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The computation of transient probabilities for continuous-time Markov chains often employs uniformisation,
also known as the Jensen’s method. The fast adaptive uniformisation method introduced by Mateescu et al.
approximates the probability by neglecting insignificant states, and has proven to be effective for quanti-
tative analysis of stochastic models arising in chemical and biological applications. However, this method
has only been formulated for the analysis of properties at a given point of time t. In this paper, we extend
fast adaptive uniformisation to handle expected reward properties which reason about the model behaviour
until time t, for example, the expected number of chemical reactions that have occurred until t. To show the
feasibility of the approach, we integrate the method into the probabilistic model checker PRISM and apply
it to a range of biological models. The performance of the method is enhanced by the use of interval splitting.
We compare our implementation to standard uniformisation implemented in PRISM and to fast adaptive
uniformisation without support for cumulative rewards implemented in MARCIE, demonstrating superior
performance.
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1. INTRODUCTION
Model checking of continuous-time Markov chains (CTMCs) [Baier et al. 2003] is an es-
tablished method that has been successfully used for quantitative analysis of a variety
of models, ranging from biochemical reaction networks [Heath et al. 2008; Mateescu
2011] to performance analysis of computer systems [Baier et al. 2010]. The analysis
typically involves computing the transient probability of the system residing in a state
at a given time t, or, for a model annotated with rewards, the expected reward that can
be obtained. Transient probabilities for finite-state CTMCs can be computed through
the uniformisation method, also known as the Jensen’s method. Uniformisation in-
volves discretising the CTMC with respect to a fixed rate, which enables reduction of
the transient probability calculation to an infinite summation of Poisson distributed
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steps of the derived discrete-time Markov chain, and approximating the probability by
truncating to a finite summation. The number of terms required can be precomputed
for a specified precision using the Fox-Glynn method [Fox and Glynn 1988].

Many biochemical reaction networks, however, induce CTMC models whose state
space is potentially infinite. To handle such cases, [Mateescu 2011] introduced
continuous-time propagation models, a generalisation of continuous-time Markov
chains. The idea of this model is to propagate the (probability or expectation) mass
values along the system execution. In order to analyse propagation models, which can
be infinite, the fast adaptive uniformisation (FAU) method, a generalisation of adap-
tive uniformisation [van Moorsel and Sanders 1994], was formulated [Mateescu et al.
2010]. Similarly to standard uniformisation, FAU applies discretisation, except that it
does so dynamically, starting from some initial condition wrt to a sequence of rates (a
birth process) rather than a single rate, and truncates the computation of the prob-
ability to a finite summation, although the number of summation terms cannot be
precomputed. To deal with the unbounded state space, FAU explores only the relevant
states, ignoring the probability of the insignificant states. Thus, the number of states
to be maintained in memory can be kept small, at a cost of some loss of precision. Im-
portantly, the FAU method can also speed up the analysis of very large finite models.

Fast adaptive uniformisation was implemented [Didier et al. 2010] and applied suc-
cessfully on a variety of biological systems [Didier et al. 2010; Mateescu 2011], but for
transient probabilities and a limited set of reward-based properties only. Many use-
ful quantitative analyses involve the computation of expected rewards, which can be
instantaneous (incurred at time t) or cumulated (until time t). An example of an instan-
taneous reward property is the number of molecules of a given species at time 100s,
and of a cumulative property the expected number of reactions that occurred for the
duration of 100s. Although one can express cumulative reward properties by adding
additional species to the model, for example by increasing the reward by 1 every time
a reaction occurs, this has the disadvantage of introducing an additional dimension
into the model and, as we show later, can severely affect the performance, resulting in
higher memory requirement and a consequent loss of precision.

In this paper, we extend fast adaptive uniformisation for CTMCs to allow for ef-
ficient computation of cumulative reward properties, thus avoiding the overhead of
adding the additional dimension. We cast our results in the framework of propagation
models of [Mateescu 2011]. We implement the method, including the reward exten-
sion, and integrate it into the probabilistic model checker PRISM [Kwiatkowska et al.
2011]. To show the practical applicability of FAU, we have applied it to a range of case
studies from biology, demonstrating superior performance compared to existing tech-
niques. We also implement interval splitting [van Moorsel and Wolter 1998], which in-
volves applying FAU to smaller sub-intervals instead of a single, large interval, which
is known to benefit uniformisation and the analysis of stiff models. Finally, we bench-
mark our tool against the implementation of FAU in the tool MARCIE and discuss the
differences in performance.

1.1. Related Work
FAU generalises adaptive uniformisation [van Moorsel and Sanders 1994] by acceler-
ating the discretisation and neglecting states with insignificant probability. Standard
uniformisation is implemented in a number of tools, including PRISM, which we en-
hance with the FAU functionality in this paper. SABRE [Didier et al. 2010] is the
first tool to implement FAU, without cumulative rewards. Both PRISM and SABRE
support models written in Systems Biology Markup Language (SBML) as input, in
addition to their native modelling languages. SABRE is a stand-alone tool available
for download or as a web interface; it additionally offers deterministic approxima-
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tions using differential equations (by the Runge-Kutta fourth order method), which
is faster and leads to accurate results for large numbers of molecules. PRISM does
not support deterministic approximations, but provides extensive support for temporal
logic model checking, including both probabilistic and reward properties [Kwiatkowska
et al. 2007]. These are appropriate for molecular networks where some species occur
in small numbers, or the encoding of spatial information is needed, as we consider
in this paper. PRISM also provides statistical model checking and Gillespie simula-
tion [Kwiatkowska et al. 2011]. The tool MARCIE [Schwarick et al. 2011] implements
FAU, but does not support cumulative rewards for the FAU method. In addition to FAU,
MARCIE also supports a symbolic method called Interval Decision Diagrams, which
is more efficient than Binary Decision Diagrams in some cases [Schwarick and Heiner
2009], but not yet integrated with their FAU implementation. Further tools that sup-
port reward properties but not FAU include, for instance, MÖBIUS [Clark et al. 2001]
and MRMC [Katoen et al. 2011]. MÖBIUS allows one to express measures closely re-
lated to the ones we consider here, such as the average, instantaneous, cumulative, or
time-averaged values, or their variance. However, MÖBIUS and MRMC also support
measures that are distinct from the ones we consider here, namely, reward-bounded
properties, where the probability of paths whose total reward value must be below a
given bound.

A related approach to the analysis of transient properties of CTMCs with large state
spaces is finite state projection (FSP) [Munsky and Khammash 2006], which has been
specifically designed for biological models. In this approach, similarly to FAU, the start-
ing point is a set of initial states that have a significant probability at time zero. Then,
the FSP algorithm adds states which are reachable from the current set of states. In its
simplest version, these states are just the new states reachable within one transition
from the current set of states. However, more elaborate ways of deciding which states
to add are possible. The state successor computation is repeated until the probability
that, within the given time bound, one reaches states outside the current set of states
is negligible. Thus, an approximation of the transient property of interest is computed
in the finite projection of the state space obtained this way.

In contrast to FAU, the FSP does not discard states that have negligible probability.
The disadvantage of this is that potentially many more states have to be stored in
memory. On the other hand, not discarding states allows for a simpler representation
of state to state transitions. It also allows one to handle nested CSL formulas [Hahn
et al. 2009; Spieler et al. 2014], for which FAU does not seem appropriate. The reason
is that, when discarding a state, the information about which subformulae of the CSL
formula under consideration are fulfilled is lost. This information might, however, be
required to decide the validity of the formula under consideration.

One can also apply interval splitting, a method to divide the analysis for a given
time bound t into several analyses for time bounds t1, . . . , tn with

∑
i ti = t [Munsky

and Khammash 2007]. This way, one can discard states with negligible probabilities
after the analysis of each ti, so as to reduce memory consumption in a way similar to
how this is done in FAU. Further improvements of the method have been considered
in [Munsky and Khammash 2008; Tapia et al. 2012].

2. PRELIMINARIES
We begin by giving an overview of the main definitions and results based on
[Kwiatkowska et al. 2007; Didier et al. 2010; Mateescu 2011]. A continuous-time
Markov chain (CTMC) is given by a set of discrete states S and the transition rate
matrix R : S × S → R≥0 where R(s, s) = 0 for all s ∈ S. The rate R(s, s′) determines
the delay before the transition can occur, i.e. the probability of this transition being

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 F. Dannenberg, E. M. Hahn and M. Kwiatkowska

0 . . . 98 99 100 101 102 . . .
9.7 9.8 9.9 10.0 10.1 10.2

11.3311.2211.1111.0010.8910.780.11

0

Fig. 1: Birth-death process.
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Fig. 2: Birth process derived from the CTMC in Fig. 1.

triggered within t time-units is 1−e−R(s,s′)·t. Let E(s)
def
=
∑
s′∈S R(s, s′) be the exit rate

and define the generator matrix Q by Q def
= R− diag(E), where diag(E) is the S×S ma-

trix with E on its diagonal and zero everywhere else. Then πt : S → R≥0, the transient
probability vector at time t, can be expressed as πt = π ·eQt given the initial probability
vector π.

We cast our method in the framework of continuous-time (linear) propagation models
[Mateescu 2011, Section 2.3.3], which generalise continuous-time Markov chains. We
now recall the relevant results from [Mateescu 2011].

Definition 2.1 (Continuous-time propagation model). A continuous-time propaga-
tion model (CTPM) is a tupleM = (S, π,R), where

— S is a countable or finite set of states,
— π : S → R≥0 where |{s ∈ S | π(s) > 0}| <∞ is an initialisation vector, and
—R : S × S → R≥0 is a transition matrix, such that for all s ∈ S we have |{s′ ∈ S |
R(s, s′) > 0}| <∞.

The transition matrix R assigns a rate R(s, s′) to each pair of states, as for CTMCs,
and the initialisation vector π assigns an initial mass value π(s) to each state s ∈ S.
There are only finitely many states to which a positive mass is assigned initially. The
models we consider are finitely branching, that is, for each state there are only finitely
many states to which this state has a positive transition rate.

A CTPM is a CTMC if
∑
s∈S π(s) = 1 and R(s, s) = 0 for all s ∈ S.

Example 2.2 (Continuous-time Markov chain). In Fig. 1, we depict a CTPM, a so-
called birth-death process [Evans et al. 2008]. Each state s is a natural number de-
scribing the number s of molecules of a given species. In each state s, a new molecule
can appear with rate λ · s, and disappear with rate µ · s for λ def

= 0.1, µ
def
= 0.11. We thus

haveR(s, s+1)
def
= λ ·s for all s ≥ 0,R(s, s−1)

def
= µ ·s for s ≥ 1 andR(·, ·) def

= 0 otherwise.
We assume that π(100)

def
= 1 and for the other states π(·) def

= 0. Thus, the model is a
CTMC.

To reason about the timed behaviour of a CTPM, we now define its generator matrix
which generalises that for CTMCs.

Definition 2.3 (Generator matrix). The generator matrix Q(M) : S × S → R of a
CTPMM is defined so that

—Q(M)(s, s′)
def
= R(s, s′) for s, s′ ∈ S with s 6= s′, and

—Q(M)(s, s)
def
= R(s, s)−

∑
s′∈S,
s′ 6=s

R(s, s′).
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The propagation process, which propagates probability mass or expectation values,
is then defined as follows. Note that, for CTMCs, πt(s) is the (transient) probability
that the model resides in state s at time t.

Definition 2.4 (Propagation process). Given a CTPM M = (S, π,R), the propaga-
tion process at time t, πt(M) : S → R, is defined as the solution of the differential
equation

π̇(s′)
def
=
∑
s∈S

π(s) ·Q(M)(s, s′)

at time t, for s′ ∈ S, given the initial value π.

The standard uniformisation [Jensen 1953] method for CTMCs splits the CTMC into
a discrete-time Markov chain (DTMC) and a Poisson process as follows. Define the
DTMC P by P def

= I+ 1
Λ ·Qwhere Λ is the uniformisation rate such that Λ ≥ maxs∈SE(s).

Then πt can be computed as
∑∞
n=0 πt(Ψ

Λ)(n) · τn(M), where πt(ΨΛ)(n) is the value of
the Poisson distribution with rate Λ · t at point n, and τn(M) = τn−1(M) · P for n > 0,
τ0(M) = π0. For a given precision ε, the summation can be truncated using the Fox-
Glynn method [Fox and Glynn 1988].

The fast adaptive uniformisation (FAU) [Didier et al. 2010; Mateescu 2011] is a vari-
ant of the adaptive uniformisation [van Moorsel and Sanders 1994], which splits the
CTMC into a DTMC and a birth process. For an infinite sequence Λ = (Λ0,Λ1, . . .)
of rates with Λn ∈ R≥0 for all n ∈ N, the birth process is defined as the CTMC
ΦΛ def

= (S, π,R), where

— S
def
= N,

— π(0)
def
= 1 and π(·) def

= 0 otherwise, and
—R(n, n+ 1)

def
= Λn for n ∈ N and R(·, ·) def

= 0 otherwise.

Note that the Poisson process is a special case of the birth process with constant rates
Λ = (Λ,Λ, . . .).

Transient probabilities of birth processes can be approximated efficiently using spe-
cialised techniques [Mateescu 2011, Section 4.3.2, Solution of the birth process]. This
is possible by applying standard uniformisation [Jensen 1953] in a way which takes
advantage of the particular structure of the process. Finally, transient probabilities of
general CTPMs can be computed as follows, where we reformulate Pn in terms of the
rate matrix, rather than the generator matrix used in [Mateescu 2011].

THEOREM 2.5 (SOLVING PROPAGATION MODELS USING A BIRTH PROCESS). Con-
sider

— a CTPMM = (S, π,R),
— an infinite sequence of subsets S = (S0, S1, . . .) with Sn ⊆ S denoting active states,
— an infinite sequence Λ = (Λ0,Λ1, . . .) with Λn ≥ sups∈Sn

∑
s′∈S,
s′ 6=s

R(s, s′) of uniformisa-

tion rates,
— probability matrices Pn(M) : S × S → R≥0 for n ∈ N, where for s, s′ ∈ S we have

Pn(M)(s, s′)
def
=


R(s,s′)

Λn
if s 6= s′, and

R(s,s′)
Λn

+ 1−
∑

s′′∈S,
s′′ 6=s

R(s,s′′)
Λn

otherwise,
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— discrete-time distributions τn(M) : S → R≥0 for n ∈ N with

τn(M)(s′)
def
=

{
π(s′) if n = 0, and∑
s∈S τn−1(M)(s) · Pn−1(s, s′) otherwise.

We further require that {s ∈ S | τn(M)(s) > 0} ⊆ Sn for n ∈ N.
Then we have that, at time t, for each s ∈ S:

πt(M)(s) =

∞∑
n=0

πt(Φ
Λ)(n) · τn(M)(s).

The fast adaptive uniformisation method [Mateescu 2011] builds on the result above
and works as follows. Starting with the initial distribution at step n = 0, at each step
n the FAU explores a subset Ŝn of the states Sn. The sets Ŝn are constructed by taking
Ŝn−1, adding the successor states {s′ ∈ S | ∃s ∈ Ŝn−1. R(s, s′) > 0} of this set, and
discarding states s with τn(M)(s) < δ, where δ is a fixed precision threshold. This
process is repeated until step m, for instance so that (1 −

∑m
n=0 πt(Φ

Λ)(n)) < ε. Thus,
we add the probability from the birth process at each step, and stop the state space
exploration as soon as this sum is at least 1−ε. In contrast to standard uniformisation,
where the Fox-Glynn [Fox and Glynn 1988] algorithm can be utilised, we do not have
an a priori step bound, but are still able to decide in a straightforward way when the
infinite sum can be safely truncated.

Definition 2.6 (Fast Adaptive Uniformisation). Let M, S = (S0, S1, . . .), and Λ =
(Λ0,Λ1, . . .) be as in Theorem 2.5. Further, consider

— a truncation point m ∈ N,
— a finite sequence of subsets Ŝ = (Ŝ0, . . . , Ŝm) with Ŝn ⊆ Sn denoting active states for
n ∈ {1, . . . ,m},

— probability matrices P̂n(M) : S × S → R≥0 for n ∈ {0, . . . ,m} where

P̂n(M)(s, s′)
def
=

{
Pn(M)(s, s′) if s ∈ Ŝn, and
0 otherwise,

— discrete-time distributions τ̂n(M) : S → R≥0 for n ∈ N with

τ̂n(M)(s′)
def
=

{
π(s′) if n = 0, and∑
s∈S τ̂n−1(M) · P̂n−1(s, s′) otherwise.

We define the fast adaptive uniformisation (FAU) value at time t for each s ∈ S as

π̂t(M, Ŝ,Λ)(s)
def
=

m∑
n=0

πt(Φ
Λ)(n) · τn(M)(s).

Example 2.7 (Fast Adaptive Uniformisation). We sketch how one can perform FAU
for the CTMC from Example 2.2 according to Definition 2.6 and Theorem 2.5: only for
state s = 100 the initial distribution is positive, so we can use S0

def
= {100}. Then, we use

Sn
def
= {max{0, 100− n}, . . . , n} and Λn

def
= (λ+ µ) · n. We chose these sets in such a way

that Sn contains all states which can have a positive probability in the discrete-time
probability distribution τn(M). The corresponding birth process is sketched in Fig. 2.

In Fig. 3, we depict Sn together with the relevant parts of the matrices Pn(M) for
n = 0, 1, 2, . . . ,∞ (rounding-off the numbers). For each step n, we label each state s
with τn(M)(s). For n = 0 we have τn(M)(100) = 1 and τn(M)(s) = 0 for all s 6= 100
according to the initial distribution of the Markov chain. We have P0(M)(100, 99) =
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R0(M)(100,99)
Λ0

= 11
10+11 ≈ 0.524, P0(M)(100, 101) ≈ 0.476, P0(M)(100, 100) = 0

10+11 +

1 − ( 10
10+11 + 11

10+11 ) = 0. According to the definition of S0, we have P0(M)(s, s′) = 0

otherwise. Therefore, we have τ1(M)(99) ≈ 1 · 0.524 = 0.524, τ1(M)(101) ≈ 0.476, and
τ1(M)(s) = 0 otherwise. The subsequent probability distributions are computed in
the same way. For instance, we have τ2(M)(100) = τ1(M)(100) · P1(M)(100, 100) +
τ1(M)(99) · P1(M)(99, 100) + τ1(M)(101) · P1(M)(101, 100) ≈ 0 · 0.010 + 0.524 · 0.467 +
0.476 · 0.524 ≈ 0.493.

For t = 0.1 we provide the transient probabilities πt(Φ
Λ)(n) of being in the nth

state of the birth process. We also provide the first n summands of π0.1(M)(100) =∑∞
n=0 π0.1(ΦΛ)(n) · τn(M)(100) (probability to reside in state 100 at time t = 0.1). For

instance, we have
∑2
n=0 π0.1(ΦΛ)(n)·τn(M)(100) ≈ 0.122·1+0.254·0+0.267·0.493 ≈ 0.254.

State s = 0 is absorbing, that is, once entered it cannot be left, and rates leading
to a decrease in molecule count are higher than those leading to an increase. Thus,
in the last line (“Step ∞”) we see that, as n increases, the probability concentrates on
the state s = 0. Thus, we can discard states with a high number of molecules from the
reduced state sets Ŝn, while retaining a sufficient amount of the total probability.

We now define instantaneous rewards, which can be used to express expected reward
properties incurred at a given time. We annotate the models with state rewards.

Definition 2.8 (State reward structure). A state reward structure for a CTMCM =
(S, π,R) is a function r: S → R≥0.

Definition 2.9 (Instantaneous rewards). Consider a CTMC M = (S, π,R) with
state reward structure r: S → R≥0 and a time point t ∈ R≥0. The instantaneous re-
ward is defined as

It(M, r)
def
=
∑
s∈S

πt(M)(s) · r(s).

We show that instantaneous rewards can be easily accommodated within the FAU
method, and we can approximate the expected mass value by terminating the state
space exploration using a criterion similar to the probability mass calculation in [Ma-
teescu 2011].

Definition 2.10 (Instantaneous reward approximation). Let M, S = (S0, S1, . . .),
and Λ = (Λ0,Λ1, . . .) be as in Theorem 2.5 and let Ŝ be as in Definition 2.6. Then
we define

It(M, r, Ŝ,Λ)
def
=
∑
s∈S

π̂t(M,S,Λ)(s) · r(s).

COROLLARY 2.11 (ERROR BOUNDS FOR FAU). Consider a CTMC M = (S, π,R)
for which we have the uniformisation rates Λ (cf. Theorem 2.5) and a state reward
structure r. Consider m ∈ N, Ŝ, and τ̂(M) as in Definition 2.6. Set Λ

def
= (Λ,Λ, . . .). Then

if

max
s∈S

r(s) ·

(
1−

m∑
n=0

πt(Φ
Λ)(n)

)
<
ε

2
and max

s∈S
r(s) ·

1−
∑
s∈Ŝm

τ̂m(M)(s)

 <
ε

2

it follows that

It(M, r)− It(M, r, Ŝ,Λ) < ε.
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Step 0

Step 1

Step 2

Step∞

0 1 0

0.476

0.524

0 0.524 0 0.476 0

0.467 0.471 0.476

0.5240.5190.513

0.0100.020

0 0.269 0.010 0.493 0 0.227 0

0.457 0.462 0.467 0.471 0.476

0.5240.5190.5130.5080.010

0.039 0.029 0.020 0.020

1 . . . 0 0 0 0 0 . . .

π0.1(ΦΛ)(0) ≈ 0.122

π0.1(ΦΛ)(1) ≈ 0.254

π0.1(ΦΛ)(2) ≈ 0.267

π0.1(ΦΛ)(∞) = 0

∑0
n=0 π0.1(ΦΛ)(n) · τn(M)(100) ≈ 0.122

∑1
n=0 π0.1(ΦΛ)(n) · τn(M)(100) ≈ 0.122

∑2
n=0 π0.1(ΦΛ)(n) · τn(M)(100) ≈ 0.254

∑∞
n=0 π0.1(ΦΛ)(n) · τn(M)(100) ≈ 0.299

Fig. 3: Applying Fast Adaptive Uniformisation to the CTMC from Fig. 1.

PROOF. Part of the expected reward value is lost due to the approximation of the
infinite sum. This is accounted for by first inequality. By discarding states while explor-
ing the state space, we lose further mass. This is accounted for by the second inequality.
Adding up the maxima of the two errors, we can bound the error.

Example 2.12 (FAU for Instantaneous Rewards). Consider the CTMC from Exam-
ple 2.2 with a reward structure r assigning to each state s the number of molecules
s. When using the transient probability values computed in Example 2.7, for the
computation of the exact values we have I0.1(M, r) =

∑
s∈S π̂t(M,S,Λ)(s) · r(s) ≈

. . .+ 100 · 0.299 + . . . ≈ 99.900.

3. CUMULATIVE REWARDS
In this section, we extend the FAU method to reason about properties of the behaviour
of a CTMC model cumulating the rewards until a given point of time. The correct-
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ness of the method is proved using the framework of CTPMs [Mateescu 2011], where
cumulative rewards were not considered.

For a given CTMC, we first extend its state space by adding time-accumulating
states to remember how much time was spent in a specific state, and then, noting that
the time-extended CTPM is not a CTMC, show how the expected reward computation
can be approximated.

Definition 3.1 (Time-extended CTPM). Given a CTMC M = (S, π,R), the time-
extended CTPM is defined as

ext(M)
def
= (Sext, πext,Rext), where

— Sext
def
= S ] Sacc, where for each s ∈ S we have exactly one corresponding time-

accumulating sacc ∈ Sacc, that is, Sacc
def
= {sacc | s ∈ S},

— πext(s)
def
= π for s ∈ S and πext(·)

def
= 0 otherwise, and

— the transition matrix Rext : Sext×Sext → R≥0 is defined such that, for sext, s
′
ext ∈ Sext,

we have

Rext(sext, s
′
ext)

def
=


R(sext, s

′
ext) if sext, s

′
ext ∈ S and sext 6= s′ext,

1 if sext = s ∈ S and s′ext ∈ {sext, sacc},
0 otherwise.

We now use time-extended CTPMs to prove the central theorem of the paper. This is
achieved by first approximating the residence time, and then the cumulative reward,
by considering the reward per time unit of residing in a given state. We use the mixed
birth process probability ΨΛ(n) = 1

Λn
·
∑∞
i=n+1 πt(Φ

Λ)(i), which denotes the probability
that more than n state changes happen within time t in the birth process, divided by
the nth uniformisation rate. This is used to collect the time spent in a given state, as
opposed to the probability πt(ΦΛ)(i) to be in a state at a given point of time.

THEOREM 3.2 (RESIDENCE TIME). Consider a CTMC M = (S, π,R) and let
ρt(M) : S → R≥0 be defined as

ρt(M)(s)
def
=

t∫
0

πu(s) du

for s ∈ S. Then we have

ρt(M)(s) =

∞∑
n=0

ΨΛ(n) · τn(M)(s),

for s ∈ S, τ(M) and Λ as in Theorem 2.5 and ΨΛ(n)
def
= 1

Λn
·
∑∞
i=n+1 πt(Φ

Λ)(i).

PROOF. Assume ext(M) = (Sext, πext,Rext). Then, by definition of the structure of
the time-extended CTPM, we have for s ∈ S that

πt(M)(s) = πt(Mext)(s), and ρt(M)(s) = πt(Mext)(sacc).

By the structure of the time-extended CTPM, we obtain

τ0(Mext)(sacc) = 0,

τn+1(Mext)(sacc) =
1

Λn
· τn(Mext)(s) + τn(Mext)(sacc) =

1

Λn
· τn(M)(s) + τn(Mext)(sacc)
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and thus

τn(Mext)(sacc) =

n−1∑
i=0

1

Λi
· τi(M)(s).

From this and by Theorem 2.5 we have

πt(Mext)(sacc) =

∞∑
n=0

πt(Φ
Λ)(n) · τn(Mext)(sacc)

=

∞∑
n=0

πt(Φ
Λ)(n) ·

n−1∑
i=0

1

Λi
· τi(M)(s) =

∞∑
n=0

n−1∑
i=0

1

Λi
· τi(M)(s) · πt(ΦΛ)(n)

=

∞∑
i=0

∞∑
n=i+1

1

Λi
· τi(M)(s) · πt(ΦΛ)(n) =

∞∑
i=0

(
1

Λi
·
∞∑

n=i+1

πt(Φ
Λ)(n)

)
· τi(M)(s)

=

∞∑
i=0

ΨΛ(i) · τi(M)(s) =
∞∑
n=0

ΨΛ(n) · τn(M)(s).

The above theorem splits the behaviour of a CTMC into a birth process and a discrete-
time process that determines the time spent in specific states of the CTMC. Thus, we
can now apply the FAU method to compute cumulative reward properties. To do this,
we accumulate rewards for being in a state over time. We stress that time-extended
CTPMs are used here only in the proof, and never constructed in our method.

Transition rewards rt : S × S → R≥0 are obtained for moving from one state to an-
other. We do not explicitly consider transition rewards for CTMCs here. However, given
state rewards rand transition rewards rt, we can define cumulative reward rates r′ as
r′(s)

def
= r(s) +

∑
s′∈S R(s, s′) · rt(s, s′). For the properties under consideration, this new

reward structure is equivalent to using transition rewards, as shown in [Kwiatkowska
et al. 2006, Equation 6].

Definition 3.3 (Cumulative rewards). Consider a CTMC M = (S, π,R) with state
reward structure r: S → R≥0 and a time duration t ∈ R≥0. The cumulative reward
value is defined as

Ct(M, r)
def
=

t∫
0

∑
s∈S

πu(M)(s) · r(s) du.

We now use the results from Theorem 3.2 to compute the reward obtained until a
given point of time. The following corollary follows directly from Theorem 3.2 and can
be used to approximate cumulative rewards.

COROLLARY 3.4 (COMPUTING REWARDS). For a CTMC M = (S, π,R) with state
reward structure r: S → R≥0 and a time duration t ∈ R≥0, we have

Ct(M, r) =
∑
s∈S

ρt(M)(s) · r(s) =

∞∑
n=0

∑
s∈S

ΨΛ(n) · τn(M)(s) · r(s).

Definition 3.5 (Cumulative reward approximation). Let M, S = (S0, S1, . . .), and
Λ = (Λ0,Λ1, . . .) be as in Theorem 2.5 and let m ∈ N and Ŝ be as in Definition 2.6. Then
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we define

Ct(M, r, t, Ŝ,Λ)
def
=

m∑
n=0

∑
s∈S

ΨΛ(n) · τ̂n(M)(s) · r(s).

Calculating the cumulative rewards is of similar complexity to calculating the instan-
taneous rewards. After each step n, we multiply the probability in the discrete-time
process by the corresponding cumulative reward and the value from Ψ, and then sum
up the values obtained this way. The time overhead to compute the accumulated re-
ward values is negligible. More importantly, it is not necessary to extend the state
space, and hence the space complexity compared to FAU is not increased.

The corollary can be seen as a generalisation of a previous result [Kwiatkowska et al.
2006, Theorem 1], where the computation of cumulative reward-based properties is
also considered. However, the analysis in [Kwiatkowska et al. 2006] relies on complete
exploration of the state space and uses the special case Λ = (Λ,Λ, . . .), which reduces
the birth process to a Poisson process.

The computation of the error and the bounds on the number of steps is more involved
for cumulative rewards than for instantaneous rewards, as shown in Corollary 2.11.
The precision which can be achieved depends on the structure of the CTMC and the
state rewards. We often have models in which, for each state, the sum of the rates to
new states (further away from initial states) is bounded. We remark that this does
not restrict the rates back to previously visited states. For this class of models, which
includes many realistic examples as shown below, we derive error bounds as follows.

COROLLARY 3.6 (ERROR BOUND CUMULATIVE). Consider a CTMCM = (S, π,R)
for which we have a fixed Λ so that for each n ∈ N and s ∈ Sn (cf. Theorem 2.5) we have
that

∑
s′∈Sn+1

R(s, s′) ≤ Λ. Further, consider a state reward structure rso that we have
fixed constants c, d ∈ R≥0 where for all n ∈ N and s ∈ Sn we have r(s) ≤ c+dn. Consider
m ∈ N, Ŝ, and τ̂(M) as in Definition 2.6. Set Λb

def
= (Λ,Λ, . . .) and B def

= t · (c+ d+ dΛt). If

B −
m∑
n=0

(c+ dn) ·ΨΛb(n) <
ε

2
and B ·

1−
∑
s∈Ŝm

τ̂m(M)(s)

 <
ε

2

then we have

Ct(M, r)− Ct(M, r, Ŝ,Λ) < ε.

PROOF. When applying the FAU method, the worst case of reward loss is when we
have the birth process ΦΛb = (N, π,R) with reward structure r, so that, for all n ∈ N,
we have r(n)

def
= c+ dn. Denote the total accumulated reward until time t for this model

by B. Thus, we lose no more reward than B −
∑m
n=0(c + dn) · ΨΛb(n) in case we use

Ŝn = Sn and perform m steps in the FAU.
To take into account the loss of rewards from using Ŝn ⊆ Sn, we consider the total

probability lost (1−
∑
s∈Ŝm

τ̂m(M)(s)). In the worst case, this probability was already
lost at the beginning. In this case, we lose up to B · (1−

∑
s∈Ŝm

τ̂m(M)(s)).
By adding up the two sources of error, we obtain the result.

If the rates or rewards are increasing more quickly, e.g., if we have a quadratic increase
in the rewards, that is, r(s) ≤ c+dn2 for s ∈ Ŝn, the bounds on the error can be obtained
using similar reasoning for a different value of B. Because of the simple structure of
birth processes, it is possible to quickly approximate

∑m
n=0(c + dn) · ΨΛ(n) to find the

value m to terminate the approximation in the worst case.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January YYYY.



A:12 F. Dannenberg, E. M. Hahn and M. Kwiatkowska

Example 3.7 (FAU for Cumulative Rewards). We reconsider the CTMC from Ex-
ample 2.2 for which we computed transient probabilities in Example 2.7. We are inter-
ested in the expected total number of changes to the number of molecules until time
t = 0.1, and thus assign a reward of 1 to each state change. As discussed, we transform
these transition rewards into a state reward structure r. For instance, state s = 100
has two transitions with rates 10 and 11, both with reward of 1, so that the state re-
ward here is 10 · 1 + 11 · 1 = 21. We have ΨΛ(0) ≈ 0.042, ΨΛ(1) ≈ 0.029, ΨΛ(2) ≈ 0.017.
To compute cumulative rewards, according to Corollary 3.4 we can proceed as follows:
after each step n of Example 2.7 and Fig. 3, for each s ∈ Sn (s ∈ Ŝn) we compute the
product ΨΛ(n) · τ̂n(M)(s) · r(s) and build the sum v(n) =

∑
s∈S ΨΛ(n) · τ̂n(M)(s) · r(s) of

these values. States s ∈ S \ Sn need not be considered, because for those τn(M)(s) = 0.
This value v(n) is then added to the partially computed total cumulative reward. In
the example, we have v(0) ≈ 0.042 · 1 · 21, v(1) ≈ 0.029 · (0.524 · 20.79 + 0.476 · 21.21),
v(2) = 0.017 · (0.269 · 20.58 + 0.010 · 20.79 + 0.493 · 21 + 0.227 · 21.42). Finally, we obtain
C0.1(M, r) ≈ 2.099.

4. INTERVAL SPLITTING
So far we considered FAU for a single time horizon. However, it is often advantageous
to consider several smaller time intervals instead, analysing each of them and com-
bining the results. This procedure can improve performance and enhance the ability
of FAU to deal with stiff models. Interval splitting is known to benefit uniformisation-
based methods, as described in [van Moorsel and Wolter 1998], and our experimental
results in Section 5 confirm this for two out of three case studies. We argue that inter-
val splitting should be considered an integral part of the FAU method.

LEMMA 4.1 (INTERVAL SPLITTING). Consider

— a time duration t > 0,
— time durations ti > 0 for i ∈ {1, . . . , n}, n ∈ N, with t =

∑
i ti,

— a CTPMM = (S, π,R),
— CTPMsMi = (S, πi,R) such that π1 = π, and πi+1 = πiti(Mi) (cf. Definition 2.4),
— a state reward structure r: S → R≥0.

Then we have that

— πt(M) = πtn(Mn),
— It(M, r) = Itn(Mn, r),
— Ct(M, r) =

∑
i Cti(Mi, r).

The lemma follows from Definition 2.4, Definition 2.9, and Definition 3.3 by consid-
ering πt(·) as the solution to a differential equation. The transient probabilities and
reward values are found by computing them first for the time bound t1. Then we pro-
ceed to calculate them for t2, but use the transient probabilities at time t1 as the initial
distribution. This procedure is repeated until tn is reached. For cumulative rewards,
we also have to compute the reward accumulated during each of the intervals.

The transient probabilities obtained this way are the same as the ones we would
have obtained if we had performed a single analysis up to t. For the instantaneous
rewards, the rewards are weighted by the transient probabilities as in Definition 2.9,
while the cumulative rewards are obtained as the sum

∑
i Cti(Mi, r). To use FAU in

combination with interval splitting, we have to take into account the error introduced
by FAU in each ti.

COROLLARY 4.2. Consider

— a time duration t > 0,
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— time durations ti > 0 for i ∈ {1, . . . , n}, n ∈ N, with t =
∑
i ti,

— a CTPMM = (S, π,R),
— CTPMsMi = (S, πi,R) such that π1 = π, and πi+1 = π̂iti(Mi, Ŝ

i,Λi), where π̂i, Ŝi,Λi

are as π̂, Ŝ,Λ in Definition 2.6,
— a state reward structure r: S → R≥0.

Assume that we have error bounds of ε
2n according to Corollary 2.11 and Corollary 3.6

for each ti, i ∈ {1, . . . , n}, and further that

max
s∈S

r(s) ·

(∑
s∈S

πi(s)−
∑
s∈S

πi+1(s)

)
<

ε

2n
.

Then we have

— It(M, r)− Itn(Mn, r, Ŝ
n,Λn) < ε,

— Ct(M, r)−
∑
i Cti(Mi, r, Ŝ

i,Λi) < ε.

PROOF. From the above we find maxs∈S r(s) ·
(
1−

∑
s∈S πn(s)

)
< ε

2 and conclude the
correctness of instantaneous rewards. For the cumulative rewards, we have an error
of no more than ε

2 from the loss of cumulative rewards during the individual analyses
for each ti. Note that the values of initial distributions πi do not necessarily add up to
1. By the above equation, we can bound these errors to ε

2 . Thus, the total error stays
below ε.

Example 4.3 (Interval splitting). We revisit the birth-death process of Example 2.2
and compute the average number of molecules at time 0.1, given initial distribution
π(100) = π1(100) = 1. First, we compute the transient probability distribution at time
0.05, for which we find π1

0.05(M1)(99) ≈ 0.221, π1
0.05(M1)(100) ≈ 0.453, π1

0.05(M1)(101) ≈
0.199. Then, we use π2 = π1

0.05(M) as the initial distribution of the second analy-
sis. This results in the transient probability values π0.1(M)(99) = π2

0.05(M2)(99) ≈
0.225, π0.1(M)(100) = π2

0.05(M2)(100) ≈ 0.299, π0.1(M)(101) = π2
0.05(M2)(101) ≈ 0.202,

equal to those in Example 2.12. The same instantaneous reward I0.1(M, r) ≈ 99.900 is
found as well.

We now consider the cumulative reward structure of Example 3.7 and again split the
time 0.1 into two intervals of length 0.05 each. The accumulated reward is computed
for both intervals. In the first part a reward of C0.05(M1, r) ≈ 1.050 is accumulated, and
in the second part we accumulate C0.05(M2, r) ≈ 1.049. The total reward is given by
C0.1(M, r) = C0.05(M1, r) + C0.05(M2, r) ≈ 2.099, which matches Example 3.7.

As per [van Moorsel and Wolter 1998], the number of matrix-vector multiplications in
the i-th interval, Ni, depends on the number of jumps in the birth process and satisfies
1 −

∑Ni

n=0 πt(Φ
Λ)(n) < ε

2 . The total number of required matrix-vector multiplications
can therefore be minimised with respect to the splitting. For the FAU method specif-
ically, the cost of the matrix-vector multiplication changes per iteration, and depends
on the number of significant states. The cost of solving the birth process ΦΛ has to
be considered as well. The birth process itself is solved using standard uniformisation
with a uniformisation rate λ ≥ sup{Λ0,Λ1, . . . ,Λn}. We note that the uniformisation
rate for the birth process can be significantly larger than the adaptive uniformisation
rate, which occurs when states with large exit rates become insignificant. Depending
on the time bound, this can result in significant computational costs. By splitting the
interval, we make sure that standard uniformisation is executed with a uniformisation
rate that is not unnecessarily high with respect to the relevant states.
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5. CASE STUDIES AND IMPLEMENTATION
We have integrated the fast adaptive uniformisation method in the probabilistic model
checker PRISM [Kwiatkowska et al. 2011]. It is available along with the current devel-
opment release of PRISM. Our implementation builds on top of the “explicit” engine,
and is written in Java. Models can be input in the native language of PRISM. Alter-
natively, they can be given in Systems Biology Markup Language (SBML) and then
transformed into the input language of PRISM. Properties are specified as non-nested
continuous stochastic logic (CSL) [Aziz et al. 2000] formulae extended with the reward
operator [Kwiatkowska et al. 2007], as either time-bounded until, or instantaneous or
cumulative reward properties.

To show the practical applicability of our method, we apply it to three case studies
and compare to standard uniformisation in PRISM. We terminate the state space
exploration once we obtain (1 −

∑m
n=0 πt(Φ

Λ(n))) < ε for an adequate ε, and discard
states with probability of less than δ in the discrete-time process. Experiments were
performed on a Linux computer with an Intel i7-3770 processor with 3.40GHz and
32GB of RAM. For one of the case studies, we compare the performance of our tool to
the FAU method implemented in the tool MARCIE [Schwarick et al. 2011].

Wherever possible, we have compared our results to the PRISM engine which per-
forms best for that particular model. This includes comparison with the symbolic en-
gines of PRISM (“mtbdd” and “hybrid”), which tended to perform worse than the “ex-
plicit” engine on our examples, likely due to loss of regularity. We note that symbolic
engines cannot handle infinite-state models employed here, but the “explicit” engine is
able to, provided that the reachable state space is finite. Conventional methods could
perform better than FAU when the state space is sufficiently small, in view of the ad-
ditional overhead necessary for FAU. We anticipate that the performance of PRISM
is indicative of modern probabilistic model checkers, and therefore our conclusions are
more generally applicable.

In this paper, we do not compare against simulation-based approaches, such as ap-
proximate probabilistic model checking available in PRISM (probability estimation
and statistical hypothesis testing); while simulation has the advantage of not requir-
ing the generator matrix to be constructed, and hence does not suffer from state space
explosion, it is sensitive to the size of time bounds and can only guarantee error bounds
with a given confidence interval. FAU can provide guarantees for an arbitrary preci-
sion by controlling δ, although reducing δ will generally incur higher memory require-
ments. Investigating the trade-off between FAU and simulation-based techniques de-
serves further study.

5.1. PRISM Language
The input language of PRISM is a simple guarded-command language based
on the Reactive Modules formalism of Alur and Henzinger [Alur and Henzinger
1999]. PRISM provides native support for discrete-time Markov chains (DTMCs),
continuous-time Markov chains (CTMCs), Markov decision processes (MDPs) and
probabilistic timed automata (PTAs). As the contribution of this paper is based on
CTMCs, we only describe the mechanisms to support this model type. A PRISM model
consists of one or more modules. Each such module contains local variables and com-
mands. In addition, global variables can be defined. A command contains a guard,
which is an expression over the variables stating under which conditions it can be
executed. Further, it contains a number of updates, each of which consists of a rate
describing the speed with which it will be executed, as well as an assignment setting
the model variables to new values. Optionally, a command can have a label. It also
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contains a description of one or more initial states in terms of a boolean expression
over the variables.

A state in the CTMC semantics of a model is then an assignment of valid values to
all the variables. The potential initial distributions of the CTMC semantics are Dirac
distributions assigning probability 1 to one of the initial states. The transition matrix,
R, is induced from the commands. A command is active in a given state s if the variable
assignment of the state fulfills the guard of the command. If s′ is obtained from s by
the assignment of an update with rate λ, we add λ to the transition rate R(s, s′).

In addition, a PRISM model can also contain reward structures, which are used
to express instantaneous and cumulative rewards. Each reward structure contains
one or more reward items, which are either state or transition reward items. A state
reward item has a guard stating under which conditions its value is incurred, and
a reward expression over the model variables stating the reward obtained per time
unit if the guard is fulfilled. A transition reward item also has a guard and a reward
expression. In addition, it can also contain a label, such that the reward specified by
the label is obtained instantaneously on a transition from one state to the other, under
the condition that the guard is fulfilled. If the state reward item does not contain a
label, it is applied to transitions resulting from unlabelled commands. If it is labelled,
it is applied to commands with the corresponding label. If the guards of several reward
items are fulfilled, their values are added up. In particular, if the guard of no reward
item is fulfilled, a reward of 0 results. A reward structure can also have a name by
which it can be referred to in a property specification.

The properties supported for CTMCs are given in a variant of
CSL. In particular, in addition to probability quantifiers P there are
now reward quantifiers R. Instantaneous rewards can be expressed
as R<reward-structure><probability-bound>[I=<time-point>]. Here,
<reward-structure> specifies the reward structure to use, either as the number
of the reward structure in terms of the order they are specified, or as its name
(if <reward-structure> is left out, the first reward structure will be used). The
<time-point> corresponds to the value of t in Definition 2.9. The probability bound
can be of the form <r, >r, <=r, >=r for some real number r, used to check whether the
reward computed is bounded by r. Alternatively, it can be equal to =?, used to obtain
the reward computed as a real number. Cumulative rewards can be expressed as
R<reward-structure><probability-bound>[C<=<time-bound>], where <time-bound>
corresponds to t of Definition 3.5.

Example 5.1 (CTMCs in PRISM). Reconsider the birth-death process of Exam-
ple 2.2. In Fig. 4, we give a description in the PRISM language. The line with ctmc
denotes the model type. The model has a single module birthdeath. This module con-
tains a single variable molecules. States of the CTMC semantics thus consist of an
assignment of values to this variable. The type of the variable is int, which means
that the variable must be assigned an integer number. Using init 100 we specify that
in the initial state the value of molecules is 100. Note that there is no upper bound
on the number of states. The module contains two commands, labelled with birth and
death respectively. The guard of each of them is molecules>0, which means that both
can only be executed if the number of molecules is positive. The first command has
a single update with a rate of 0.10*molecules increasing the number of molecules
by one, whereas the single update of the second command decreases the number of
molecules with a rate of 0.11*molecules. Ignoring the labels, the two commands could
also be combined into an equivalent single command with two updates:

[] molecules>0 -> 0.10*molecules : (molecules’=molecules+1)
+ 0.11*molecules : (molecules’=molecules-1);
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ctmc

module birthdeath
molecules : int init 100;
[birth] molecules>0 -> 0.10*molecules : (molecules’=molecules+1);
[death] molecules>0 -> 0.11*molecules : (molecules’=molecules-1);

endmodule

Fig. 4: Birth-death process in PRISM.

rewards "molecules"
true : n;

rewards

rewards "birth"
[birth] true : 1;

endrewards

rewards "death"
[death] true : 1;

endrewards

rewards "reactions"
[birth] true : 1;
[death] true : 1;

endrewards

rewards "timeeven"
mod(n,molecules)=0 : 1;

endrewards

rewards "smaller"
molecules<=100 : molecules;

endrewards

Fig. 5: Reward structures for the birth-death process of Fig. 4.

In Fig. 5 we provide some possible reward structures for this example. Reward
structure molecules expresses the number of molecules in a given state: the guard
true is always fulfilled and the expression molecules expresses exactly this value.
Thus, using R{‘‘molecules’’}=?[I=0.1], we can express the expected number of
molecules present at time 0.1, that is, the instantaneous reward value of Exam-
ple 2.12. Next, birth expresses the number of births, death the number of deaths, and
reactions the number of all types of reactions using transition reward items. Thus,
by R{‘‘reactions’’}=?[C<=0.1] we can express the total number of reactions which
have happened until time 0.1, that is, the cumulative reward value of Example 3.7.
Reward structure timeeven assigns a reward of 1 to states with an even number of
molecules and 0 to those with an odd number. Thus, using R{‘‘timeeven’’}=?[I=0.1]
we can ask for the probability that at time 0.1 the model is in a state with an even
number of molecules. With R{‘‘timeeven’’}=?[C<=0.1] we can ask for the time spent
in a state with an even number of molecules accumulated until time 0.1. The reward
structure smaller is a state reward stating the number of molecules in a given state,
but ignoring states in which this number is larger than 100.

5.2. Using Fast Adaptive Uniformisation in PRISM
The algorithm described in this paper has been integrated in the explicit engine
of PRISM. Thus, to use it, this engine has to be activated. Further, the transient
probability computation has to be set to use the fast adaptive uniformisation method.
These values can be changed in the PRISM settings in the GUI (menu “Options” →
“Options”), or via the command line if the GUI is not used. In Fig. 6 we give an overview
of the relevant options. “Engine (-transientmethod fau)” and “transient probability (-
explicit)” are as described above. The meaning of the other options is as follows:

— “FAU epsilon (-fauepsilon)”: corresponds to ε in this paper,
— “FAU delta (-faudelta)”: corresponds to δ in this paper,
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Fig. 6: PRISM options dialogue box.

— “FAU array threshold (-fauarraythreshold)”: if after this number of steps in the
discrete-time Markov chain the state space does not change any more, the algorithm
will switch to a different data structure. This data structure cannot be easily ex-
tended with new states, but allows for faster iteration steps. If it turns out that new
states have to be added, the algorithm has to switch back to the usual data structure,
which is costly.

— “FAU time intervals (-fauintervals)”: in some cases, analyses are faster when dividing
the time interval in which the analysis is performed into several parts. For instance,
a time interval 10 could be divided into 5 time intervals of length 2.

— “FAU initial time interval (-fauinitival)”: with this option an additional short time
interval can be specified in addition to the other time intervals from the option de-
scribed above. Thus, for a time interval 10, initial time interval 1 and number of time
intervals 3, the analysis will be divided into four parts: the first will be over a time
interval of 1, followed by three parts of length 3. If the time interval to analyse is
shorter than the value of this option, the initial time interval will not be used.

5.3. Discrete Stochastic Model Test Suite
The Discrete Stochastic Model Test Suite [Evans et al. 2008] is a test suite of mod-
els encoded in the Systems Biology Markup Language (SBML), for which values of
certain properties have been computed up to a given precision. It is aimed at stochas-
tic simulator developers who can evaluate the accuracy of their tools against known
results.

We used PRISM’s SBML import functionality2 to convert SBML to PRISM files.
The models have infinitely many states, and so cannot be handled by existing PRISM
engines (except “explicit”, providing the reachable state space is finite). As the SBML
import does not yet support the SBML feature of events, we were only able to analyse
35 out of the 39 test models. For this case study, we apply analyses for a time bound
of 50, which is the largest one for which results are included in the SBML models. We
chose parameters as follows:

2http://www.prismmodelchecker.org/manual/RunningPRISM/SupportForSBML
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Model Time (s) States Lost Molecules Reactions

001-01 2 321 9.6707E-09 60.6531 826.2856
001-03 2 347 1.0541E-08 0.6738 2,085.8503
001-04 2 163 8.6868E-09 6.0653 82.6286
001-05 21 2,999 1.1885E-08 6,065.3065 82,628.5610
001-06 2 321 9.6707E-09 60.6531 826.2856
001-07 44 161,486 2.1713E-08 60.6531 826.2856
001-08 2 321 9.6707E-09 60.6531 826.2856
001-18 2 277 8.8953E-09 77.8801 464.5184
001-19 2 321 9.6707E-09 60.6531 826.2856
002-01 2 44 6.6105E-09 9.9326 90.0674
002-02 2 151 9.6617E-09 99.3262 900.6738
002-03 2 107 7.8426E-09 49.6631 450.3369
002-04 18 1,376 1.1896E-08 9,932.6204 90,067.3791
002-05 2 151 9.6617E-09 99.3262 900.6738
002-06 4 36,177 1.1379E-08 99.3262 900.6738
002-07 2 151 9.6617E-09 99.3262 900.6738
002-08 2 44 6.6105E-09 9.9326 90.0674
003-01 2 49 6.1194E-09 28.5423 64.7560
003-02 2 158 8.4320E-09 144.9960 573.9888
003-05 2 49 6.1194E-09 35.7289 64.7560
004-01 2 124 8.8187E-09 24.9989 275.0011
004-02 2 173 1.0418E-08 25.0000 525.0000
004-03 4 773 3.6533E-08 25.0000 5,024.9999

ext. 001-01 181 297,825 4.8164E-08 60.6531 826.2856

Table I: Discrete Stochastic Model Test Suite Results.

— “FAU epsilon (-fauepsilon)”:1e-9
— “FAU delta (-faudelta)”: 1e-14
— “FAU array threshold (-fauarraythreshold)”: 100 (default)
— “FAU time intervals (-fauintervals)”: 10
— “FAU initial time interval (-fauinitival)”: 1.0 (default)

The results for a selection of the models are given in Table I. For each “Model”, we
give the “Time (s)” in seconds needed to perform the analysis, the maximal number
of “States” in memory, and the probability “Lost” through approximation. The column
“Molecules” is an instantaneous reward property, R=?[I=50], which returns the ex-
pected number of molecules of the first species of the model under consideration. The
column “Reactions” is the expected number of reactions until time 50, which is a cumu-
lative reward property, R=?[C<=50]. In the table, each row corresponds to two analyses;
however, the computation time is the same for both since the same number of states
had to be explored.

All analyses (with the exception of “ext. 001-01” not originally from the test suite, see
below) took less than a minute. The results we obtain for “Molecules” agree with those
provided by the test suite, for the number of decimal places given there (values for
“Reactions” are not provided by the test suite). For the model “001-01”, we attempted
a naive approach to compute the number of reactions by adding a new species “Reac-
tions”, increasing the dimensionality. As can be seen from results given in the last row
(“ext. 001-01”) of Table I, these performance figures were much worse than for our im-
plementation. We remark that these figures are similar to those for the (unmodified)
“001-07”, in which also a species tracking a specific reaction is introduced.
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N T Fastest PRISM engine - explicit FAU
Time (s) States Finished Reactions Time (s) States Lost Finished Reactions

1 10000 3 169 0.0593 15.3193 2 169 1.6882E-09 0.0593 15.3193
1 50000 1 169 0.9999 26.9997 32 169 1.7133E-09 0.9999 26.9997
1 100000 2 169 1.0000 27.0000 14 169 1.7892E-09 1.0000 27.0000
2 10000 1 5,748 0.0224 37.1224 6 5,299 1.3024E-08 0.0224 37.1224
2 50000 2 5,748 0.9999 51.2958 39 5,299 1.5028E-08 0.9999 51.2958
2 100000 2 5,748 1.0000 51.2963 151 5,299 1.5090E-08 1.0000 51.2963
3 10000 15 93,538 0.0138 59.7229 123 67,292 1.0059E-07 0.0138 59.7229
3 50000 52 93,538 0.9999 75.0530 151 67,292 1.0994E-07 0.9999 75.0530
3 100000 96 93,538 1.0000 75.0536 326 67,292 1.1002E-07 1.0000 75.0536
4 10000 268 970,539 0.0103 82.6250 737 514,414 5.6703E-07 0.0103 82.6250
4 50000 1,039 970,539 0.9998 98.6211 773 514,414 5.8001E-07 0.9998 98.6211
4 100000 1,976 970,539 1.0000 98.6218 1019 514,414 5.8009E-07 1.0000 98.6218
5 10000 3,463 7,377,039 0.0085 105.6602 2111 2,814,235 2.9759E-06 0.0085 105.6602
5 50000 - - - - 2209 2,814,235 2.9907E-06 0.9998 122.0891
5 100000 - - - - 2614 2,814,235 2.9907E-06 1.0000 122.0897
6 10000 - - - - 5073 12,163,811 1.3377E-05 0.0074 128.7586
6 50000 - - - - 5268 12,163,811 1.3393E-05 0.9998 145.4913
6 100000 - - - - 5614 12,163,811 1.3393E-05 1.0000 145.4920

Table II: DNA Strand Displacement Results.

5.4. DNA Strand Displacement
DNA strand displacement (DSD) [Seelig et al. 2006] is a mechanism for performing
computation with DNA molecules. A variety of logic circuits can be designed and im-
plemented using DSD. Initial species of DNA are mixed together in a reaction tube, and
then strand displacement reactions proceed autonomously, relying solely on hybridisa-
tion between complementary nucleotide sequences to perform computational steps. In
this case study, we consider transducer gates modelled and analysed in [Lakin et al.
2012, Section 2] (example transducer_K=3.sm). This model features the parameter N ,
which corresponds to the number of copies for initial species, and K, the number of
transducers placed in series.

We are interested in the probability that the computation is finished by time T ,
given by P=?[F[0,50] Finished]. The expected total number of reactions (“Reactions”)
is given by a cumulative reward property, R=?[C<=50]. For the analysis of this model,
we chose the following parameters:

— “FAU epsilon (-fauepsilon)”: 1e-9
— “FAU delta (-faudelta)”: 1e-13
— “FAU array threshold (-fauarraythreshold)”: 100 (default)
— “FAU time intervals (-fauintervals)”: 1 (default)
— “FAU initial time interval (-fauinitival)”: 1.0 (default)

We fix K = 3 and provide results for different N and T in Table II. The state space of
this case study is small enough to be compared against existing methods in PRISM.
We included the results for the “explicit” engine because it was the fastest. In each row,
the best performance in terms of state space size or time is highlighted in boldface.

Note also that the FAU method is able to handle larger models than existing PRISM
engines, and obtains better performance for larger model instances.
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5.5. DNA Walkers

Fig. 7: Walker ‘XOR’ circuit. Adding
the input X will unblock the anchor-
ages labelled X.

We consider models of DNA walkers [Wickham
et al. 2011], which can be used to design logic
circuits on the nanoscale. A significant differ-
ence from DSD designs is that a DNA walker
operates on a track of DNA strands (called an-
chorages) tethered to a surface, rather than in
solution, and thus the model has to incorporate
spatial information. An example of an XOR cir-
cuit is shown in Fig. 7. The walker starts in
the Initial position and can navigate down a se-
ries of junctions [Wickham et al. 2012]. An en-
zyme cuts the anchorage when the walker is
attached, allowing the walker to step onto the
next anchorage. When the walker steps onto
an absorbing anchorage, here labelled with True
and False, the computation ends. The prior in-
put unblocks certain anchorages, which in turn
directs the walker at each junction. Occasionally, the blockade mechanism fails to block
an anchorage, which can cause the walker to output the wrong answer. In addition, the
walker sometimes steps over blockades or between tracks, which is another source of
error.

A CTMC model of the walker was developed [Dannenberg et al. 2013; Dannenberg
et al. 2014] previously3, and in this paper we apply model checking with FAU. We use
the following parameter set:

— “FAU epsilon (-fauepsilon)”: 1e-6
— “FAU delta (-faudelta)”: 1e-8
— “FAU array threshold (-fauarraythreshold)”: 100 (default)
— “FAU time intervals (-fauintervals)”: 1 (default)
— “FAU initial time interval (-fauinitival)”: 1.0 (default)

We analyse three variants of the XOR-circuit and summarise the results in Table III.
The unmodified track, shown in Fig. 7, is “xor”, and the suffix “-S” indicates that only
one blocker is used instead of two consecutive ones, whereas suffix “-large” indicates a
track with more anchorages. (X,Y ) or (X,¬Y ) indicates the input to the computation,
which opens up the blocked anchorages that match the labels of the input. Because
the track has a point-symmetry, the results for inputs X,Y and ¬X,Y are the same, as
well as for inputs ¬X,¬ Y and X,¬Y . The unmodified track has 2.9× 107 states; it can
be constructed, but not analysed, with PRISM’s standard engines. The larger circuit
has 1.9 × 109 states. All three variants are too large to model check with standard
uniformisation.

We model check the expected number of steps (column “Steps”, R=?[C<=T]) and the
probability of walkers reaching the desired anchorage (column “Signal”, P=?[F[T,T]
Finished]) by time T = 200 min. The expected number of steps correlates well with
the track layout: when fewer anchorages are blocked (“-S”), the walker takes more
steps on average. A larger track also results in more steps taken on average. Column
“Blocked”, a cumulative reward property, shows how much time the walker spends on
anchorages that were supposed to be blocked, and is in line with expectations.

3also see www.prismmodelchecker.org/casestudies/dna walkers.php
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Model Time (s) States Lost Signal Steps Blocked (s)

PRISM fau-delta 1e-8
xor(X,Y ) 20 228,803 1.9736E-02 0.6455 7.7696 606.2731

xor(X,¬Y ) 22 239,680 2.2587E-02 0.5979 7.5610 659.3715
xor-S-(X,Y ) 14 215,544 1.6719E-02 0.5374 8.8363 133.1672

xor-S-(X,¬Y ) 15 233,063 1.8775E-02 0.5473 8.4049 146.7377
xor-large-(X,Y ) 43 443,584 5.1855E-02 0.5661 9.5020 577.2680

xor-large-(X,¬Y ) 45 455,685 5.2995E-02 0.5674 9.4983 567.3420

MARCIE appr-delta 1e-9
xor(X,Y ) 1614 216,661 1.541E-2 0.6473 - -

xor-S-(X,Y ) 795 214,379 1.377E-2 0.5386 - -
xor-large-(X,Y ) 2641 507,756 3.572E-2 0.5712 - -

PRISM fau-delta 1e-14, fau-epsilon 1e-9
xor(X,Y ) 366 2,660,829 1.1838E-07 0.6527 7.8371 627.9572

xor-large-(X,Y ) 6923 62,648,566 6.0992E-06 0 .5816 9.7201 623.4739

Table III: DNA Walkers.

When we decrease the parameter fau-delta, the number of explored states goes up
and the amount of probability lost goes down. For fau-delta equal to 1e-14, at most 9
percent of the total state space is concurrently loaded in memory, but only 1.2e-7 of the
probability is lost.

5.6. Comparison to Other Implementations
The fast adaptive unformisation method, without support for cumulative rewards, is
implemented in the tools SABRE [Didier et al. 2010] and MARCIE [Schwarick et al.
2011]. The latter supports model checking of CSL-style properties for stochastic Petri
nets using the FAU method. MARCIE is developed at the Brandenburg University
of Technology in Cottbus and features macro support for Petri nets that describe bio-
chemical mass-action reactions.

We have converted the DNA walker models into MARCIE scripts to allow a direct
comparison between the two tools. For the “xor” circuit, we find that the symbolic en-
gine in MARCIE reports the same number of reachable states as reported by PRISM.
The DNA walker models can be analysed with the FAU method in MARCIE using an
updated version of the tool that was provided by the authors. The behaviour of MAR-
CIE is shown in Table III, where the columns “steps” and “blocked” are empty because
MARCIE does not support cumulative rewards for the FAU method.

For MARCIE we have used the following settings:

— “Approximative numerical delta (–appr-delta)”: 1e-9
— “Assumed maximal exit rate (–appr-lambda)”: 1000

To make the number of states explored by MARCIE comparable, we have used, some-
what surprisingly, a cut-off delta that is one order of magnitude smaller than that used
in PRISM. Using the same cut-off delta results in significantly fewer states explored,
and a higher amount of probability lost.

Although the number of states explored is comparable, the performance of the two
tools is different: PRISM is faster while MARCIE retains more probability during the
analysis. The difference in speed is explained by the default interval splitting param-
eters in PRISM, as a short initial interval is particularly beneficial to this model. At
the time of writing, the FAU method in MARCIE had no documented support for in-
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terval splitting. The difference in retained probability cannot be accurately explained
without further analysis.

6. CONCLUSION
In this paper, we have extended fast adaptive uniformisation so that it can also be
applied to cumulative reward properties. Cumulative measures allow one to express
many important quantitative properties, such as the expected number of times a cer-
tain reaction happens and the average percentage of time the system spends in a given
state. Our method does not introduce a significant overhead to the analysis, and in
particular does not require the explicit construction of the extended state space of
the underlying continuous-time propagation model. In contrast to simulation-based
approaches, we can compute guaranteed error bounds for properties, as opposed to en-
suring a given confidence interval. We have applied it to several case studies, obtaining
superior performance in virtually all cases compared to existing methods implement
in PRISM and MARCIE, and demonstrated how interval splitting benefits the FAU
method.

REFERENCES
R. Alur and T. Henzinger. 1999. Reactive Modules. Formal Methods in System Design 15, 1 (1999), 7–48.
A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. 2000. Model-checking continuous-time Markov chains.

ACM TCS 1, 1 (2000), 162–170.
C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. 2010. Performance evaluation and model checking

join forces. Commun. ACM 53, 9 (2010), 76–85.
C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. 2003. Model-Checking Algorithms for Continuous-

Time Markov Chains. IEEE TSE 29, 6 (2003), 524–541.
G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. M. Doyle, W. H. Sanders, and P. Webster. 2001.
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