
Synthesizing Pareto Optimal Decision for
Autonomic Clouds using Stochastic Games Model

Checking
Azlan Ismail

Faculty of Computer and
Mathematical Sciences

Universiti Teknologi MARA
Shah Alam, Selangor, Malaysia

Email: azlanismail@tmsk.uitm.edu.my

Marta Kwiatkowska
Department of Computer Science

University of Oxford
Oxford, UK

Email: Marta.Kwiatkowska@cs.ox.ac.uk

Abstract—The ability to automatically generate and guarantee
the optimal decision for self-adaptation is important especially
when there are multiple quality objectives that need to be
satisfied, the uncertainties in the adaptation outcome, and the
time-varying resource demands, especially in the autonomic cloud
systems. To address this issue, in this paper, we propose an ap-
proach to automatically encode the adaptation decision behavior
and the multiple quality objectives, as well as synthesizing the
behaviour to fulfill the specified objectives. In the approach, we
emphasize the relation between quality objectives expressed as
a variant of temporal logic specification and the domain-specific
Service Level Agreements (SLA) (i.e. cloud environment). The
approach also covers the abstraction method for representing
the adaptation behavior as stochastic games, and the re-synthesis
method to adjust the threshold values, if failing to satisfy the
predefined thresholds. We apply the stochastic games model
checking with strategy synthesis to realize the approach. The
Pareto-set computation is utilized to support the adjustment of
threshold values. We present a set of validation results to show
the effectiveness and performance of the proposed approach.

Index Terms—autonomic clouds, multiple quality objectives,
strategy synthesis, stochastic games model checking.

I. INTRODUCTION

Self-adaptation is increasingly used to address the un-
certainty and complexity of modern software systems and
their environments [8], [11], [18], [24]. Self-adaptive (or self-
managing) software continually monitors and analyzes its
behaviour and that of its environment, synthesizing and ex-
ecuting reconfiguration plans when needed to avoid violating
system goals [17]. This monitor-analyze-plan-execute (MAPE-
K) closed control loop [12] has been successfully used in a
wide range of software systems.

Self-adaptive capability has been promoted to enable auto-
nomic clouds environment [20]. The goal is to allow the cloud
to self-managed its own environment. This is important to
address the challenges in managing cloud resources in a com-
plex, large-scale, and heterogeneous distributed environment.
In addition, the cloud can collaborate with other clouds (also
known as cloud collaborators) in terms of sharing resources
in provisioning cloud applications. The need for having a

collaborator comes from the limitation of the cloud itself. For
instance, the research centres of the University might have
limited resources in executing complex large-scale scientific
applications. Thus, they can collaborate with the industry
research centres to enable shared resources.

One of the challenges in the autonomic cloud is to find the
optimal cloud collaborator to deploy and execute the respective
cloud application. As there are more than one potential cloud
collaborators in the group (also called as cloud ensemble) [13],
the cloud in need (also called as cloud requestor) has to decide
which of them is the best to perform the deployment and
execution task. One of the important information to make
decision is to consider the cloud collaborator reputation [4].
However, more information is required to improve the quality
of the decision.

In this work, we pay a specific attention to improving the
effectiveness of the self-adaptation decision by focusing on
the issues influencing the generation of optimal adaptation
plan. We view the issues from three perspectives, the multiple
dimension of quality objective, the resource variation and the
uncertainty of the system environment.

In real setting, there is a need for the self-adaptation to
fulfill multiple dimension of quality objectives imposed by
the application user. The common approach to measure the
quantitative information towards satisfying multiple quality
objectives is based on weighted aggregation method [2],
[3], [23]. However, in certain situation, some information is
unknown or not provided, in particular, the weights or pref-
erences of each quality objective. Assuming such information
is always provided limits the effectiveness of the adaptation.

Furthermore, in the cloud environment, the demand for
resources can be varied overtime, and it depends on each
cloud in controlling its own resource. Assuming the resources
are partitioned in terms of a series of time region, the cloud
can decide to deploy the requested cloud application in one
of the region. Without exposing this information, the cloud
requestor might have selected a cloud collaborator which can
potentially violate certain constraint, such as a deadline (if

exist). Meanwhile, the uncertainty of the system environment
refers to the uncertainty of commitment of the cloud in
the cloud ensemble. This kind of commitment is expected
especially in a voluntary setting [19]. Failing to consider
both aspects, the resource variation and the uncertainty of
commitment can also affect the effectiveness of the decision.
To the best of our knowledge, the related work only considers
the latency of the adaptation [2], which is insufficient for the
resource deployment problem.

Therefore, this research aims to propose a decision-making
approach to generate an optimal adaptation plan which aims
to tackle the above issues to improve the effectiveness of the
self-adaptation decision for autonomic cloud environment.

For realizing the approach, we employ stochastic games
model checking with multiple objective properties synthe-
sis [6]. The technique enables (i) abstracting the decision-
making behaviour from the controlled and uncontrolled per-
spective, as well as associating the quality attributes based on
turn-based stochastic multi-player games model, (ii) specifying
multiple objective properties with RPATL and its Boolean
combination, (iii) computing the threshold values via Pareto-
set computation, (iv) synthesizing the optimal adaptation plan
via multi-objective strategy synthesis method, and (v) extract-
ing the optimal action from the synthesis outcomes.

In this paper, we contribute a novel decision-making ap-
proach that automatically encode the model and properties
specification, and synthesizes for optimal adaptation plan.
The model encoding process takes several inputs, namely the
number of cloud collaborator and its variation in specifying
the model specification. The properties encoding process takes
the inputs from the Service Level Objectives (SLOs) to au-
tomatically generate the specification. The synthesis process
consists of several tasks, namely, instantiating of the model,
the assignment of quantitative information, and synthesizing
the optimal plan. In the case of failing to synthesize the correct
plan on the first attempt, the task of adjusting the threshold
values is performed with the support of Pareto set computation
followed by re-synthesizing the plan.

We validate the proposed approach by utilizing the cloud
application deployment scenario to show its effectiveness.
We also provide some performance results to illustrate its
scalability.

The rest of this paper is organized as follows. Section II
introduces the adaptation context for this research. Section III
provides the background information of the applied technique.
In Section IV, we present the proposed approach and, in Sec-
tion V, we provide the validation results. We highlight related
work in Section VI and conclude the paper in Section VII.

II. ADAPTATION CONTEXTS

This section introduces the self-adaptation architecture
which becomes our referred model, the autonomic cloud and
the adaptation decision scenarios.

A. Self-adaptation Architecture
The proposed approach discussed in this paper can be

mapped into the common self-adaptation architecture based

on MAPE-K which emphasizes the monitor-analysis-planning-
execution phases. In general, the monitoring is needed to
observe the condition of the managed system. The analysis
is used to perform some predictions or diagnose any problem.
The planning is required for finding the appropriate adaptation
plan. The execution is meant to carry out the plan on the
managed systems. Meanwhile, knowledge repository is used
to support the phases. The MAPE-K cycle is performed by a
component known as autonomic manager (AM).

There are two common adaptation approaches, reactive and
proactive approach [14]. In reactive approach, the adaptation is
triggered when the actual problem has occurred and detected.
Meanwhile, in proactive approach, the adaptation is triggered
by looking ahead to predict when to adapt. As we are
concerned with the planning phase, which needs to decide
the best adaptation action, in general, the proposed approach
can be applied into reactive and proactive adaptation. How-
ever, synthesizing for optimal solution is more significant to
support proactive adaptation since it consumes more time and
resource as compared to the rapid approach, i.e. incremental
selection [27].

B. Autonomic Cloud Environment

We utilize the autonomic cloud environment to illustrate the
proposed approach. For this reason, we refer to the Science
Cloud Platform (SCP) within the ASCENS project [20].

A SCP is a computing node or simply a cloud. An instance
of SCP comprises an AM which enables the cloud to adjust
its resource autonomously and proactively, in relation to the
network resilience, and resource failures.

The autonomic cloud environment can contain multiple
clouds that work collaboratively in sharing their resources
(voluntarily basis) to provision the cloud applications [19].
Any cloud can join or leave the collaboration, also known as
ensemble.

As an AM, each cloud can take several roles in the ensem-
ble, based on Helena approach [13]. The roles are to store
and deploy a cloud application (deployer), to find a cloud
collaborator that can execute the cloud application (initiator),
to execute the cloud application (executor), and to observe the
execution of the application (monitor).

C. Adaptation Decision Scenario

In this paper, we focus on the optimal decision making
problem of self-adaptation by a cloud. Specifically, in the
autonomic cloud, the adaptation decision can be performed
at different cloud role. Thus, we limit our work to the
Initiator role, in particular, when the cloud realizes that it
cannot execute the application due to its limited resources and
requires to finding the optimal cloud collaborator that can do
the job. The solution to the decision-making problem is an
optimal decision path (i.e. adaptation plan) of choosing a cloud
collaborator and its consequence outcome.

Figure 1 illustrates the application deployment scenario.
There are 8 computing nodes within the same ensemble which
are willing to share their resources and disclose the relevant

Fig. 1. Application Deployment Scenario in Autonomic Clouds

information. Each computing node has AM capability. Any
computing node within ensemble can receive an application
provisioning request, deploy the application, or even finding
the right computing node for deploying the application. There
are a set of qualitative objectives associated to the application,
namely, the cost, response time and reliability.

In this case, assuming computing node C817B4 has received
a request to deploy an application with multiple quality objec-
tives. However, at that point of time, it is not able to deploy
the application due to the resource constraint. As a result, it
turns itself becoming as an Initiator which needs to find the
cloud collaborator to deploy and execute the application.

D. Crucial Factors Affecting the Decision

We are concerned with several crucial factors that affect the
effectiveness of the adaptation decision, explained as follows:

1) Absence of weight information: The weights have been
utilized to enable multiple quality aggregation for the self-
adaptation decision [9]. Each weight is meant for a single
quality objective (e.g. 0.6 for cost, 0.4 for time). By having
this information, multiple quality objectives can be reduced
a single objective. However, the absence of weight can occur
especially when the users are not able to provide the required
weights. This situation will affect the ability to find the
decision.

2) Time-varying resource workloads: The time-varying re-
source workloads of the potential cloud collaborators can be
viewed as a series of time periods with different estimated
resource utilization. Example of time-varying resource work-
loads are high utilization and low utilization period [21].

These periods are significant to the clouds in distributing
their workloads to achieve a load balanced. A cloud may
receive a request during its high utilization period. Without
considering this factor in deciding its commitment to col-
laborate with others (i.e. willing to deploy and execute the
requested application), it will simply reject the request due
to unable to cater the requested application. In fact, there
is a high probability that the performance of the application
is significantly degraded. However, this behaviour will not

benefit the collaborative cloud environment, as in ensemble,
although it has its own goal. Thus, by considering this factor, it
may be willing to commit to collaborate, subject that the cloud
requester can bear with some delays, whilst maintaining the
expected quality objectives of the application.

From the cloud requestor perspective, this information can
assist them to be aware about the commitment of their col-
laborators, especially when dealing with the actual execution.
This is important since there could a deadline constraint
imposed to the application. Otherwise, delaying the execution
of the application on other cloud could be the best option
(i.e. maintaining the expected quality), assuming the cloud
requestor itself is dealing with longer high utilization period,
or unable to commit in ensemble in further period. In this
context, we assume a potential cloud collaborator is willing
to share the information related to these periods, but not their
internal goals. Thus, the cloud requestor can make an effective
decision in choosing its potential collaborator.

3) Uncertainty of commitment: The uncertainty of commit-
ment refers to the commitment of the cloud collaborator in
the ensemble. This is important since the participation of the
clouds in ensemble is a voluntary basis. There is possibility
where the selected cloud collaborator leaves the ensemble
before completing the execution of the application. Failing
to consider this factor can affect the effectiveness of the
adaptation.

III. STOCHASTIC GAMES MODEL CHECKING WITH
STRATEGY SYNTHESIS

Stochastic games provide a convenient abstraction for mod-
elling the behavior of systems that comprise several players
that may either compete or cooperate in order to achieve a
certain goal, while also exhibiting probabilistic behavior [26].
In this paper, we consider zero-sum, turn-based stochastic
multiplayer games (SMG) [6]. In a turn-based game players
move in turns, i.e. there is exactly one player move (i.e. to
make the choice of action) at each step. A zero-sum game is
a game where two players have directly conflicting objectives
and the payoff of one player complements the payoff of the
other. The goal of the game from a player perspective is to
win the game, that is, to determine the optimal choice. The
formal definition is as follows:

Definition 3.1: SMG A (turn-based) stochastic multi-player
game (SMG) is a tuple G, where Π is a finite set of players,
S is a finite, non-empty set of states, A is a finite, non-empty
set of actions, (Si)i∈Π is a partition of S, ∆ : S×A→ D(S)
is a (partial) transition function that maps state-action pairs to
probability distributions over S, AP is a finite set of atomic
propositions, χ : S → 2AP is a labelling function assigning
to each state a set of atomic propositions taken from a set
AP , and r is a reward structure mapping each state to a non-
negative rational reward, r : S ×A→ <.

In an SMG, for each state s ∈ S, an action is chosen by a
single player i ∈ Π that controls the state s ∈ Si. The action
is selected from a set of actions for the state, A(s). Once
a player has made the choice, the successor state is chosen

according to probability distribution ∆(s, a). The selection of
action from a state to the next state creates a path. A path of
G is a possibly infinite sequence λ = s0a0s1a1... such that
aj ∈ A(sj) and ∆(sj , aj)(sj+1) > 0 for all j.

An SMG consists of two types of states, player states and
probabilistic states. Players may have several nondeterministic
choices available in non-probabilistic states, from which they
select a transition to move to the next state. A strategy in an
SMG is a way to resolve non-determinism for each player. In
probabilistic states transitions are given as probability distri-
butions. An SMG is unfolded into paths, that is, sequence of
states which alternate between player states and probabilistic
states. A transition trace comprises a sequence of action labels
of a path. An SMGs can be annotated with rewards that can
be used to formulate a variety of quantitative analyses, e.g. of
the accumulated cost along specific paths.

A. Properties

The properties of SMGs are expressed in the probabilistic
temporal logic RPATL [6]. Syntactically, RPATL is a CTL-
style branching-time temporal logic that distinguishes between
path formulae (ψ) and state formulae (φ). An example of a
path formula is Fφ (eventually φ). RPATL can be used to
formally specify that a coalition of players 〈〈P 〉〉 has a strategy
which can ensure that the probability of an event’s occurrence
or that an expected reward measure meets some threshold,
irrespective of the actions of the other players. The two types
of properties are expressed using the probabilistic operator P
and the reward operator R, respectively, and the threshold
can be replaced with ‘=?’ to require the computation of the
actual probability of reward. For instance, the evaluation of the
RPATL property 〈〈P 〉〉 R{r}max=? [Fφ] yields the maximum
accumulated reward r achievable by the players in coalition
P by using a strategy which ensures that a state satisfying
formula φ is reached independently of the strategies of other
players. RPATL can be used to reason about the total reward
[C], mean payoff [S] or long-run ratio of two rewards. As
we are concerned with the total reward, the formulated games
must be stopping, which have terminal states with zero reward
that can be reached almost surely under all strategies.

There are two types of properties, single objective and
multi-objective properties. Classical RPATL is used to state a
single objective property, whilst multi-objective is a Boolean
combination of single objective properties. The multi-objective
properties must be of the same type (i.e. either all prob-
abilistic or reward-based). An example of multi-objective
is 〈〈P 〉〉 (R{r1}<x [C] & R{r2}>y [C]). This property
expresses that the players in coalition P ensure a strategy
where the accumulated reward r1 less than x is guaranteed
AND the accumulated reward r2 greater than y is guaranteed,
independently of the strategies of other players.

B. Strategy Synthesis

A strategy for a player resolves non-determinism of player
choices (i.e. choosing which action to take) from the initial
state until the terminal state is reached in order to satisfy

the specified properties. Strategy synthesis aims to find the
winning strategy for a player. The synthesis algorithm used
to find the winning strategies is based on the value iteration
method [5] implemented in the PRISM-games tool [16].

There are several types of strategies resolve non-
determinism [6]. The memoryless deterministic strategies are
generated to ensure the satisfaction of single objective proper-
ties. On the other hand, stochastic memory update strategies,
which utilize explicit memory representation, are generated to
satisfy multi-objective properties.

While optimal strategies can be constructed for single objec-
tive properties, for multi-objective properties optimal strategies
may not exist. Hence, existing solutions for multi-objective
require the computation of ε-approximations of Pareto sets
and the corresponding ε-optimal strategies [7]. The Pareto
set contains a set of optimal achievable vectors of reward
bounds, also called Pareto vectors, which represent optimal
trade-offs between objectives in an MO property. The Pareto
set is computed using an algorithm based on the value iteration
algorithm.

IV. ADAPTATION DECISION APPROACH

Our approach aims at improving the effectiveness of the
adaptation decision when dealing with multiple quality ob-
jectives, the absence of weights, the time-varying resource
workloads, and the uncertainty of commitment of the potential
cloud collaborators. The decision making is made whenever
an adaptation is anticipated, especially in the context of i.e.
proactive adaptation [23]. This also means, the adaptation
decision is made before the actual problem occurs.

The important steps towards automatically deciding the op-
timal adaptation is identified as three stages. Firstly, encoding
the adaptation decision behavioural model, and the multiple
quality objective properties specification. In general, the en-
coding can be done online and offline [1]. The initial spec-
ification can be encoded offline, whilst the online encoding
can be done if the structure (i.e. number of adaptation action,
number of variation) is changed. Secondly, pre-processing the
encoded models followed by synthesis or re-synthesis process
in the case of failure. Thirdly, extracting the optimal action,
in this case, the best cloud collaborator from the synthesis
outcomes. The details are explained as follows.

A. Encoding Multiple Quality Objectives

We propose an automated encoding of multiple quality
objectives based on predefined rules. The rules map the
elements of SLA contract i.e. CSLA [25] into the temporal
logic specification template.

There are a few segments described in the SLA contract.
We are concerned with the Service Level Objectives (SLO)
segment that consists of a set of quality elements including the
quality objective parameter, its comparator, and its threshold.
We use three objective parameters to illustrate this approach,
namely, the response time, cost, and reliability. A sample
segment of the response time is shown in Figure 2.

Fig. 2. Sample of SLO in SLA

The temporal logic specification template is based on
RPATL. The coalition of the properties focus on the controlled
decision maker, in our context, player 1 as explained in IV-B.
Furthermore, we use a single R operator to represent a single
quality objective in SLO (e.g. response time). We also use
the accumulated reward reasoning [C]. For multiple quality
objectives, the R operator is connected with the Boolean
combination. In this approach, we limit to AND (&) only.
Example of the specification structure is as follows:

〈〈p1〉〉 (R{r0}./y0
[C] & R{r1}./y1

[C]) (1)

Based on this structure, the objective parameter in SLO
is mapped to reward attribute ri which is expressed in the
behavioral model and is also used to define the bound attribute
yi, and the comparator in SLO (i.e. ”lt” is equivalent to less
than) is used to denote ./. Meanwhile, the threshold value
in SLO will be assigned into attribute yi, as discussed in
Section IV-C.

B. Encoding the Decision Behavior

Our approach provides an automated encoding for ab-
stracting the adaptation decision behaviour model which can
be done online, and based on some predefined structure.
Encoding the model offline is viable if all the structure of
the model is assumed to be fixed for any adaptation cycle.
However, in certain situation, this is insufficient, especially if
the potential adaptation action can change i.e. the potential
cloud collaborator to be selected.

To enable the automated encoding, some elements of the
specification are predefined, whilst others are dynamically
created, based on two main information, namely, the number of
cloud collaborator and the number of variation for each cloud.
The number of potential cloud collaborator can be varied
since the cloud can join and leave the cloud ensemble [13](a
collective of clouds that is formed based on demand) at their
preferred time. The number of variation can also be varied
depending on how fine or coarse of the time variation. In our
approach, we assume that both numbers are deterministic can
be obtained from the knowledge repository.

The core elements of the adaptation decision model that
need to be encoded (using PRISM language) are classified
into four aspects.

Firstly, we encode the players of the stochastic games that
abstractly represent the decisions involved. In the context of
application deployment scenario, we are concerned with two
perspectives of decisions:

• The controlled decision making that aims to select the
best adaptation action. This is equivalent to select which

Fig. 3. Adaptation Decision Behavioral Model

cloud collaborator to deploy and execute the cloud appli-
cation. We can also view this decision as the cloud re-
questor perspective. For abstracting the decision behavior
in the model, we use a player state also called as player
1, p1.

• The uncontrolled decision making which aims to choose
the time region. This decision is supposedly made by the
potential cloud collaborator and thus, it is beyond the
control of the cloud requestor. Thus, for the abstraction
purpose, we use another player state, also called as player
2, p2. Modeling this decision as another player represents
the worst-case scenario from p1’s perspective.

Figure 3 shows the behaviors of the players for both
decisions. Example of the encoded player definition is as
follows:

player p1
decideCollab [n0], [n1]
endplayer
player p2
environment [n0e0], [n0e1], [n1e0], [n1e1], [n1e2]
endplayer

Secondly, we encode the decision logic of p1 that needs
to select a potential cloud collaborator [ni]. Technically, p1
makes a transition from the state of having no selection to the
state of choosing one collaborator as illustrated in Figure 3. A
single decision logic is meant for abstracting a single selection.
Thus, the number of required decision logic to be encoded
depends on the number of potential cloud collaborator that
joins the ensemble. Assume cloud ni is a potential collaborator
that can be chosen, the decision logic can be encoded as
follows:

.........
[ni] (t=0) & (goal=false) & → & (n′=i) & (t′=1);
.........

Thirdly, we encode the decision logic of p2 that resolves the
non-determinism of time variation of the cloud collaborator
[niej]. This behavior is viewed as the uncontrolled decision
from player 1 perspective. The number of variation ej can
be varied depending on the time slots imposed by each cloud

collaborator ni. Thus, we associate a resource constraint to
check the feasibility to execute the cloud application at a
specific time variation. This constraint is important to reduce
the search space for making the selection. To formulate the
resource constraint, we consider three parameters, namely,
the estimated resource usage of the application apprs, the
estimated resource utilization for each time variation vari,jrs

and the maximum utilization mxrs.
In addition, we associate the stochastic states with p2, to

represent the uncertainty effect of the cloud commitment in the
ensemble (i.e. continue participating, leaving), which results
in either success or failure of the adaptation. Example of the
encoded decision logic for a variation ej of a cloud ni is
formulated as follows:

.........
[niej] (t=1) & (n=i) & (apprs+var i,j

rs ≤mxrs) & →
rel ji : (goal′=true) & (t′=0) + 1−rel ji : (goal′=false) & (t′=0);
.........

C. Multi-objective Strategy Synthesis

The automated synthesis process takes the encoded model
and properties specification, and a set of quantitative infor-
mation to produce the optimal plan. The successful synthesis
is achieved when it can resolve the non-determinism which
satisfy the multi-objective properties.

In general, the synthesis begins with pre-processing phase,
which involves three steps, (i) parsing the model and properties
specification into internal representation, (ii) instantiating the
model instance based on explicit-state representation, and (iii)
assigning values into the model and properties. After that,
the synthesis is performed by using the stochastic games
model checking engine with strategy synthesis capability. In
the case of failure, re-synthesis phase is executed. The details
are explained as follows.

1) Pre-processing Phase: Step (i) and (ii) can be done only
once, assuming, there is no change in the future. If a change is
needed, then these two steps need to be re-executed, which can
be either online or offline. As discussed in the previous work,
offline stage can significantly improve the performance [22].

Step (iii) is needed to assign runtime quantitative informa-
tion into the model and threshold into the properties. We also
note that, this step can be part of encoding process. This is
applicable if the model behavior has to be re-encoded, whilst
the quantitative information is known and accessible at the
same time.

The focused values to be assigned into the model are the
estimated quantitative information for each potential cloud
collaborator and its variation. These estimated values are
assumed to be produced during analysis phase of MAPE-K
cycle. Meanwhile, the focused values for the properties are
the thresholds, which can be obtained from the SLO.

For supporting the values assignment, we apply the mapping
function that maps the quantitative parameters encoded in
the model with the parameters of the estimated quantitative
information. The same idea applies to the threshold assignment
for the properties, where the thresholds element in SLO is

Fig. 4. Successful adaptation behavior path

mapped to the thresholds parameter in the properties spec-
ification. In general, this mapping can be expressed as a
function, assign(x, y) where x is the parameter used in the
specification, and y is the parameter used in the external
source.

2) Synthesis Phase: The synthesis will synthesize the
model to obtain a successful adaptation behaviour, also called
an optimal adaptation plan. The resulted successful behaviour
is the one that fulfils the multi-objective properties with the
predefined thresholds. Example of properties is illustrated in
properties 1.

Technically, the outcome of strategy synthesis contains a
set of lists where each list contains a few elements, namely,
the current state, the next state, and the action to be taken.
The connection between these lists which form the successful
paths can be simulated using Prism games tool.

Figure 4 shows a simplified version to illustrate one
of the potential paths of successful synthesis with pre-
defined thresholds. The illustrated data is presented as
(step, turn, action, goal, i, rw cost, rw time, rw rel).

The figure is explained as follows. It begins with an initial
state with step 0. This state represents the state where the
adaptation is needed. From this state, player 1 makes a move
(i.e. when turn = 0). It has a set of potential collaborators to
be chosen i = (0, ..., n). The next state results in a selection
of collaborator with index 12 (action = 12). However, at
this stage, the adaptation goal is still false. Then, player 2
makes a move (i.e. when turn = 1) to select from a set of
variation (i0, ..., im), which results in the selection of variation
with index 0 (action = 0) of collaborator 12. The estimated
cost, time, and reliability associated to this selection are
(rw cost = 63), (rw time = 577), and (rw rel = 0.905).
The outcome of this adaptation is uncertain, but is predicted to
be successful. Thus, the goal has been updated to true, which
ends successfully.

Fig. 5. Acceptable thresholds using Pareto set computation

3) Re-Synthesis Phase: There is a possibility where the syn-
thesis results in a failure based on the predefined thresholds.
In this situation, the thresholds need to be adjusted. For this
reason, we utilize the Pareto set computation [7] which can
determine the acceptable thresholds based on the quantitative
information of the potential cloud collaborators. In the cloud
scenario, the computed thresholds can be one or more pair
of quality attributes, where a single pair (x, y, z) refers to the
upper bound for cost x and time y, and the lower bound for the
reliability z. If there is more than one pair of thresholds, in this
work, we take the random strategy to automatically select one
of them. Re-synthesizing is performed based on the selected
pair. Example of visualized computed Pareto set based on cost
and time is shown in Figure 5. We only show two thresholds
due to the current capability of chart representation of Prism
games tool. From the figure, the sample pair of the acceptable
thresholds (x, y) are [93, 718] and [98, 650].

D. Strategy Extraction

This process is done onto the outcome of the synthesis
process to obtain the optimal action, in our context, the index
of the chosen cloud collaborator. To enable the extraction, it
requires the transition and strategy profiles, and the identifiers
of all possible cloud collaborators. The transition profile is
needed since it holds all possible paths between states (i.e.
the state of having no selection to the state of choosing
one collaborator) together with other relevant information,
namely, the action labels that include the cloud collaborator
identifiers, as well as the associated quantitative information.
Meanwhile, the strategy profile is required as it contains
the summarized paths information which optimize multiple
objective properties.

The extraction is done by matching the paths information
from strategy to the transition profile. Specifically, it identifies
a single path from both profiles, where the associated action
label contains the identifier of one of the cloud collaborators.
The matching process focuses on similarity of three elements,
(i) the index of current states, (ii) the index of next states,
and (iii) the index of actions. The action from the matched
path is taken as the best action. In the case of more than one
path matched, the best action is selected randomly. With the
selected action, we can return the identifier of the cloud col-
laborator to the autonomic manager for the actual execution.

V. VALIDATION

The main purpose of our proposal is to generate the trade-off
optimal plan under uncertainty with multiple quality objective,

and workload variation. Thus, we provide three aspects of
validations. Firstly, we evaluate its ability to recover from
synthesis failure via Pareto set computation. Secondly, we
show the advantage of considering variation of the cloud
collaborators. Thirdly, we illustrate the performance of the
proposed approach.

We begin with explaining the implementation of the simu-
lator followed by the experimental analysis and results.

A. Implementation

The context of the simulation only covers the aspect when
a self-adaptation is needed. It simulates the decision-making
process based on the proposed approach to provide the optimal
strategy. It supports (i) the setting for input parameters which
includes the threshold values, number of cloud collaborator
and its variation, number of simulation cycle, the stage of
the variable assignment (i.e. during encoding, or during pre-
processing), and the need for re-synthesizing or not, (ii) the
generation of quantitative information (i.e. cost, time, and
reliability) of cloud collaborator profiles with a set number of
variation, (iii) the execution of the proposed approach based
on specific configurations, and (iv) logging the information for
the analysis.

The implementation of the simulator is done using java
within the eclipse environment. The main configuration to
enable the development of the simulator involved two main
libraries settings, namely, (i) libraries of stochastic games
model checking for multi-objective properties synthesis and
Pareto set computation, and (ii) additional libraries for support-
ing Pareto set computation, namely, Parma Polyhedra Library
(PPL) [15]. Architecturally, the simulator consists of five core
components, as follows:
• Properties Generator - This component is needed to

encode properties specification as mentioned in Sec-
tion IV-A. It is also used to assign values if the assign-
ment is set to true. Otherwise, the values assignment
is performed during pre-processing phase of synthesis
process.

• Model Generator - This component is needed to encode
behavioural model as discussed in Section IV-B. It is also
used to assign values if the assignment is set to true. If
not, the values assignment is done during pre-processing
phase of synthesis process. The generation of quantitative
information of cloud collaborator profiles is also part of
this component.

• Stochastic Games Planner -This component is used to
perform pre-processing, synthesizing, and re-synthesizing
the behavioral model as explained in Section IV-C1,
IV-C2, and IV-C3. It can also export the outcome of
model checking and synthesis process which includes the
transition and strategy profiles.

• Strategy Extractor - This component is used to to extract
the optimal action that is the best cloud collaborator from
the synthesis outcomes as explain in Section IV-D.

• Synthesis Simulator - This is the main component to
control the simulation cycle that include generating the

Cloud,Var Init. Thresholds Adjust. Thresholds Syn. Time
(10,5) [90.0, 853, 0.967] [93.88, 1060, 0.978] 6731ms
(20,5) [99.0, 801, 0.974] [108.26, 953, 0.980] 10461ms
(30,5) [90.0, 847, 0.975] [80.90, 1029, 0.978] 11860ms
(40,5) [94.0, 759, 0.835] [107.02, 944, 0.979] 20967ms

TABLE I
RESULTS OF RE-SYNTHESIS

input profiles, executing the proposed approach based on
specific configurations, and logging the information for
the analysis.

B. Re-synthesizing Behavior

In this experiment, we focus on evaluating the ability of
re-synthesizing process in dealing with synthesis failure. In
this situation, it should compute the acceptable thresholds via
Pareto set computation followed by re-synthesizing the model.

For the experiment, we apply three quality objective at-
tributes (i.e. cost, time, and reliability) to simulate the quality
requirements associated to an application. We then set the
number of cloud collaborator, and the number of variation.
Meanwhile, the quantitative information for each potential
variation is generated randomly, within a range that can violate
the satisfaction of multiple quality objectives.

We execute the decision-making process which fails at the
first synthesis attempt. Then, the Pareto set computation is
performed to obtain a set of acceptable thresholds which can
potentially use to adjust the existing thresholds of each quality
objective. One pair of the thresholds is selected randomly.
Then, re-synthesis process is executed based on the adjusted
thresholds. The relevant information is logged for the analysis
and result. The simulations were performed on a virtual
machine, CentOS 7, 10 GB memory with 8 CPUs.

The results in Table I shown the ability of re-synthesizing
behavioral model by adjusting the initial thresholds of each
quality objective. For instance, in the case of 10 potential
cloud collaborators with 5 variations each, re-synthesis will
be a success if the initial threshold set for (cost, time, rel)
as [90.0, 853, 0.967] are adjusted to [93.88, 1060, 0.978]. The
adjusted threshold set is randomly selected from many thresh-
old sets. Meanwhile, the time spent to complete re-synthesis
process is 6731ms. It is important to note that the presented
values have been rounded to 2 decimal points for cost and 3
decimal points for reliability.

C. Variability

In this experiment, we illustrate the benefit of capturing
the potential collaborator in relation to the time variation. In
general, having a higher number of time variation increases
the number of potential collaborator. In addition, having more
collaborator can improve the effectiveness of the decision. For
this reason, we compare the mean potential collaborator or
candidate in relation to the number of variation [2....5].

For the experiment, we set similar quality objectives for
each variation, where cost < 90, time < 1000, and
reliability > 0.9. We also set similar number of cloud
collaborators to 10, for each variation. For each variation, we

Fig. 6. Comparison of mean potential cloud collaborators with different
number of variation

fix the maximum utilization to 1, and randomize the current
utilization value as well as the quantitative information related
to the application. We set 100 of simulation cycle for each
variation to obtain the mean value.

To collect the data, we execute the decision-making ap-
proach that includes, the encoding, the assignment and the
synthesis process. This results in the winning strategies, also
known as optimal plan. We then analyze this plan to identify
the number of potential collaborator which can be chosen
during the actual execution of autonomic cloud. The outcomes
are shown in Figure 6. The simulations were performed on a
virtual machine, Fedora 64-bit, 2 GB memory with a single
CPU.

In the figure, we can see an increment mean of candidates
that can be selected up to 3 variations, in particular, 1.4 mean
value for 1 variation, 1.95 mean value for 2 variation and
2.15 mean value for 3 variation. However, the mean value
decreases when the number of variation is kept increasing,
while the number of available cloud collaborator remains with
10 collaborators. This pattern shows the important of having
an optimal configuration between the number of available
collaborator and its variation in order to improve the decision
effectiveness.

D. Scalability

In this experiment, we focus on illustrating the scalability
of the approach, which is important towards improving its
efficiency, especially for future work. For this reason, we
compare its mean execution time during synthesis process
by varying the number of cloud collaborator and workload
variation.

We defined two set of configurations (A) and (B). For both
configurations, we fix the quality objectives as cost < 90,
time < 1000, and reliability > 0.9. We differentiate the
configurations with different variation, namely, configuration
(A) with 2 variation and configuration (B) with 4 variations.
For each configuration, we set a number of cloud collaborator
from 20 until 80. Meanwhile, we generate the quantitative
information for each configuration randomly. We also set 100
for the simulation cycle of each combination of parameters,
namely, the cloud collaborator and its variation.

Then, we execute the decision-making approach that in-
cludes, the encoding, the assignment and the synthesis process

Fig. 7. Comparison of mean time between 2 and 4 variation over different
number of cloud collaborator

based on the stated configurations. The assignment of values
is performed during encoding process. In addition, there is
no re-synthesizing process involved. We capture the execution
time of the synthesis. The outcomes are shown in Figure 7.
The simulations were performed on a virtual machine, Fedora
64-bit, 2 GB memory with a single CPU.

In overall, the results show that the mean time for (B) is
taking longer time than (A). Specifically, for (B), it takes 0.9s
higher than (A) with 80 cloud collaborators. Furthermore, the
mean time between (A) and (B) has a closed distance when
the collaborator is set to 40, with 0.093s.

The presented mean time is limited to the synthesis process,
since this is the core task in the proposed approach. Having
said that, the time is expected to increase if we consider other
processes, especially re-synthesizing process. Furthermore, we
expect the time taken will be also increased if the assignment
is done as part of synthesis process. It is important to note
that, even the higher variation takes longer time, it provides
more options for achieving optimal decision. In conclusion,
the scalability of the synthesis shows a reasonable time in
respond to the increasing number of collaborator with 2 and
4 variations, when the collaborator reaches 80.

VI. RELATED WORK

In this section, we highlight the related works of the
adaptation decision approaches for self-adaptation.

In Sykes et al [28], they addressed adaptation planning
problem for assembling component configuration based on
the utility objective function. The proposed two selection
strategies. Firstly, the incremental selection which is less cost,
but unable to guarantee an optimal section. Secondly, the
aggregate selection which can find an optimal solution, but
without considering the uncertainty factor.

Tajalli et al [29] proposed a plan-based approach that
applies planning via model checking technique for generating
adaptation plan during runtime. The approach takes the domain
model specification and system goals as the inputs to generate
the plan. However, this approach does not aims for generating
an optimal plan with multiple quality objectives.

Coker et al [10] proposed the combination of probabilistic
model checking and stochastic search techniques to address
the optimal planning under uncertainty. These technique is
is suitable to address a complex problem for searching an

exponentially large space of candidate. However, the modeling
aspect of the approach does not cater the crucial factors
mentioned in this paper.

Moreno et al [23] addressed the limitation of reactive self-
adaptation, by proposing a proactive approach using prob-
abilistic model checking technique. The proposed decision
approach captures the adaptation latency prediction and the
uncertainty of the adaptation outcome in MDP model. The
estimation of multiple quality attributes is based on the
weighted aggregation function. Our work differ from this
work, especially in the applied modeling technique and the
strategy synthesis method. We use stochastic games to capture
the uncontrolled environment which is needed to guarantee
for optimal solution, especially under the worse case scenario.
Furthermore, we formulate the quantitative reasoning as multi-
objective properties synthesis that uses the Pareto-based com-
putation.

The work by Camara et al [2] proposed an optimal planning
approach under uncertainty with multiple quality objectives
and latency factor via stochastic games model checking [6].
They used znn case study to illustrate the proposed approach.
The estimation of quality attributes is transformed into the
weighted aggregation function, which reduces multiple quality
objectives as a single objective property synthesis. We dis-
tinguish our approach with this work in two aspects. Firstly,
the modeling aspect where we capture the variability of the
estimated quality attributes due to the workload variation
of the cloud application deployment scenario. Secondly, the
application of multi-objective strategy synthesis, instead of sin-
gle objective, which can compute for Pareto-optimal solution
without requiring the weight values.

In the context of autonomic cloud, Celestini et al [4],
addressed the issue of selecting cloud collaborator where
the resource information are not disclosed. They proposed a
selection method by taking the reputation into consideration.
The issues of optimality and uncertainty are beyond the scope
of their work.

VII. CONCLUSION

Effectiveness of self-adaptation decision mechanism is in-
fluenced by the flexibility that it can offer and its reliability
of the outcome. One of the important supports when dealing
with multiple quality objectives is to enable the computation
even if some information i.e. weights and preferences are not
provided. Furthermore, the modelling aspect to support the
reasoning of the decision has to capture various information
from the real-world scenario including the uncertainty and
variability of the system environment context.

Therefore, we have proposed a self-adaptation decision
approach based on the established stochastic games model
checking technique. The approach covers the aspect of ab-
stracting and encoding the decision-making behaviour and its
uncertainty factor, as well as the variability of the quantitative
information associated to the system environment, in particu-
lar, the autonomic cloud platform. In addition, the approach
can automatically synthesize for the Pareto-optimal solution.

We have illustrated the decision effectiveness and perfor-
mance of the approach by taking the cloud application deploy-
ment scenario into consideration. The results have shown the
potential benefit of the approach to improve its effectiveness.
Meanwhile, the presented performance behaviour illustrates a
reasonable scalability of the proposed approach.

Future work will focus on validating the approach by
integrating with a real-world environment setting. This is
significance to generalize the adaptation effectiveness and
efficiency in relation to the proposed approach. The outcome
of this evaluation can be useful to realize runtime decision
making approach for self-adaptive systems. Furthermore, the
approach can be extended to handle collaborative adaptation
with multiple autonomic managers. In the collaborative con-
text, a cooperative decision making cannot be avoided. Thus,
the issues such as inconsistency interaction has to be taken
into consideration.

ACKNOWLEDGMENT

A. Ismail acknowledges the previous support of Ministry
of Higher Education Malaysia (MOHE) for Post-doctoral
Scholarship and the support of Universiti Teknologi MARA,
Selangor, Malaysia.

REFERENCES

[1] J. Andersson, L. Baresi, N. Bencomo, R. de Lemos, A. Gorla, P. Inver-
ardi, and T. Vogel. Software Engineering Processes for Self-Adaptive
Systems. pages 51–75. Springer Berlin Heidelberg, 2013.

[2] J. Cámara, D. Garlan, B. Schmerl, and A. Pandey. Optimal planning
for architecture-based self-adaptation via model checking of stochastic
games. In Proceedings of the 30th Annual ACM Symposium on Applied
Computing - SAC ’15, pages 428–435, New York, New York, USA,
2015. ACM Press.

[3] J. Cámara, G. A. Moreno, and D. Garlan. Reasoning about Human
Participation in Self-Adaptive Systems. 2015.

[4] A. Celestini, A. Lluch Lafuente, P. Mayer, S. Sebastio, and F. Tiezzi.
Reputation-Based Cooperation in the Clouds. In J. Zhou, N. Gal-Oz,
J. Zhang, and E. Gudes, editors, Trust Management VIII: 8th IFIP WG
11.11 International Conference, IFIPTM 2014, Singapore, July 7-10,
2014. Proceedings, pages 213–220. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014.

[5] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. Au-
tomatic verification of competitive stochastic systems. Formal Methods
in System Design, 43(1):61–92, 8 2013.

[6] T. Chen, V. Forejt, M. Kwiatkowska, A. Simaitis, and C. Wiltsche. On
Stochastic Games with Multiple Objectives. pages 266–277. Springer,
Berlin, Heidelberg, 2013.

[7] T. Chen, M. Kwiatkowska, A. Simaitis, and C. Wiltsche. Synthesis
for Multi-objective Stochastic Games: An Application to Autonomous
Urban Driving. pages 322–337. Springer, Berlin, Heidelberg, 2013.

[8] B. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Di Marzo Serugendo,
S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai,
H. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. Müller,
S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and J. Whittle.
Software Engineering for Self-Adaptive Systems: A Research Roadmap
}Software Engineering for Self-Adaptive Systems. volume 5525, pages
1–26. Springer Berlin / Heidelberg, 2009.

[9] S.-W. Cheng, D. Garlan, and B. Schmerl. Architecture-based self-
adaptation in the presence of multiple objectives. pages 2–8. ACM,
2006.

[10] Z. Coker, D. Garlan, and C. Le Goues. SASS: Self-adaptation using
stochastic search. 2015.

[11] R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu,
B. Schmerl, G. Tamura, N. M. Villegas, and T. Vogel. Software
engineering for self-adaptive systems: A second research roadmap. pages
1–32. Springer, 2013.

[12] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[13] A. Klarl, P. Mayer, and R. Hennicker. Helena@Work: Modeling the
Science Cloud Platform. chapter Leveraging, pages 99–116. Springer
Berlin Heidelberg, 2014.

[14] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker. A
survey on engineering approaches for self-adaptive systems. Pervasive
and Mobile Computing, 2014.

[15] M. Kwiatkowska, D. Parker, and C. Wiltsche. PRISM-games 2.0: A
Tool for Multi-Objective Strategy Synthesis for Stochastic Games. In
TACAS, 2016.

[16] M. Z. Kwiatkowska. Model Checking and Strategy Synthesis for
Stochastic Games: From Theory to Practice (Invited Talk). In Y. R. Ioan-
nis Chatzigiannakis Michael Mitzenmacher and D. Sangiorgi, editors,
43rd International Colloquium on Automata, Languages, and Program-
ming (ICALP 2016), volume 55 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 4:1–4:18, Dagstuhl, Germany, 2016. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[17] R. Laddaga. Guest Editor’s Introduction: Creating Robust Software
through Self-Adaptation. IEEE Intelligent Systems, 1999.

[18] R. Laddaga. Active software. pages 11–26. Springer, 2001.
[19] P. Mayer, A. Klarl, R. Hennicker, M. Puviani, F. Tiezzi, R. Pugliese,

J. Keznikl, and T. Bure. The Autonomic Cloud: A Vision of Voluntary,
Peer-2-Peer Cloud Computing. In 2013 IEEE 7th International Confer-
ence on Self-Adaptation and Self-Organizing Systems Workshops, pages
89–94. IEEE, 9 2013.

[20] P. Mayer, J. Velasco, A. Klarl, R. Hennicker, M. Puviani, F. Tiezzi,
R. Pugliese, J. Keznikl, and T. Bureš. The Autonomic Cloud. In
M. Wirsing, M. Hölzl, N. Koch, and P. Mayer, editors, Software
Engineering for Collective Autonomic Systems: The ASCENS Approach,
pages 495–512. Springer International Publishing, Cham, 2015.

[21] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis.
Efficient resource provisioning in compute clouds via VM multiplexing.
In Proceeding of the 7th international conference on Autonomic com-
puting - ICAC ’10, page 11, New York, New York, USA, 2010. ACM
Press.

[22] G. Moreno, J. Cámara, D. Garlan, and B. Schmerl. Efficient Decision-
Making under Uncertainty for Proactive Self-Adaptation. In 13th
IEEE International Conference on Autonomic Computing (ICAC 2016),
Würzburg, Germany, 2016.

[23] G. A. Moreno, J. Cámara, D. Garlan, and B. Schmerl. Proactive self-
adaptation under uncertainty: a probabilistic model checking approach.
In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering - ESEC/FSE 2015, pages 1–12, New York, New
York, USA, 2015. ACM Press.

[24] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and
research challenges. ACM Transactions on Autonomous and Adaptive
Systems, 4(2):1–42, 5 2009.

[25] D. Serrano, S. Bouchenak, Y. Kouki, F. A. de Oliveira Jr., T. Ledoux,
J. Lejeune, J. Sopena, L. Arantes, and P. Sens. SLA guarantees for cloud
services. Future Generation Computer Systems, 54:233–246, 2016.

[26] M. Svoreová and M. Kwiatkowska. Quantitative verification and strategy
synthesis for stochastic games. European Journal of Control, 30:15–30,
2016.

[27] D. Sykes, W. Heaven, J. Magee, and J. Kramer. Exploiting non-
functional preferences in architectural adaptation for self-managed
systems. In Proceedings of the 2010 ACM Symposium on Applied
Computing - SAC ’10, pages 431–438, New York, New York, USA,
2010. ACM Press.

[28] D. Sykes, W. Heaven, J. Magee, and J. Kramer. Exploiting non-
functional preferences in architectural adaptation for self-managed sys-
tems. pages 431–438. ACM, 2010.

[29] H. Tajalli, J. Garcia, G. Edwards, and N. Medvidovic. PLASMA: A
Plan-based Layered Architecture for Software Model-driven Adaptation.
In Proceedings of the IEEE/ACM international conference on Automated
software engineering - ASE ’10, page 467, New York, New York, USA,
2010. ACM Press.

