on the
construction and analysis of a formal model of the

system. In this case, the model is enriched with
probabilistic information, typically by labelling
each transition of the model with information
about the likelihood that it will occur. This paper
focuses on a class of models called continuous-time
Markov chains (CTMCs). A CTMC comprises a
set of states S and a transition rate matrix R : S×
S → IR≥0. The rate R(s, s′) defines the delay
before which a transition between states s and s′

is enabled. The delay is sampled from a negative
exponential distribution with parameter equal to
this rate, i.e. the probability of the transition
being enabled within t time units is 1−e−R(s,s′)·t.
When R(s, s′)>0 for more than one state s′, there
is a race between the outgoing transitions of s.
More precisely, the probability of moving from
state s to s′ in a single step is the probability
that this transition is enabled first (i.e. that the
delay of this transition finishes before the delays
of all other transitions leaving s). Exponentially
distributed delays are often suitable for modelling
component lifetimes and inter-arrival times. Fur-
thermore, they can be used to approximate more
complex probability distributions.

Other models commonly used for probabilistic
model checking are discrete-time Markov chains
(DTMCs), which specify the probability of mov-
ing between states in discrete time-steps, and
Markov decision processes (MDPs), which can
model systems which exhibit both probabilistic
and nondeterministic behaviour. The latter are
useful for representing systems which comprises a
number of probabilistic processes operating asyn-
chronously in parallel or systems for which some
parameters are unknown.

Given a probabilistic model, the next step is to
specify its required properties. Traditionally, in
the model checking paradigm, properties are ex-
pressed using temporal logic, which provides a
concise and unambiguous specification. In this pa-
per, the temporal logic CSL (Continuous Stochas-
tic Logic) (Aziz et al., 1996; Baier et al., 1999)
which is designed for specifying properties of
CTMCs is used. For brevity, the full syntax and
semantics of the logic are not presented here.
Below are a number of illustrative examples with
their natural language translation:

• P≥0.98[3 complete] – “the probability of the
system eventually completing its execution
successfully is at least 0.98”

• P<0.01[3[1,1] queue size=max] – “the prob-
ability of the queue being full after exactly
one hour is less than 0.01”

• shutdown ⇒ P≥0.95[¬fail U≤200 up] – “once
a shutdown has occurred, with probability
0.95 or greater, the system will successfully

recover within 200 hours and without any
further failures occurring”

• S>0.75[num sensors≥min] – “in the long-
run, the probability that an adequate number
of sensors are operational is greater than
0.75”

Note that the use of probability bounds (≥ 0.98,
<0.01, ≥0.95, >0.75) ensures that the properties
above constitute questions which can be verified
either to be true or false, as is traditionally the
case in formal verification. In practice, though, it
is often more useful to request the actual values,
writing for example:

• P=?[3≤T shutdown] – “what is the probabil-
ity that the system shuts down by time T?”

Furthermore, the most useful way to analyse the
model and to gain insights into its reliability may
be to compute and plot such a value as some
parameter is varied (e.g. T in the formula above,
or a constant in the model itself).

Additional properties can be specified by adding
the notion of rewards. Each state (and/or transi-
tion) of the model is assigned a real-valued reward,
allowing queries such as:

• R=?[3success] – “what is the expected
reward accumulated before the system suc-
cessfully terminates?”

Rewards can be used to specify a wide range of
measures of interest, for example, the number
of correctly delivered messages or the time that
the system is operational. Of course, conversely,
the rewards can be considered as costs, such as
power consumption, expected number of failures,
etc. Suitable temporal logics for expressing cost-
and reward-based properties can be found in e.g.
(Baier et al., 2000; de Alfaro, 1997).

A probabilistic model checker applies algorithmic
techniques to first construct, from a high-level
description, a probabilistic model of the system
under study and then analyse the constructed
model to determine whether its specifications are
satisfied. Typically, this involves computation of
one or more probabilities or performance mea-
sures. The operations required are graph-based
analysis and numerical computation methods, for
example, solving linear equation systems or lin-
ear optimisation problems. Algorithms for model
checking the logic CSL can be found in (Baier
et al., 2003). For more detailed information about
probabilistic model checking in general, see for
example (Rutten et al., 2004).

3. PRISM

PRISM (Kwiatkowska et al., 2004) is a probabilis-
tic model checker developed at the University of
Birmingham. It supports construction and analy-
sis of the three types of probabilistic model men-
tioned in the previous section: continuous-time
Markov chains (CTMCs), discrete-time Markov
chains (DTMCs) and Markov decision processes
(MDPs).

Probabilistic models to be analysed in PRISM are
specified in the PRISM language, which is based
on the Reactive Modules formalism of Alur and
Henzinger (Alur and Henzinger, 1999). A model
is described as a number of modules, each of
which corresponds to a component of the real-life
system. Each module has a set of finite-ranged
variables. These determine the possible states of
each module. The whole model is constructed as
the parallel composition of these modules.

The behaviour of an individual module is specified
by a set of guarded commands. For a CTMC, as
is the case here, a command takes the form:

[] <guard> → <rate> : <action> ;

The guard is a predicate over the variables of all
the modules in the model. The update comprises
<rate>, an expression which evaluates to a posi-
tive real number, and <action>, which describes
a transition of the module in terms of how its
variables should be updated. The interpretation of
the command is that if the guard is satisfied, then
the module can make the corresponding transition
with that rate (see Section 2 for a definition of
rate). A simple command for a module with one
variable x might be:

[] (x = 0) → 4.5 : (x′ = x + 1) ;

which states that if x is 0, it is incremented by
one (primed variables such as x′ denote the new
value of a variable x). In this example, the action
of x being incremented occurs with rate 4.5 (i.e.
the delay before this transition is completed is
sampled from a negative exponential distribution
with parameter 4.5).

The overall functionality of the PRISM tool is
as follows. First, it reads and parses a system
description in the PRISM language. It then con-
structs, from this, the corresponding probabilistic
model, in this case a CTMC (although the same
description language can be used for both DTMCs
and MDPs). PRISM also computes the set of all
states which are reachable from the initial state
and identifies any deadlock states (i.e. reachable
states with no outgoing transitions). If required,
the transition matrix of the probabilistic model
constructed can be exported for use in another

Fig. 1. Screenshots of the PRISM tool running

tool. Typically, though, PRISM then parses one or
more temporal logic properties (e.g. in CSL) and
performs model checking, determining whether
the model satisfies each property. The graphical
user interface of the tool also allows automatic
construction of graphs to visualise results more
easily. Figure 1 shows two screenshots of the tool
running.

Another important feature of the tool is its
implementation. PRISM is a “symbolic” model
checker, meaning that it has been developed using
data structures based on binary decision diagrams
(BDDs) (Bryant, 1995). BDDs are reduced, di-
rected acyclic graphs which can be very effective
for compact storage of models which exhibit struc-
ture and regularity (e.g. those which have been
specified in a high-level description language such
as the PRISM language). In practice, this allows
construction and analysis of larger models than
would otherwise be possible. It also allows effi-
cient BDD-based algorithms developed for non-
probabilistic model checking to be easily inte-
grated.

PRISM has already been used to analyse a
wide range of case studies from many differ-
ent areas. These include real-time probabilistic
communication protocols, e.g. Bluetooth (Duflot
et al., 2004), IEEE 1394 FireWire (Kwiatkowska
et al., 2003b) and Zeroconf (Kwiatkowska et al.,
2003a); and randomised security protocols, e.g.

S1

S 2

S 3

A 2

A 1

Bus

OMI

Fig. 2. Case study: overall system structure

Component Mean time to failure
Sensor 1 month

Actuator 2 months
Processor 1 year (permanent fault)
Processor 1 day (transient fault)

Delay Mean time
Timer cycle 1 minute

Processor reboot 30 seconds

Fig. 3. Case study: statistics for component relia-
bility and timings of other system delays

for anonymity (Shmatikov, 2004), contract sign-
ing (Norman and Shmatikov, 2003) and non-
repudiation (Lanotte et al., 2004). Other appli-
cation domains which have been analysed with
the tool include dynamic power management
(Norman et al., 2002), fault-tolerant architec-
tures (Norman et al., 2005), and randomised
distributed algorithms, e.g. (Kwiatkowska et al.,
2001; Kwiatkowska and Norman, 2002).

The tool and its source code can be freely down-
loaded under the GNU General Public License
from www.cs.bham.ac.uk/˜dxp/prism. Tool docu-
mentation, relevant research papers, and detailed
information about a wide range of previous case
studies can also be found here.

4. CASE STUDY

To illustrate the applicability of probabilistic
model checking and the PRISM tool to the process
of dependability analysis, this section presents a
small case study. It models a relatively simple
control system, closely based on the one presented
in (Muppala et al., 1994), the structure of which
is shown in Figure 2. The system comprises an
input processor (I) which reads and processes
data from three sensors (S1, S2 and S3). It is then
polled by a main processor (M) which, in turn,
passes instructions to an output processor (O).
This process occurs cyclically, with the length of
the cycle controlled by a timer in the main proces-
sor. The output processor takes the instructions
it receives and uses them to control two actuators
(A1 and A2). Finally, a bus connects the three
processors together. A concrete example of such a
system might be a gas boiler, where the sensors
are thermostats and the actuators are valves.

// a sensor fails on average once a month

const double λs = 1/(30 · 24 · 60 · 60);

module sensors

// number of sensors working

s : [0..3] init 3;

// failure of a single sensor

[] s > 0 → s · λs : (s′ = s− 1);

endmodule

Fig. 4. PRISM code for the sensors

Any of the three sensors can fail, but they are used
in triple modular redundancy: the input processor
can determine sufficient information to proceed
provided two of the three are functional. If more
than one becomes unavailable, the processor re-
ports this fact to the main processor and the sys-
tem is shut down. In similar fashion, it is sufficient
for only one of the two actuators to be working,
but if this is not the case, the output processor
tells the main processor to shut the system down.
The I/O processors themselves can also fail. This
can be either a permanent fault or a transient
fault. In the latter case, the situation can be
rectified automatically by the processor rebooting
itself. In either case, if the I or O processor is
unavailable and this leads to M being unable
either to read data from I or send instructions
to O, then M is forced to skip the current cycle.
If M detects that the number of consecutive cycles
skipped exceeds a limit, K, then it assumes that
either I or O has failed and shuts the system
down. Unless specified otherwise, K is assumed to
take the value 2. Lastly, the main processor can
also fail, in which case the system is automatically
shut down.

The mean time to failure for each component of
the system is shown in Figure 3. Mean times for
other delays in the system, namely the time for the
main processor to complete a cycle and for the I/O
processors to reboot are also given. It is assumed
that all these delays are distributed exponentially;
hence the system can be modelled as a CTMC.

The PRISM model of the system comprises 6
modules, one for the sensors, one for the actuators,
one for each processor and one for the connecting
bus. Figure 4 shows the section of the PRISM
language description which models the sensors.
This constitutes a single module sensors with an
integer variable s representing the number of sen-
sors currently working. The module’s behaviour
is described by one guarded command which rep-
resents the failure of a single sensor. Its guard
“s > 0” states this can occur at any time, except
when all sensors have already failed. The action
(s′ = s − 1) simply decrements the counter of

const double λp = 1/(365 · 24 · 60 · 60);
const double δf = 1/(24 · 60 · 60);
const double δr = 1/30;

module proci

// state: 2=ok, 1=transient fault, 0=failed

i : [0..2] init 2;

// failure of processor

[] i > 0 ∧ s ≥ 2 → λp : (i′ = 0);
// transient fault

[] i = 2 ∧ s ≥ 2 → δf : (i′ = 1);

// reboot after transient fault
[input reboot] i = 1 → δr : (i′ = 2);

endmodule

Fig. 5. PRISM code for the input processor

functioning sensors. The rate of this action is s·λs,
where λs is the rate for a single sensor and s is
the PRISM variable referred to previously which
denotes the number of active sensors.

Figure 5 shows a second module which is the
PRISM language description of the input pro-
cessor. The module has a single variable i with
range {0, 1, 2} which indicates which of the three
possible states the processor is in, i.e. whether it
is working, is recovering from a transient fault, or
has failed. The three guarded commands in the
module correspond, respectively, to the processor
failing, suffering a transient fault, and rebooting.
The commands themselves are fairly self explana-
tory. Two points of note are as follows. Firstly, the
guards of these commands can refer to variables
from other modules, as evidenced by the use of
s≥ 2. This is because the input processor ceases
to function once it has detected that less than two
sensors are operational. Secondly, the last com-
mand contains an additional label input reboot ,
placed between the square brackets at the start
of the command. This is used for synchronising
actions between modules, i.e. allowing two or more
modules to make transitions simultaneously. Here,
this is used to notify the main processor of the
reboot as soon as it occurs.

The full version of the PRISM code for this case
study is available from the tool website.

5. RESULTS

PRISM has been used to construct the CTMC
representing the control system described in the
previous section and to analyse a number of de-
pendability properties using probabilistic model
checking. First, the probability of the system shut-
ting itself down is considered. Note that there are
four distinct types of failure which can cause a
shutdown: faults in (1) the sensors (2) the actua-
tors (3) the input/output processors (4) the main

0 4 8 12 16 20 24
0

0.002

0.004

0.006

0.008

0.01

0.012

T (hours)

P
ro

ba
bi

lit
y

Sensors
Actuators
I/O processors
Main processor

(a) First 24 hours of system operation

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

T (days)

P
ro

ba
bi

lit
y

Sensors
Actuators
I/O processors
Main processor

(b) First 30 days of system operation

Fig. 6. The probability that each of the four possible failure types is the cause of system shutdown

4 8 12 16 20 24
10−4

10−2

100

102

T (hours)

E
xp

ec
te

d
tim

e
(h

ou
rs

)

up
danger
shutdown

(a) First 24 hours of system operation

5 10 15 20 25 30
10−4

10−2

100

102

T (days)

E
xp

ec
te

d
tim

e
(d

ay
s)

up
danger
shutdown

(b) First 30 days of system operation

Fig. 7. The expected amount of time spent in each of the three states: “up”, “shutdown” and “danger”

processor. The following CSL property is used to
analyse how likely each of these is to be the cause
of the shutdown, as time passes:

• P=?[¬shutdown U≤T fail j]

where j = 1 . . . 4, refers to one of the four failures
above and shutdown denotes the fact that the
system has shut down, i.e. a failure has occurred.

The atomic propositions, such as shutdown and
fail j , which make up the property are in practice
predicates over the variables from the PRISM lan-
guage description. For example, fail1, the failure
of more than one sensor, is specified as follows:

• fail1 := s < 2 ∧ i = 2

meaning that the number of working sensors has
dropped below 2 and the input processor is func-
tioning (and so can report the failure). Similarly,
shutdown, indicating that the system has shut
down, is specified by:

• shutdown := fail1 ∨ fail2 ∨ fail3 ∨ fail4

meaning that one of the failures has occurred.

The property P=?[¬shutdown U≤T fail j] denotes
the probability that failure j occurs within T time
units and no other failure has occurred before
failure j occurs. Note that, for example, if an
actuator fails, the sensors, unaware of this, will
continue to operate and may subsequently fail.
Hence, it is necessary to determine the likelihood
of each failure occurring, before any of the others
do. This is a good illustration of how non-trivial
properties can be captured using temporal logic.

Figure 6 plots the results of an analysis of this
property with PRISM over two ranges of values
for the time parameter T : the first 24 hours and
the first 30 days of operation. It can be seen, for
example, that while initially the I/O processors
are more likely to cause a system shutdown, in
the long run it is the actuators which are most
likely to fail first. If the bound ≤ T is omitted
from the CSL formula:

• P=?[¬shutdown U fail j]

the model checker computes the long-run failure
probability (i.e. as T → ∞). The results are: (1)

K Expected time
“danger” (hrs) “up” (days)

1 0.236 14.323
2 0.293 17.660
3 0.318 19.100
4 0.327 19.628
5 0.330 19.809
6 0.331 19.871
7 0.332 19.891
8 0.332 19.897

(a) Expected total time spent in states “danger”

and “up” before system shutdown occurs

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

K

P
ro

ba
bi

lit
y Sensors

Actuators
I/O processors
Main processor

(b) The probability that each failure type is the

eventual cause of system shutdown

Fig. 8. System reliability for different values of the parameter K (max. cycles skipped)

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

T (days)

E
xp

ec
te

d
nu

m
be

r o
f r

eb
oo

ts

either processor
one processor

(a) Expected number of reboots that occur

in the first T days of operation

0 5 10 15 20 25 30
0

50

100

150

200

T (days)

E
xp

ec
te

d
po

w
er

 c
on

su
m

pt
io

n
(k

W
h)

(b) Expected power consumption over the first T

days of operation

Fig. 9. Further measures of system performance over time

0.6216 (2) 0.0877 (3) 0.0484 (4) 0.2423. Note that
these sum to one, i.e. the system will eventually
shut down with probability 1.

For the second part of the analysis of this case
study, the states of the model are classified into
three types: “up”, where everything is function-
ing, “shutdown”, where the system has shut down,
and “danger”, where a (possibly transient) failure
has occurred but has yet to cause a shutdown
(e.g. if the I or O processor has failed but the M
processor has yet to detect this). Figure 7 shows
the expected time spent by the system in each
class of state over a period of T time units. The
results are again plotted two ranges of T : the first
24 hours and the first 30 days of system operation.

This analysis was accomplished in PRISM using
its support for reward-based properties. For each
class of states, a cost structure which assigns a
cost of 1 to states in the class and 0 to all others
is used. The property:

• R=?[C≤T]

is then used to compute the expected cost cu-
mulated by the system over T time units. Using
the same assignments of costs, the expected total
time spent in “up” and “danger” states before the
system is shut down can also be analysed. This is
done using the property:

• R=?[F shutdown]

This demonstrate the use of probabilistic model
checking to study the effect of variations in system
parameters on its performance. Recall from Sec-
tion 4 that the control system in the case study
features a parameter K, the number of skipped
cycles which the main processor will wait before
deciding that the input/output processors have
failed. Figure 8(a) shows results for the above
property over a range of values for K. Observe
that increasing the value of K increases the ex-
pected time until failure, but also has an adverse

effect on the expected time spent in “danger”
states. In a similar fashion, using a property from
earlier in this section, Figure 8(b) plots the proba-
bility that each of the four types of system failure
is the eventual cause of system shutdown for dif-
ferent values of K.

Finally, to illustrate that probabilistic model
checking of cost-based properties permits compu-
tation of a wide range of performance measures,
Figure 9 shows some further results of the analysis
of the case study. Figure 9(a) plots the expected
number of reboots that occur in the first T days of
operation. This is achieved by assigning a cost of
1 to all transitions of the model which correspond
to a processor rebooting and 0 to all other states
and transitions. Figure 9(b) shows the power con-
sumption of the system over T days. This is done
by assigning each state of the model a rate of
power consumption based on the components of
the system operational in that state. Power con-
sumption rates of 3, 5 and 8 Watts are assumed for
each sensor, actuator and processor, respectively.

In the experiments presented in this section, the
number of states in the CTMC, which depends
on the parameter K, varied between 2,633 and
7,703. The models were all constructed in less
than second. For the model checking itself, the
time required to compute each value varied from
a few seconds to a few minutes, using a standard
workstation.

6. CONCLUSION

This paper illustrated how probabilistic model
checking, a formal verification technique which
has already been applied to a wide range of
domains including distributed randomised algo-
rithms, real-time protocols, security protocols and
dynamic power management, can be used to anal-
yse dependability properties of controller-based
systems. The probabilistic model checker PRISM
has a simple system description language which
provides an intuitive way to construct complex
Markov models. Properties to be checked are spec-
ified using temporal logic, which allows reasoning
about non-trivial behaviour. The tool also allows
use of the efficiency improvements which have
been developed in this area. A further advan-
tage of this formal verification approach is that
it could easily be combined with more traditional
non-probabilistic verification processes, which are
becoming increasingly common, particularly in
safety-critical areas.

For more detailed information about probabilistic
model checking, PRISM and its application to the
case study described in this paper, see the tool
website: www.cs.bham.ac.uk/˜dxp/prism.

7. ACKNOWLEDGEMENTS

This work was partially supported by EPSRC
grants GR/S46727 and GR/S11107.

REFERENCES

R. Alur and T. Henzinger. Reactive modules.
Formal Methods in System Design, 15(1):7–48,
1999.

A. Aziz, K. Sanwal, V. Singhal, and R. Brayton.
Verifying continuous time Markov chains. In
R. Alur and T. Henzinger, editors, Proc. 8th
International Conference on Computer Aided
Verification (CAV’96), volume 1102 of LNCS,
pages 269–276. Springer, 1996.

C. Baier, B. Haverkort, H. Hermanns, and J.-
P. Katoen. On the logical characterisation of
performability properties. In U. Montanari,
J. Rolim, and E. Welzl, editors, Proc. 27th
International Colloquium on Automata, Lan-
guages and Programming (ICALP’00), volume
1853 of LNCS, pages 780–792. Springer, 2000.

C. Baier, B. Haverkort, H. Hermanns, and J.-
P. Katoen. Model-checking algorithms for
continuous-time Markov chains. IEEE Transac-
tions on Software Engineering, 29(6):524–541,
2003.

C. Baier, J.-P. Katoen, and H. Hermanns.
Approximate symbolic model checking of
continuous-time Markov chains. In J. Baeten
and S. Mauw, editors, Proc. 10th International
Conference on Concurrency Theory (CON-
CUR’99), volume 1664 of LNCS, pages 146–
161. Springer, 1999.

R. Bryant. Binary decision diagrams and be-
yond: Enabling technologies for formal veri-
fication. In Proc. International Conference
on Computer-Aided Design (ICCAD’95), pages
236–243, 1995.

E. Clarke, O. Grumberg, and D. Peled. Model
Checking. The MIT Press, 1999.

L. de Alfaro. Formal Verification of Probabilistic
Systems. PhD thesis, Stanford University, 1997.

M. Duflot, M. Kwiatkowska, G. Norman, and
D. Parker. A formal analysis of Bluetooth de-
vice discovery. In Proc. 1st International Sym-
posium on Leveraging Applications of Formal
Methods (ISOLA’04), 2004. To appear.

M. Kwiatkowska and G. Norman. Verifying ran-
domized Byzantine agreement. In D. Peled
and M. Vardi, editors, Proc. Formal Tech-
niques for Networked and Distributed Systems
(FORTE’02), volume 2529 of LNCS, pages 194–
209. Springer, 2002.

M. Kwiatkowska, G. Norman, and D. Parker.
PRISM 2.0: A tool for probabilistic model
checking. In Proc. 1st International Confer-
ence on Quantitative Evaluation of Systems

(QEST’04), pages 322–323. IEEE Computer
Society Press, 2004.

M. Kwiatkowska, G. Norman, D. Parker, and
J. Sproston. Performance analysis of proba-
bilistic timed automata using digital clocks. In
K. Larsen and P. Niebert, editors, Proc. For-
mal Modeling and Analysis of Timed Systems
(FORMATS’03), volume 2791 of LNCS, pages
105–120. Springer-Verlag, 2003a.

M. Kwiatkowska, G. Norman, and R. Segala.
Automated verification of a randomized dis-
tributed consensus protocol using Cadence
SMV and PRISM. In G. Berry, H. Comon,
and A. Finkel, editors, Proc. 13th Interna-
tional Conference on Computer Aided Verifi-
cation (CAV’01), volume 2102 of LNCS, pages
194–206. Springer, 2001.

M. Kwiatkowska, G. Norman, and J. Sproston.
Probabilistic model checking of deadline prop-
erties in the IEEE 1394 FireWire root con-
tention protocol. Special Issue of Formal As-
pects of Computing, 14:295–318, 2003b.

R. Lanotte, A. Maggiolo-Schettini, and A. Troina.
Automatic analysis of a non-repudiation pro-
tocol. In Proc. 2nd International Workshop
on Quantitative Aspects of Programming Lan-
guages (QAPL’04), 2004.

J. Muppala, G. Ciardo, and K. Trivedi. Stochastic
reward nets for reliability prediction. Com-
munications in Reliability, Maintainability and
Serviceability, 1(2):9–20, July 1994.

G. Norman, D. Parker, M. Kwiatkowska, and
S. Shukla. Evaluating the reliability of NAND
multiplexing with PRISM. IEEE Transactions
on Computer-Aided Design of Integrated Cir-
cuits and Systems, 2005. To appear.

G. Norman, D. Parker, M. Kwiatkowska,
S. Shukla, and R. Gupta. Formal analysis
and validation of continuous time Markov chain
based system level power management strate-
gies. In W. Rosenstiel, editor, Proc. 7th Annual
IEEE International Workshop on High Level
Design Validation and Test (HLDVT’02), pages
45–50. IEEE Computer Society Press, 2002.

G. Norman and V. Shmatikov. Analysis of prob-
abilistic contract signing. In A. Abdallah,
P. Ryan, and S. Schneider, editors, Proc. BCS-
FACS Formal Aspects of Security (FASec’02),
volume 2629 of LNCS, pages 81–96. Springer,
2003.

J. Rutten, M. Kwiatkowska, G. Norman, and
D. Parker. Mathematical Techniques for An-
alyzing Concurrent and Probabilistic Systems,
P. Panangaden and F. van Breugel (eds.), vol-
ume 23 of CRM Monograph Series. American
Mathematical Society, 2004.

V. Shmatikov. Probabilistic model checking of
an anonymity system. Journal of Computer
Security, 12(3/4):355–377, 2004.

