
An MTBDD-based Implementation of Forward
Reachability for Probabilistic Timed Automata

Fuzhi Wang and Marta Kwiatkowska

School of Computer Science, University of Birmingham,
Birmingham B15 2TT, United Kingdom

{F.Wang, M.Z.Kwiatkowska}@cs.bham.ac.uk

Abstract. Multi-Terminal Binary Decision Diagrams (MTBDDs) have
been successfully applied in symbolic model checking of probabilistic
systems. In this paper we propose an encoding method for Probabilistic
Timed Automata (PTA) based on MTBDDs. The timing information is
encoded via placeholders stored in the MTBDDs that are independent of
how the timing information is represented. Using the Colorado University
Decision Diagrams (CUDD) package, an experimental model checker is
implemented, which supports probabilistic reachability model checking
via the forward algorithm. We use Difference Bound Matrices (DBMs)
and Difference Decision Diagrams (DDDs) for representing timing infor-
mation and present experimental results on three case studies. Our key
contribution is a general placeholder encoding method for Probabilis-
tic Timed Automata and an experimental MTBDD-based model checker
which has been partly integrated with PRISM. This is the first symbolic
implementation of the forward probabilistic reachability algorithm.

1 Introduction

Binary Decision Diagrams (BDDs) [7] are the main data structure used in sym-
bolic model model checking. Their success relies on the ability of BDD-like data
structures to compactly represent both sets of states and the transition relation
between these states. BDDs, however, cannot represent quantitative information.
Recently, Multi-Terminal Decision Diagrams (MTBDDs) [8] have been success-
fully applied in the verification of probabilistic systems [10, 12], and various ex-
tensions, Difference Decision Diagrams (DDDs) [17], Clock Difference Diagrams
(CDDs) [2] and Clock-Restriction Diagram (CRDs) [20], have been proposed
for use in symbolic verification of real-time systems. However, no symbolic data
structure exists for the verification of probabilistic real-time systems modelled as
Probabilistic Timed Automata (PTA) [14], which contain both real-time clocks
and probabilistic information. Probabilistic timed automata are a natural model
for randomised distributed algorithms that use timing delays, and a number of
models of such algorithms have been developed. The subclass of probabilistic
timed automata with digital clocks [13] can be modelled and verified directly
using the PRISM model checker [1]. For PTAs that do not comply with this



restriction, currently two, non-symbolic, methods are supported: via the for-
ward exploration algorithm of [14] using the KRONOS to PRISM connection
[9], or forward/backward using the experimental implementation of [16]. Both
these methods are based on a translation into the textual modelling language of
PRISM, and are therefore rather involved.

In this paper, we investigate a fully symbolic implementation of model check-
ing for probabilistic timed automata. We propose an MTBDD-based placeholder
encoding method for representing probabilistic timed automata which is indepen-
dent of the data structure used to represent timing information. The advantage of
our proposal is that the method is general: firstly, other data structures for repre-
senting timing information could also be integrated with this encoding method;
secondly, both forward and backward analysis can be supported. The main dif-
ficulty for the fully symbolic approach is that the state space is not known in
advance, since the states are extracted dynamically via forward/backward explo-
ration, in contrast to symbolic model checking for probabilistic systems where
the size of the state space can be deduced from the syntactic model descrip-
tion. Using the CUDD package [19] an experimental tool has been implemented
and partly integrated within PRISM. We report on the performance of our im-
plementation of the forward probabilistic reachability algorithm on three case
studies. This is the first fully symbolic implementation of the forward probabilis-
tic reachability for probabilistic timed automata originally proposed in [14].

Related Work. The most commonly used data structure for representing tim-
ing information in real-time verification tools [6, 3] is Difference Bound Matrices
(DBMs) [4]. A number of BDD-like data structures, e.g. CDDs [2], DDDs [17]
and CRDs [20], have been proposed for use in verifying real-time systems, but
not yet extended to the probabilistic case. MTBDDs have been successfully ap-
plied in model checking of probabilistic systems, and also probabilistic timed
automata and timed systems with digital clocks [12], but not in the case of the
full class of PTAs. Recently, MTBDDs have also been applied to real-time sys-
tems [18]. Although the approach in [18] uses a single data structure (MTBDDs)
to represent both timing and discrete information in order to leverage well-known
techniques for BDDs or MTBDDs, it involves SAT-based analysis.

There are two, non-symbolic, methods for dense-time probabilistic timed
automata: via the forward exploration algorithm implemented in [9], or for-
ward/backward using the experimental implementation of [16]. The forward
method is not guaranteed to produce exact reachability probabilities [14], but
only requires simple operations; on the other hand, backward analysis can pro-
duce exact probabilities but at a cost of higher computational complexity. The
method of [9], which combines KRONOS [6] and PRISM [1] to verify the IEEE-
1394 Root Contention Protocol, requires three steps: firstly, a set of states reach-
able from the source state before the deadline is calculated using KRONOS [6];
secondly, the result is translated into a PRISM model description which is input
into PRISM and, finally, probabilistic analysis is performed. This method is not
efficient because it can generate large files that have to be parsed by PRISM.
Our experimental implementation of [16] suffers from the same problem, as it



performs a translation into the PRISM modelling language. In this paper we pro-
pose a general MTBDD-based encoding scheme that can deal with both forward
and backward analysis in a single step, thus avoiding the expensive translation
at the level of text.

2 The Symbolic Encoding Method

2.1 Syntax of Probabilistic Timed Automata

Let R be the time domain of the non-negative reals and N the natural numbers.
We assume a given finite set X of clocks, variables x ∈ X that take values from
the time domain R. A point ν ∈ RX is referred to as a clock valuation, with
0 ∈ RX the valuation that assigns 0 to all clocks in X . We use ν[X := d]
to denote the clock valuation obtained from ν by resetting all of the clocks in
X ⊆ X to d, where d is a natural number or zero with the value of the remaining
clocks unaffected.

A zone of X , written ζ, is a subset of the valuation space RX described by
a conjunction of constraints. Formally, for a given set of clocks X , a zone ζ is
defined by the following syntax:

ζ ::= x ∼ c
∣∣ x− y ∼ c

∣∣ ¬ζ
∣∣ ζ ∧ ζ

where x, y ∈ X , c ∈ N and ∼∈ {≤, <, >,≥}.
The set of zones of X is denoted by Zones(X ) for a given set of clocks X .
Below we review the definition of probabilistic timed automata [14].

Definition 1. A probabilistic timed automaton (PTA) is a tuple = (L,X ,L,
inv, prob) where:

– L is a finite set of locations;
– the function inv : L → Zones(X ) is the invariant condition;
– the finite set prob ⊆ L × Zones(X )×Dist(2X×L) is the probabilistic edge

relation;
– L : L → 2AP is a labelling function assigning atomic propositions to loca-

tions.

A state of a probabilistic timed automaton is a pair (l, ν) where l ∈ L and
ν ∈ RX are such that ν / inv(l). The invariant condition describes the set
of admissible states. Transitions are probabilistic edges (l, g, p) ∈ prob where
l is the source location, g is the enabling guard and p the probability distri-
bution on target locations, together with the set of clocks to be reset as the
edge is taken. It is more convenient to treat an edge of a PTA as a tuple
(n, l, inv(l), l′, inv(l′), g,X, p) where n is the non-deterministic choice between
simultaneously enabled distributions, coded as a natural number, such that
(l, g, p) ∈ prob and p(X, l′) > 0. Such a tuple contains sufficient information
for making a transition, and will be directly used in our encoding method.



2.2 Multi-Terminal Binary Decision Diagrams (MTBDDs)

MTBDDs [8] are an extension of BDDs [7] which allow one to represent func-
tions over Boolean vectors that can take any value, not just 0 or 1. In other
words, BDDs can have only two terminals, while MTBDDs can have more than
two terminals. An MTBDD is a Directed Acyclic Graph (DAG) whose vertices,
as for BDDs, are called nodes. There are two kinds of nodes in an MTBDD,
non-terminal and terminal. Like in a BDD, a non-terminal node is labelled with
a single variable and each non-terminal node has exactly two children. However,
unlike BDDs, the terminal node which has no children is labelled by a real num-
ber. MTBDDs can be reduced to the canonical form by imposing an ordering of
the variables. However, similarly to BDDs, the size of the MTBDDs is extremely
sensitive to the ordering of its variables.

Probabilistic systems, for example, Markov Decision Processes (MDPs) that
are induced from PTAs, are described in terms of probability matrices, and their
analysis involves numerical computation such as solving a linear equation sys-
tem or (as is the case with MDPs) a linear programming problem. MTBDDs
can represent both probability vectors and matrices, and can therefore serve
as a symbolic representation for probabilistic systems. Given a real-valued vec-
tor of length 2n, an MTBDD encoding can be obtained by mapping to reals
from vector’s indices which are encoded into n Boolean variables. As far as nu-
merical computation is concerned, MTBDDs support methods for implementing
standard matrix operations, such as scalar multiplication, matrix addition and
matrix multiplication.

2.3 Representations for Zones

DBMs. Difference Bound Matrices (DBMs) are data structures that can effi-
ciently represent sets of adjacent regions (convex union of adjacent regions which
is also called a zone). Non-convex zones are represented as lists of DBMs. A DBM
is a square matrix whose elements represent bounds on the difference between
two clock values. For a set of n clocks {x1, . . . , xn}, and by using a special clock
x0 whose value is always zero, the constraints over these clocks can be encoded
as a (n+1)∗ (n+1) square matrix D whose indices range over the interval [0..n]
and whose elements belong to N∞ × {<,≤}, where N∞ = N ∨ {0,∞}.
DDDs. Difference Decision Diagrams (DDDs) are designed for representing both
convex and non-convex unions of zones, which are called Difference Constraint
Expressions (DCE) in DDDs. DDDs are a BDD-like data-structure. Like a BDD,
a difference decision diagram is also a DAG whose vertex set contains two ter-
minals 0 and 1, and a set of non-terminal vertices, each with two children. A
non-terminal vertex v corresponds to an integer- or real-valued difference con-
straint between two clocks. A path in a DDD is a finite sequence of edges, and it
corresponds to a conjunction of difference constraints that is called a Difference
Constraint System (DCS) in DDD. In contrast to BDDs, the same pair of clocks
can appear more than once along a path in a DDD. A DCS corresponds to a
DBM. DDDs contain DBMs as a special case. A path that ends with true or



false is called a 1-path or 0-path respectively. A path p is feasible if and only if
the corresponding DCS has a solution. If the Difference Constraint System has
no solution, the path is infeasible. Unlike in BDDs, both 0- and 1-paths can be
feasible or infeasible because the difference constraints can interact with each
other along the path.

2.4 Encoding Probabilistic Timed Transitions

MTBDDs have been successfully applied for symbolic model checking of untimed
probabilistic systems [1, 12], and specifically Markov Decision Processes (MDPs)
which arise as the representation of the PTAs. The method relies on encoding sets
of states as BDDs and the (probabilistic) transition relation between these states
using MTBDDs, which can be done compactly if there is sufficient regularity in
the model. For finite untimed probabilistic systems the potential state space is
known in advance of constructing the symbolic representation of the model, as it
can be deduced from the syntactic model description. This fact is exploited when
formulating heuristics that determine BDD variable ordering, a good choice of
which is essential to guarantee a compact model representation. The difficulty
with model checking of PTAs is that the size of the state space is unknown
beforehand, and states (location-zone pairs) are generated dynamically through
the process of exploration of the zone graph using timed predecessor or successor
operations. The resulting symbolic representation has to be amenable to such
dynamic manipulation of the state space which has the potential to destroy
regularity. Although, if using the region graph, the size of the state space of a
PTA can be established in advance of the model construction, such an approach
is impractical due to the region graph being exponential in the number of clocks
and the maximal constant appearing in the model.

In this section we propose an encoding method for probabilistic timed au-
tomata based on MTBDDs. Below we describe how to encode the states and
probabilistic edges. In this paper we focus on application of our method to for-
ward probabilistic reachability analysis. However, it is also suitable for backward
analysis.

Firstly, let us consider how to encode the state space. Each state in the state
space has the form of (l, ζ) where l ∈ L is the discrete part and ζ ∈ Zones(X )
is the zone. Our method is to use a Boolean vector to encode the discrete part
of the pair and a separate Boolean vector for the zone part. The basic idea
behind the Boolean encoding is that 2n elements of a finite set could be encoded
using n bits. For the discrete part, which is finite, the Boolean vector is further
divided into several groups according the structure of the system, for example,
the number of subcomponents and values of the non-clock variables following
well-known heuristics established in [10, 11].

The number of zones, unfortunately, could be infinite when forward analysis is
used. The technique in [4] guarantees the termination of the forward reachability
search, which means that a finite set of zones could be obtained. Since the set of
zones is finite, informally, we use a one-to-one function to assign a unique index
to each zone and similar logarithmic encoding is applied. The invariant and the



guard appearing in the probabilistic transition are also zones, so a unique index
value is assigned to each of them. In this paper we use a simple method for
allocating indices; later, we discuss how this can be improved.

Next, let us consider the probabilistic transition relation. Each probabilistic
edge has the form of the tuple (n, l, inv(l), l′, inv(l′), g, X, p), where n is (the
encoding of) the non-deterministic choice, l and inv(l) are the current loca-
tion and its invariant, l′ and inv(l′) are the next location and its invariant, g
is the guard, X is the set of clocks to be reset and p is the probability value.
The probability value is natively supported by MTBDDs. The number of non-
deterministic choices in each state is finite and bounded. The maximum number
of non-deterministic choices for all states is determined through parallel compo-
sition, and can therefore be encoded using the logarithmic encoding. It remains
to encode the set X of clocks to be reset. There are a number of issues to consider
when encoding the clock reset operation in the transition relation:

– Recall that each clock x ∈ X could be set to different values and not simply
zero. If we encode each reset in the transition, this means we need two sets
of Boolean BDD variables for it: one for the clock and the other for the value
that the clock should be set to.

– The total number of clocks to be reset appearing in the transition could vary.

Thus, we opt for a simple approach: a Boolean vector is reserved in the transition
for assigning a unique index value to each distinct set X and each set X is
explicitly stored as a list.

Below we summarise the main issues that have to be addressed when applying
our encoding method:

– Unlike in the case of non-probabilistic timed systems, in which the on-the-fly
technique [5] could be applied to make search algorithms finish as early as
possible, the forward probabilistic reachability search has to construct the
whole reachable zone graph in order to obtain the probability value.

– The size of the state space and transitions between these states of the gen-
erated probabilistic system is uncertain before the forward/backward algo-
rithm, which dynamically generates these states, terminates.

As a result, we cannot fix the size of the vector of Boolean variables needed to
encode the zone part in advance. Instead, we pre-allocate the vector based on
an estimate.

2.5 Implementation

Our proposed forward probabilistic reachability algorithm is given in Figure
1 in terms of MTBDD-based pseudo-code. Below we described the BDD and
MTBDD operations needed for the algorithm. In the following, we assume M is
an MTBDD, and x, y, z are the Boolean vectors which correspond to the MTBDD
variables for row, column and non-deterministic choice in an MDP matrix.

– Operations × and + are the MTBDD operations over the reals.



– Operations ∨, ∧ and \ are the BDD operations (and, or and difference)
on sets.

– Function Threshold(M, >, 0) returns the BDD by replacing each terminal
node with 1 if and only if its value is greater than 0.

– Function ThereExists(x, M) returns the MTBDD by deleting the nodes
containing the Boolean vector x.

– Function ReplaceVars(M, y, x)) returns the MTBDD by replacing the Boolean
vector y with x.

The algorithm in Figure 1 is an MTBDD-based implementation of the algo-
rithm of [14] with respect to our encoding. The algorithm ModelCheckingPTA
accepts three parameters: the probabilistic transition relation PSPTA, which is an
MTBDD-encoded representation of the syntax of the original probabilistic timed
automaton, the initial set of states φinit and the set of target states φtarget. Lines
1-4 deal with the initialisation: line 1 initialises the generated set of probabilistic
transitions with the empty set, and lines 2-3 assign the initial set to both the
front set and the reachable set. Lines 5-21 generate the finite-state graph, the
edges of which are obtained in lines 8-11 by iterating timed and discrete suc-
cessor operations. Each generated edge has the form of a tuple (n, l, l′, ζ, ζ ′, p),
where n is the encoding of non-deterministic choice, (l, ζ) corresponds to cur-
rent symbolic state, (l′, ζ ′) is the next symbolic state in the generated transition,
and p is the probability value. Line 6 constructs a temporary MTBDD with the
information necessary for the timed and discrete successor operations by re-
stricting to the front set: each path of the temporary MTBDD has the form of
a tuple (n, l, ζ, inv(l), l′, inv(l′), g, X, p), where l and l′ are the current and next
locations, inv(l) and inv(l′) are the invariants associated with current and next
location respectively, ζ is the current zone associated with current location, g is
the guard, X is the set of clocks to be reset and p is the probability. Lines 12-19
extract the reachable states from the generated probabilistic transition set and
check whether the fixed point is reached. Line 20 adds the set of newly gener-
ated edges to the old one. Finally, in line 22, model checking is performed on
the resulting finite-state probabilistic system to obtain the maximum probabil-
ity of reaching the set of target locations. Lines 9.1-9.3 give the MTBDD-based
pseudo-code of the construction of a single probabilistic edge of the generated
MDP. Line 9.1 obtains the next zone by using standard zone successor opera-
tion. Line 9.2 uses the technique in [4] to obtain the unique normal form of the
next zone and adds it to the list of zones if it is a new one, and otherwise it
returns the unique index to it in the list. Line 9.3 constructs and returns the
probabilistic edge of the generated MDP.

Remark. For the forward reachability search, each zone obtained is convex,
and can be stored as a single DBM. (A convex zone in DDDs can only have
one path; this is also true for CRDs or CDDs.) The operation Normalise(ζ, k)
(k-Normalization defined in [4]) to obtain the normal form of a zone ζ, where k
is the maximal constant appearing in the model or the specification, is necessary
to guarantee the termination of the forward reachability search. For DDDs, the
zone can be first transformed into a DBM on which the k-Normalization can be



applied, and then transformed back into a DDD. The case of CRDs and CDDs
can be handled in a similar way.

ModelCheckingPTA(PSPTA, φinit, φtarget)

1. PSMDP := ∅
2. φfrontset := φinit

3. φreach := φinit

4. done := false
5. while (done = false)
6. TmpPS := φfrontset × PSPTA

7. T := ∅
8. for each non-zero path ofTmpPS

9.1. ζ′ = ZoneSuccessor(l, inv(l), ζ, l′, inv(l′), g, X)
9.2. ζ′ = AddZone(Normalise(ζ′, k))
9.3. tr = n× l × ζ × l′ × ζ′ × p
10. T := T + tr
11. endfor
12. T01 := Threshold(T, >, 0)
13. φtmp := ThereExists(z, T01)
14. φtmp := ThereExists(x, φtmp)
15. φtmp := ReplaceVars(φtmp, y, x))

16. φreach′ := φreach ∨ φtmp

17. if (φreach = φ′reach) then done := true
18. φfrontset := φreach′ \ φreach

19. φreach := φreach′

20. PSMDP := PSMDP + T
21. endwhile
22. return MaxProbReach(φinit, φreach, PSMDP )

Fig. 1. The MTBDD version of the ModelCheckingPTA algorithm

2.6 Backward Adaption

In this paper, we only present the application of our encoding method to forward
analysis. However, it it also suitable for backward analysis. What is needed
is a replacement of lines 9.1-9.3 with the corresponding backward step, and
initialisation with the target set instead of the initial set.

3 Experimental Results

3.1 Tool Overview

Using the Colorado University Decision Diagrams (CUDD) package, a symbolic
model checker has been implemented which supports forward probabilistic reach-
ability model checking via the algorithm originally presented in [14]. This is the
first symbolic implementation of the forward reachability algorithm.



Our tool takes as input a description of a system written in a probabilis-
tic variant of the guarded commands language with real-time clocks (currently,
the PRISM input language does not support real-time clocks). It first parses
the PTA model from this description into an MTBDD, and then computes the
set of probabilistically reachable states which comprise the model, which is an
MDP over location-zone pairs [14]. The tool then performs model checking over
this MDP in the standard way, and calculates the probability of reaching the
target set to determine whether the specification is satisfied. In this tool, the
model construction and reachability analysis are implemented using MTBDDs
to represent both the discrete part of the state and the placeholder, reserved
in the Boolean vector of the BDD variables, that represents the zone. The tool
supports two kinds of representation of timing information: DBMs and DDDs.

The transition relation of the PTA model is encoded within MTBDDs. Un-
like untimed probabilistic model checking, the MDP model is dynamically con-
structed via forward searching which involves timing operations, for example,
the timed successor. The generated MDP differs from the original PTA in that
it represents the dynamic behaviour of the PTA, which is computed via forward
exploration and dynamically filled using the placeholders reserved in the BDD
vector. Although the tool currently supports only forward analysis and two kinds
of representation for timing information, our encoding method is general: firstly,
other data structures for representing timing information could be integrated;
secondly, backward reachability analysis is also suitable for this encoding.

3.2 Case Studies

We present experimental results based on three case studies: the IEEE 1394
FireWire root contention protocol, the IEEE 802.3 CSMA/CD (Carrier Sense,
Multiple Access with Collision Detection) protocol and Milner’s scheduler. The
models for FireWire and CSMA/CD are the same as those used in [16]. The
model for Milner’s scheduler is that used in [17] with only one clock.

In the tables, “-” denotes that the data is not available. We omit the probabil-
ity values since they all agree with those calculated previously by other methods.

The results obtained from verifying the abstract and the full models of
Firewire root contention protocol [15] are shown in Table 1 and Table 2. The
property verified is the minimum probability that, from the initial state, a leader
(root) is chosen before the deadline is reached. Table 5 and Table 6 show the
memory consumption. Table 3 and Table 4 include results for the CSMA/CD
protocol when computing the maximum and minimum probability of both sta-
tions correctly delivering their packets by the deadline D. Table 7 and Table 8
show the memory consumption. Table 9 shows the result of verifying Milner’s
scheduler when computing the maximum probability of any two cyclers being in
the critical section at the same time.

To evaluate our encoding method, we also implemented an explicit version
of the data structure which stores explicitly the discrete part of the symbolic
states.



Table 1. Verification of the abstract model Ip
1 with wire delay set to 360 ns

Deadline States Time(Explicit) Time(Symbolic)
MTBDD/DDD MTBDD/DBM

Forward Construct. M.C. S.F.C. M.C. S.F.C. M.C.
2000 64 0.26 0.14 0.01 0.06 0.01 0.07 0.01
2500 88 0.30 0.20 0.02 0.07 0.01 0.09 0.01
3000 88 0.28 0.20 0.02 0.08 0.01 0.09 0.01
3500 124 0.38 0.34 0.02 0.18 0.01 0.11 0.01
4000 162 0.41 0.61 0.02 0.20 0.01 0.13 0.01
4500 159 0.43 0.59 0.02 0.26 0.01 0.13 0.01
5000 208 0.51 0.96 0.026 0.29 0.01 0.16 0.01
5500 244 0.56 1.42 0.03 0.38 0.02 0.19 0.02
6000 253 0.58 1.42 0.03 0.42 0.02 0.19 0.02
7000 348 0.70 3.07 0.04 0.83 0.02 0.28 0.02
8000 438 0.80 4.67 0.05 0.98 0.03 0.35 0.03
9000 506 0.91 6.29 0.05 1.32 0.03 0.40 0.03

10000 609 1.12 10.34 0.06 1.85 0.04 0.56 0.04
20000 2124 3.20 117.37 0.13 17.77 0.19 0.56 0.04
30000 4546 10.87 615.42 0.30 76.80 0.39 2.29 0.18
40000 7851 27.20 1846.90 1.55 225.35 0.65 7.43 0.39
50000 12094 58.37 5017.27 2.77 534.15 1.00 18.54 0.65
60000 17231 103.09 - - 1082.36 1.63 36.72 1.00
70000 23305 170.43 - - 2492.07 2.42 66.43 1.65
80000 30251 273.99 - - 4217.03 3.09 182.13 3.08
90000 38151 427.81 - - 6753.72 3.95 276.52 3.97

Table 2. Verification of the full model Implp with wire delay set to 360 ns

Deadline States Time(Explicit) Time(Symbolic)
MTBDD/DDD MTBDD/DBM

Forward Construct. M.C. S.F.C. M.C. S.F.C. M.C.
2000 951 6.42 9.26 0.04 25.87 0.05 7.44 0.05
2500 1415 9.89 32.47 0.09 56.66 0.10 11.71 0.10
3000 1425 9.99 32.45 0.09 57.13 0.12 11.79 0.11
3500 2092 14.79 87.48 0.14 122.52 0.19 17.59 0.20
4000 2803 19.94 186.22 0.18 219.03 0.23 24.03 0.23
4500 2799 20.53 196.01 0.21 217.41 0.24 24.84 0.24
5000 3725 27.50 375.07 0.25 385.72 0.27 34.49 0.27
5500 4432 33.02 543.03 0.33 542.73 0.39 41.79 0.39
6000 4675 35.29 697.63 0.37 609.45 0.49 44.81 0.51
7000 6545 51.25 1403.52 0.52 1180.10 0.61 66.24 0.60
8000 8437 67.95 2523.33 0.71 1966.27 0.85 90.17 0.84
9000 9879 82.23 3925.66 0.86 2694.23 0.86 110.52 0.87

10000 11988 143.79 - - 4662.95 1.47 135.65 1.39
20000 44335 543.16 - - - - 947.65 5.37
30000 96592 1693.48 - - - - 3607.68 12.42
40000 168514 4135.01 - - - - 10112.92 22.84
50000 261131 - - - - - 23297.78 35.03
60000 373429 - - - - - 45553.48 54.89
70000 - - - - - - - -
80000 - - - - - - - -
90000 - - - - - - - -

Performance. In tables [1- 4], the term “Explicit” refers to the explicit version
and “MTBDD/DDD” refers to the version which uses MTBDDs for encoding
the discrete part and DDDs for timing information; “MTBDD/DBM” refers to
the version which differs from the “MTBDD/DDD” by using DBMs instead of
DDDs. However, in order to model check certain properties, the explicit version
involves two steps: first, it generates the reachable states, and next it represents
those as a model in the PRISM input language, which is then passed to PRISM to
finish the verification process. On the other hand, in the “MTBDD/DDD” and
“MTBDD/DBM” versions, as they have already been partly integrated with
PRISM, the overall checking process does not go through the PRISM input
language: the tool constructs the target MDP models in MTBDDs and directly
calls functions provided by PRISM.

Here we only consider the algorithm performance and the number of states
obtained from the experiments. The leftmost column of these tables gives the



Table 3. Verification of the full CSMA/CD model (max, backoff=1)

Deadline States Time(Explicit) Time(Symbolic)
MTBDD/DDD MTBDD/DBM

Forward Construct. M.C. S.F.C. M.C. S.F.C. M.C.
1000 6404 26.89 - - 47.17 0.00 34.84 0.00
1200 9034 43.94 - - 945.28 0.00 56.55 0.00
1400 11771 66.47 - - 1611.72 0.01 82.79 0.01
1600 15329 100.45 - - 2752.01 0.00 125.33 0.01
1800 19453 148.20 11021.07 0.79 4452.55 1.22 183.39 1.22
2000 23468 204.11 - - 6517.29 2.76 255.06 2.66
2200 28516 281.92 - - 9667.14 5.60 351.47 5.48
2400 34023 381.79 - - - - 476.85 9.59
2600 39970 503.00 - - - - 631.94 14.45
2800 45654 628.90 - - - - 804.11 20.52
3000 52561 811.40 - - - - 1028.94 27.25

Table 4. Verification of the full CSMA/CD model (min, backoff=1)

Deadline States Time(Explicit) Time(Symbolic)
MTBDD/DDD MTBDD/DBM

Forward Construct. M.C. S.F.C. M.C. S.F.C. M.C.
1000 6408 26.86 934.96 0.26 471.32 0.32 34.53 0.32
1200 9038 44.14 2103.15 0.33 944.00 0.42 56.82 0.41
1400 11775 66.08 3567.70 0.41 1609.68 0.51 83.00 0.49
1600 15333 100.83 6106.86 0.51 2746.67 0.60 124.82 0.59
1800 19453 147.69 - - - - 182.64 1.94
2000 23468 202.60 - - - - 253.95 2.55
2200 28516 280.17 - - - - 349.63 3.32
2400 34023 382.47 - - - - 474.25 4.08
2600 39970 503.26 - - - - 631.54 5.19
2800 45654 632.84 - - - - 799.57 6.42
3000 52561 814.99 - - - - 1027.52 7.68

different deadlines. The second column shows the number of symbolic states
generated via the forward construction. The column “S.F.C.” refers to the sym-
bolic forward and construction. The column “M.C.” refers to the computation
time for model checking the given properties against the MDP model encoded as
an MTBDD. The unit for all columns “Time” is seconds. Notice that there are
three columns under the “Explicit” version: the first column represents the time
taken to generate the reachable states and translate the model to the PRISM
input language, while the second refers to model construction time by PRISM
via explicit encoding.

The times for model checking are nearly same for the three versions. We
comment on the time spent on constructing MDP models encoded as MTBDDs
via forward analysis. Compared to the explicit implementation, the symbolic
encoding version based on DBMs has a significant advantage: the time spent on
generating the MDP models is no longer a problem, since it took 110 seconds to
perform both the forward construction and to generate the MDP in MTBDDs
for the full model Implp with deadline 9000 ns, whilst it took 3925 seconds to
generate the MDP model alone with the same deadline with the explicit version.

For the abstract model, the DDD-based version performs as well as the DBM-
based one. However, for the full model Implp, it is slower due to a large number
of intermediate DDD nodes being generated, which forces the DDD run-time
library to invoke garbage collection. The main reason is that DDDs have no
canonical property.

Memory. With regard to memory usage, we need to consider two kinds of
usage for each symbolic state: the memory for the discrete part and the zone



Table 5. Memory consumption of the abstract model Ip
1 with wire delay set to 360 ns

Deadline Nodes Nodes Mem. (Zone)
(Explicit) (Discrete) DDD DBM

Peak Estimated
2000 218 255 49.52 5.47 1.27
2500 289 324 77.66 6.89 1.55
3000 289 325 91.38 7.85 1.69
3500 364 364 136.94 9.49 2.07
4000 481 503 220.61 12.47 2.64
4500 474 486 253.15 13.51 2.81
5000 580 552 356.84 16.02 3.34
5500 680 625 476.98 18.76 3.90
6000 701 656 555.90 20.40 4.22
7000 905 833 942.16 26.91 5.48
8000 1087 986 1365.55 32.54 6.61
9000 1219 1075 1951.06 39.29 7.88

10000 1401 1290 2759.18 46.87 9.42
20000 3143 2893 30232.26 157.91 31.18
30000 5171 4823 136341.71 336.74 66.27
40000 6892 7003 402995.33 579.55 113.98
50000 8980 8897 225775.35 890.07 174.97
60000 10792 11085 497021.90 1268.42 249.26
70000 12938 13557 666931.81 1712.98 336.59
80000 14810 18637 229405.34 2222.45 436.61
90000 - 18679 397636.89 2799.86 550.05

Table 6. Memory consumption of the full model Implp with wire delay set to 360 ns

Deadline Nodes Nodes Mem. (Zone)
(Explicit) (discrete) DDD DBM

Peak Estimated
2000 1719 2489 46343.66 324.46 143.75
2500 2556 3616 93414.54 492.84 207.75
3000 2585 3718 94993.58 502.61 210.25
3500 3384 4927 184895.18 728.27 299.50
4000 4610 5834 318451.16 977.65 398.75
4500 4476 5735 322968.19 991.48 397.75
5000 5291 6695 546041.32 1311.11 525.25
5500 6003 8181 800000+ 1559.77 623.50
6000 6404 8220 800000+ 1653.37 657.75
7000 8449 10377 800000+ 2317.22 916.25
8000 9818 11865 800000+ 2983.175 1179.25
9000 11856 13735 800000+ 3519.195 1381.75

10000 - 15484 - - 1673.50
20000 - 35157 - - 6201.75
30000 - 56374 - - 13534.50
40000 - 76978 - - 23638.00
50000 - 99116 - - 36661.75
60000 - 123220 - - 52459.25
70000 - - - - -
80000 - - - - -
90000 - - - - -

part. In tables [5- 8], the unit for all columns under “Mem.” is in kilo-Bytes
and the unit for all columns under “Nodes” is the number of the nodes in the
MTBDD where each node occupies 20 bytes.

Compared with the explicit version, both symbolic versions use more nodes.
However, the chief contributor to the growth in the size of our symbolic data
structures seems to be the fact that we do not exploit regularity in the zone
representation because this first implementation allocates unique indices to zones
in an arbitrary order which are then stored in the placeholders. The results of [9]
show that such regularity exists and we have adapted this method and obtained
preliminary results which will appear in the first author’s coming thesis.

We note that the symbolic versions are performing the generation of the
state space dynamically at the same time as calculating the encoding, while
the explicit version does not start to encode the MTBDD until the whole state



Table 7. Memory consumption of the full model CSMA (max, backoff=1)

Deadline Nodes Nodes Mem. (Zone)
(Explicit) (discrete) DDD DBM

Peak Estimated
1000 - 10752 577832.75 1099.57 399.71
1200 - 13434 800000+ 1558.76 564.45
1400 - 15968 800000+ 2039.87 737.11
1600 - 19426 800000+ 2667.49 962.01
1800 16697 22903 800000+ 3397.76 1223.73
2000 19276 25962 800000+ 4108.15 1478.71
2200 22260 30181 800000+ 5005.77 1800.20
2400 - 33949 - - 2151.37
2600 - 38187 - - 2530.37
2800 - 41611 - - 2894.82
3000 - 45527 - - 3337.11

Table 8. Memory consumption of the full model CSMA (min, backoff=1)

Deadline Nodes Nodes Mem. (Zone)
(Explicit) (discrete) DDD DBM

Peak Estimated
1000 7466 10868 578877.20 1100.67 400.10
1200 9753 13492 800000+ 1559.85 564.84
1400 11383 16036 800000+ 2040.96 737.50
1600 14227 19638 800000+ 2668.59 962.40
1800 16714 23130 800000+ 3397.76 1223.73
2000 19694 26331 - - 1478.71
2200 - 30381 - - 1800.20
2400 - 34271 - - 2151.37
2600 - 38092 - - 2530.37
2800 - 41681 - - 2894.82
3000 - 45374 - - 3337.11

space is generated. We compare the memory usage on the zone part because
those for the discrete part are the same for both symbolic versions. The memory
consumption for DBMs is that actually used. For DDDs, we cannot give the
actual memory consumption, and instead give both the estimated and peak
time memory consumption. The column “Estimated” refers to an estimation of
the memory consumption of all zones based on DDDs when reaching the fixed
point. The column “Peak” refers to the highest value of memory consumption
by DDDs when reaching the fixed point. The DBM-based representation uses
less memory than the DDD-based representation. In practice, as shown in Table
6, the estimation of memory consumption for zones in DDDs is around 3-5 times
as many as those in DBMs. However, compared with those by DBMs, the peak
memory consumption of DDDs is huge, since DDDs use 1000 times more memory
than DBMs for the full model Implp with deadline 5000 ns. 800000+ means
garbage collection occurred (DDD run-time library configuration with 800M).
We note, however, that since non-convex zones arise in backward exploration it
is difficult to predict how the representations will behave in the latter case.

Scalability. In Table 9, the column “Prod. const.” is the time spent on parallel
composition to build the product model and the column “Encoding” the time
on encoding the product model into MTBDDs. In the case study of Milner’s
scheduler, which shows the scalability of our method and generates only five
zones in total after the application of the forward algorithm, the result is not as
good as those obtained with DDDs [17]. This is partly because the experimen-
tal nature of our implementation not only involves zone search but probability



Table 9. Verification of the Milner’s scheduler with only one clock

N Symbolic/Time Prob.
Nodes Prod. const. Encoding S.F.C

(Discrete)
4 1890 0.21 0.11 0.27 0.00
5 2981 0.35 0.30 0.63 0.00
6 4345 0.93 0.79 1.76 0.00
7 5989 3.50 2.42 5.22 0.00
8 7925 19.02 7.16 15.02 0.00
9 26276 113.56 19.18 40.14 0.00
10 143762 591.91 50.41 103.50 0.00
11 - - - - -

computation as well, and partly because the parallel composition of components
is constructed explicitly and does not utilise the Kronecker approach [10] imple-
mented in PRISM which is based on good heuristics for BDD variable ordering
that can yield compact MTBDDs.

4 Conclusion

We have proposed an MTBDD-based placeholder encoding method for model
checking of probabilistic timed automata and implemented an experimental tool
using the CUDD package. The timing information is represented as either DBMs
or DDDs. Our method allows one to use other data structures, for example,
CRDs [20] or CDDs [2], for representing the timing information.

Future work will address the efficiency of the symbolic implementation pre-
sented in this paper, and in particular exploiting regularity in the zone graph,
implementing Kronecker-based parallel composition of probabilistic timed au-
tomata, and augmenting PRISM with real-time clocks.

Acknowledgements. We would like to thank the authors of the DDD library
for letting us use their DDD implementation. We would also like to thank Gethin
Norman and David Parker for helpful discussion.

References

1. PRISM WebSite. http://www.cs.bham.ac.uk/˜dxp/prism/.

2. G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and W. Yi. Efficient timed
reachability analysis using clock difference diagrams. In Proc. CAV ’99, pages
341–353, London, UK, 1999. Springer-Verlag.

3. J. Bengtsson, W. Griffioen, K. Kristoffersen, K. Larsen, F. Larsson, P. Pettersson,
and W. Yi. Automated verification of an audio-control protocol using UPPAAL.
Journal of Logic and Algebric Programming, 52(3):163–181, 2002.

4. J. Bengtsson and W. Yi. Timed automata: Semantics, algorithms and tools. In 4th
Advanced Course on Petri Nets, volume 3098 of LNCS, pages 87–124. Springer,
2004.

5. A. Bouajjani, S. Tripakis, and S. Yovine. On-the-fly symbolic model checking for
real-time systems. In Proc. 18TH IEEE Real-Time Systems Symposium, pages
25–34, Los Alamitos, 1997. IEEE CS Press.



6. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos:
A model-checking tool for real-time systems. In Proc. CAV ’98, pages 546–550,
London, UK, 1998. Springer-Verlag.

7. R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput., C-35(8):677–691, Aug. 1986.

8. E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and X. Zhao. Multi-
terminal binary decision diagrams: An efficient data structure for matrix represen-
tation. In Proc. IWLS’93, pages 1–15, 1993. Also available in Formal Methods in
System Design, 10(2/3):149–169, 1997.

9. C. Daws, M. Kwiatkowska, and G. Norman. Automatic verification of the IEEE
1394 root contention protocol with KRONOS and PRISM. In Proc. 7th FMICS’02,
volume 66.2 of Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

10. L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala. Symbolic
model checking of concurrent probabilistic processes using MTBDDs and the Kro-
necker representation. In Proc. 6th TACAS’00, volume 1785 of LNCS, pages 395–
410. Springer, 2000.

11. H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker, and M. Siegle. On the
use of MTBDDs for performability analysis and verification of stochastic systems.
Journal of Logic and Algebraic Programming, 56(1-2):23–67, 2003.

12. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model check-
ing with PRISM: A hybrid approach. In Proc. 8th TACAS’02, volume 2280 of
LNCS, pages 52–66. Springer, 2002.

13. M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance analysis of
probabilistic timed automata using digital clocks. In Proc. FORMATS’03, volume
2791 of LNCS, pages 105–120. Springer-Verlag, 2003.

14. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of real-time systems with discrete probability distributions. Theoretical Computer
Science, 282:101–150, 2002.

15. M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic model checking of
deadline properties in the IEEE 1394 FireWire root contention protocol. Special
Issue of Formal Aspects of Computing, 14:295–318, 2003.

16. M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model check-
ing for probabilistic timed automata. In Joint Conference on FORMATS and
FTRTFT, volume 3253 of LNCS, pages 293–308. Springer, 2004.

17. J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Fully symbolic model
checking of timed systems using difference decision diagrams. In Workshop on
Symbolic Model Checking, volume 23, The IT University of Copenhagen, Denmark,
June 1999.

18. S. A. Seshia and R. E. Bryant. A boolean approach to unbounded, fully symbolic
model checking of timed automata. Technical Report CMU-CS-03-117, Carnegie
Mellon University, 2003.

19. F. Somenzi. CUDD: CU Decision Diagram Package Release, 1998.
20. F. Wang. Efficient verification of timed automata with BDD-like data-structures.

In Verification, model checking, and abstract interpretation, volume 2575 of LNCS,
pages 189–205. Springer, 2003.


