Lecture 19
Probabilistic symbolic model checking

Dr. Dave Parker

Department of Computer Science
University of Oxford
Overview

- Implementation of probabilistic model checking
 - overview, key operations, symbolic vs. explicit

- Binary decision diagrams (BDDs)
 - introduction, sets, transition relations, ...

- Multi-terminal BDDs (MTBDDs)
 - introduction, vectors, matrices, ...

- Operations on/with BDDs and MTBDDs
Implementation overview

• Overview of the probabilistic model checking process
 – two distinct phases: model construction, model checking
 – three different models, several different logics, various different solution/analysis methods
 – but... all these processes have much in common
Model construction

- High-level model
 - PRISM language description

- Model construction
 - Translation from high-level language
 - Reachability: building set of reachable states
 - Matrix manipulation
 - Graph-based algorithm

- Model
 - DTMC, MDP or CTMC
Model checking

Model checking

- Basic set operations
- Solution of linear equation systems (iterative methods)
- Solution of linear optimisation problems (iterative methods)
- Uniformisation-based iterative methods

Two distinct classes of techniques:
- graph-based algorithms
- iterative numerical computation

Model

- DTMC, MDP or CTMC

Property

- PCTL or CSL formula

Result
Underlying operations

- Key objects/operations for probabilistic model checking

- Graph-based algorithms
 - underlying transition relation of DTMC/MDP/CTMC
 - manipulation of transition relation and state sets

- Iterative numerical computation
 - transition matrix of DTMC/MDP/CTMC, real-valued vectors
 - manipulation of real-valued matrices and vectors
 - in particular: matrix-vector multiplication
State-space explosion

- Models of real-life systems are typically huge
 - familiar problem for verification/model checking techniques

- State-space explosion problem
 - linear increase in size of system can result in an exponential increase in the size of the model
 - e.g. \(n \) parallel components of size \(m \), can give up to \(m^n \) states

- Need efficient ways of storing models, sets of states, etc.
 - and efficient ways of constructing, manipulating them

- Here, we will focus on symbolic approaches
Explicit vs. symbolic data structures

- **Symbolic data structures**
 - usually based on **binary decision diagrams** (BDDs) or variants
 - avoid explicit enumeration of data by **exploiting regularity**
 - potentially **very compact storage** (but not always)

- **Sets of states:**
 - **explicit**: bit vectors
 - **symbolic**: BDDs

- **Real–valued vectors:**
 - **explicit**: arrays of reals (in practice, doubles/floats)
 - **symbolic**: multi–terminal BDDs (MTBDDs)

- **Real–valued matrices:**
 - **explicit**: sparse matrices
 - **symbolic**: MTBDDs
Representations of Boolean formulas

- Propositional formula: \(f = (x_1 \lor x_2) \land x_3 \)

Truth table

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Binary decision tree

Binary decision diagram
Binary decision trees

- Graphical representation of Boolean functions
 - \(f(x_1,\ldots,x_n) : \{0,1\}^n \to \{0,1\} \)
- Binary tree with two types of nodes
- Non-terminal nodes
 - labelled with a Boolean variable \(x_i \)
 - two children: 1 (“then”, solid line) and 0 (“else”, dotted line)
- Terminal nodes (or “leaf” nodes)
 - labelled with 0 or 1
- To read the value of \(f(x_1,\ldots,x_n) \)
 - start at root (top) node
 - take “then” edge if \(x_i = 1 \)
 - take “else” edge if \(x_i = 0 \)
 - result given by leaf node
Binary decision diagrams

- **Binary decision diagrams (BDDs)** [Bry86]
 - based on binary decision trees, but **reduced and ordered**
 - sometimes called reduced ordered BDDs (ROBDDs)
 - actually directed acyclic graphs (DAGs), not trees
 - **compact, canonical** representation for **Boolean functions**

- **Variable ordering**
 - a BDD assumes a fixed total ordering over its set of Boolean variables
 - e.g. $x_1 < x_2 < x_3$
 - along any path through the BDD, variables appear at most once each and always in the correct order
BDD reduction rule 1

- Rule 1: Merge identical terminal nodes

Example:

```
\[
\begin{align*}
x_1 & \quad \quad x_2 \\
x_2 & \quad \quad x_2 \\
x_3 & \quad \quad x_3 \\
0 & \quad \quad 0
\end{align*}
\]

\[
\begin{align*}
x_1 & \quad \quad x_2 \\
x_2 & \quad \quad x_2 \\
x_3 & \quad \quad x_3 \\
0 & \quad \quad 0
\end{align*}
\]

\[
\begin{align*}
x_1 & \quad \quad x_2 \\
x_2 & \quad \quad x_2 \\
x_3 & \quad \quad x_3 \\
0 & \quad \quad 0
\end{align*}
\]
BDD reduction rule 2

- Rule 2: Merge isomorphic nodes, redirect incoming nodes

- Example:
BDD reduction rule 3

- Rule 3: Remove redundant nodes (with identical children)

Example:
Canonicity

- BDDs are a canonical representation for Boolean functions
  - two Boolean functions are equivalent if and only if the BDDs which represent them are isomorphic
  - uniqueness relies on: reduced BDDs, fixed variable ordered

- Important implications for implementation efficiency
  - can be tested in linear (or even constant) time
BDD variable ordering

- BDD size can be very sensitive to the variable ordering
  - example: \( f = (x_1 \land y_1) \lor (x_2 \land y_2) \lor (x_3 \land y_3) \)

\[ x_1 \prec y_1 \prec x_2 \prec y_2 \prec x_3 \prec y_3 \]

2n+2 nodes

\[ x_1 \prec x_2 \prec x_3 \prec y_1 \prec y_2 \prec y_3 \]

2^{n+1} nodes
BDDs to represent sets of states

• Consider a state space $S$ and some subset $S' \subseteq S$

• We can represent $S'$ by its characteristic function $\chi_{S'}$
  \[ \chi_{S'} : S \rightarrow \{0,1\} \text{ where } \chi_{S'}(s) = 1 \text{ if and only if } s \in S' \]

• Assume we have an encoding of $S$ into $n$ Boolean variables
  \[ \text{this is always possible for a finite set } S \]
  \[ \text{e.g. enumerate the elements of } S \text{ and use a binary encoding} \]
  \[ \text{(note: there may be more efficient encodings though)} \]

• So $\chi_{S'}$ can be seen as a function $\chi_{S'}(x_1,...,x_n) : \{0,1\}^n \rightarrow \{0,1\}$
  \[ \text{which is simply a Boolean function} \]
  \[ \text{which can therefore be represented as a BDD} \]
BDD and sets of states – Example

• State space $S$: \{0, 1, 2, 3, 4, 5, 6, 7\}
• Encoding of $S$: \{000, 001, 010, 011, 100, 101, 110, 111\}
• Subset $S' \subseteq S$: \{3, 5, 7\} → \{011, 101, 111\}

Truth table:

<table>
<thead>
<tr>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$x_3$</th>
<th>$f_B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

BDD:
BDDs and transition relations

• Transition relations can also be represented by their characteristic function, but over pairs of states
  – relation: \( R \subseteq S \times S \)
  – characteristic function: \( \chi_R : S \times S \rightarrow \{0,1\} \)

• For an encoding of state space \( S \) into \( n \) Boolean variables
  – we have Boolean function \( f_R(x_1,...,x_n,y_1,...,y_n) : \{0,1\}^{2n} \rightarrow \{0,1\} \)
  – which can be represented by a BDD

• Row and column variables
  – for efficiency reasons, we interleave the row variables \( x_1,..,x_n \)
    and column variables \( y_1,..,y_n \)
  – i.e. we use function \( f_R(x_1,y_1,...,x_n,y_n) : \{0,1\}^{2n} \rightarrow \{0,1\} \)
BDDs and transition relations

- **Example:**
  - 4 states: 0, 1, 2, 3
  - Encoding: 0→00, 1→01, 2→10, 3→11

<table>
<thead>
<tr>
<th>Transition</th>
<th>x₁</th>
<th>x₂</th>
<th>y₁</th>
<th>y₂</th>
<th>x₁y₁x₂y₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>(0,2)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0100</td>
</tr>
<tr>
<td>(1,0)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0010</td>
</tr>
<tr>
<td>(2,3)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1101</td>
</tr>
<tr>
<td>(3,1)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1011</td>
</tr>
<tr>
<td>(3,2)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1110</td>
</tr>
</tbody>
</table>
Multi-terminal binary decision diagrams

- Multi-terminal BDDs (MTBDDs), sometimes called ADDs
  - extension of BDDs to represent real-valued functions
  - like BDDs, an MTBDD $M$ is associated with $n$ Boolean variables
  - MTBDD $M$ represents a function $f_M(x_1,\ldots,x_n):\{0,1\}^n \rightarrow \mathbb{R}$

For clarity, we omit the zero terminal node and any incoming edges

E.g.

<table>
<thead>
<tr>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$x_3$</th>
<th>$f_M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
MTBDDs to represent vectors

- In the same way that BDDs can represent sets of states...
  - MTBDDs can represent real-valued vectors over states $S$
  - e.g. a vector of probabilities $\text{Prob}(s, \psi)$ for each state $s \in S$
  - assume we have an encoding of $S$ into $n$ Boolean variables
  - then vector $v : S \rightarrow \mathbb{R}$ is a function $f_v(x_1, \ldots, x_n) : \{0,1\}^n \rightarrow \mathbb{R}$

<table>
<thead>
<tr>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$x_3$</th>
<th>$i$</th>
<th>$f_v$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>

MTBDD $v$

Vector $v$

$[0,3,9,0,4,4,9,0]$
**MTBDDs to represent matrices**

- MTBDDs can be used to represent real-valued matrices indexed over a set of states $S$
  - e.g. the transition probability/rate matrix of a DTMC/CTMC

- For an encoding of state space $S$ into $n$ Boolean variables
  - a matrix $M$ maps pairs of states to reals i.e. $M : S \times S \rightarrow \mathbb{R}$
  - this becomes: $f_M(x_1, \ldots, x_n, y_1, \ldots, y_n) : \{0,1\}^2n \rightarrow \mathbb{R}$

- Row and column variables
  - for efficiency reasons, we **interleave** the row variables $x_1, \ldots, x_n$ and column variables $y_1, \ldots, y_n$
  - i.e. we use function $f_M(x_1, y_1, \ldots, x_n, y_n) : \{0,1\}^2n \rightarrow \mathbb{R}$
Matrices and MTBDDs – Example

Matrix $M$

$$
\begin{bmatrix}
0 & 8 & 0 & 5 \\
2 & 0 & 0 & 5 \\
0 & 0 & 0 & 5 \\
0 & 0 & 2 & 0 \\
\end{bmatrix}
$$

<table>
<thead>
<tr>
<th>Entry in $M$</th>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$y_1$</th>
<th>$y_2$</th>
<th>$x_1y_1x_2y_2$</th>
<th>$f_M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,1) = 8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0001</td>
<td>8</td>
</tr>
<tr>
<td>(1,0) = 2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>(0,3) = 5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>(1,3) = 5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0111</td>
<td>5</td>
</tr>
<tr>
<td>(2,3) = 5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1101</td>
<td>5</td>
</tr>
<tr>
<td>(3,2) = 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1110</td>
<td>2</td>
</tr>
</tbody>
</table>

MTBDD $M$
Matrices and MTBDDs – Recursion

- Descending one level in the MTBDD (i.e. setting $x_i = b$)
  - splits the matrix represented by the MTBDD in half
  - row variables ($x_i$) give horizontal split
  - column variables ($y_i$) give vertical split

```
\[M_{x=0} \quad M_{x=1} \]
\[M_{x=0, y=0} \quad M_{x=0, y=1} \]
\[M_{x=1, y=0} \quad M_{x=1, y=1} \]
```
Matrices and MTBDDs – Recursion

Matrix $M$

$$
\begin{bmatrix}
0 & 8 & 0 & 5 \\
2 & 0 & 0 & 5 \\
0 & 0 & 0 & 5 \\
0 & 0 & 2 & 0
\end{bmatrix}
$$

<table>
<thead>
<tr>
<th>Entry in $M$</th>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$y_1$</th>
<th>$y_2$</th>
<th>$x_1y_1x_2y_2$</th>
<th>$f_M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,1) = 8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0001</td>
<td>8</td>
</tr>
<tr>
<td>(1,0) = 2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>(0,3) = 5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>(1,3) = 5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0111</td>
<td>5</td>
</tr>
<tr>
<td>(2,3) = 5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1101</td>
<td>5</td>
</tr>
<tr>
<td>(3,2) = 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1110</td>
<td>2</td>
</tr>
</tbody>
</table>

MTBDD $M$
Matrices and MTBDDs – Regularity

Matrix $M$

$$\begin{bmatrix}
0 & 8 & 0 & 5 \\
2 & 0 & 0 & 5 \\
0 & 0 & 0 & 5 \\
0 & 0 & 2 & 0
\end{bmatrix}$$

Repeated submatrices

<table>
<thead>
<tr>
<th>Entry in $M$</th>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$y_1$</th>
<th>$y_2$</th>
<th>$x_1y_1x_2y_2$</th>
<th>$f_M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,1) = 8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0001</td>
<td>8</td>
</tr>
<tr>
<td>(1,0) = 2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>(0,3) = 5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>(1,3) = 5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0111</td>
<td>5</td>
</tr>
<tr>
<td>(2,3) = 5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1101</td>
<td>5</td>
</tr>
<tr>
<td>(3,2) = 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1110</td>
<td>2</td>
</tr>
</tbody>
</table>

MTBDD $M$

Shared MTBDD node
Matrices and MTBDDs – Regularity

Matrix $M$

$$
\begin{bmatrix}
0 & 8 & 0 & 5 \\
2 & 0 & 0 & 5 \\
0 & 0 & 0 & 5 \\
0 & 0 & 2 & 0
\end{bmatrix}
$$

MTBDD $M$

Identical adjacent submatrices

MTBDD node removed

### Table

<table>
<thead>
<tr>
<th>Entry in $M$</th>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$y_1$</th>
<th>$y_2$</th>
<th>$x_1y_1x_2y_2$</th>
<th>$f_M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,1) = 8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0001</td>
<td>8</td>
</tr>
<tr>
<td>(1,0) = 2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>(0,3) = 5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>(1,3) = 5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0111</td>
<td>5</td>
</tr>
<tr>
<td>(2,3) = 5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1101</td>
<td>5</td>
</tr>
<tr>
<td>(3,2) = 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1110</td>
<td>2</td>
</tr>
</tbody>
</table>
Matrices and MTBDDs – Sparseness

Matrix M

$$\begin{bmatrix}
0 & 8 & 0 & 5 \\
2 & 0 & 0 & 5 \\
0 & 0 & 0 & 5 \\
0 & 0 & 2 & 0
\end{bmatrix}$$

Entry in $M$

<table>
<thead>
<tr>
<th>Entry in M</th>
<th>$x_1$</th>
<th>$x_2$</th>
<th>$y_1$</th>
<th>$y_2$</th>
<th>$x_1y_1x_2y_2$</th>
<th>$f_M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,1) = 8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0001</td>
<td>8</td>
</tr>
<tr>
<td>(1,0) = 2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>(0,3) = 5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>(1,3) = 5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0111</td>
<td>5</td>
</tr>
<tr>
<td>(2,3) = 5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1101</td>
<td>5</td>
</tr>
<tr>
<td>(3,2) = 2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1110</td>
<td>2</td>
</tr>
</tbody>
</table>

MTBDD M

Blocks of zeros

Edge goes straight to zero node
Matrices and MTBDDs – Compactness

• Some simple matrices have extremely compact representations as MTBDDs
  – e.g. the identify matrix or a constant matrix

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
8 & 8 & 8 & 8 & \ldots \\
8 & 8 & 8 & 8 & \ldots \\
8 & 8 & 8 & 8 & \ldots \\
8 & 8 & 8 & 8 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
\end{bmatrix}
\]

DP/Probabilistic Model Checking, Michaelmas 2011
Manipulating BDDs

• **Need efficient ways to manipulate Boolean functions**
  – while they are represented as BDDs
  – i.e. algorithms which are applied directly to the BDDs

• **Basic operations on Boolean functions:**
  – negation (¬), conjunction (∧), disjunction (∨), etc.
  – can all be applied directly to BDDs

• **Key operation on BDDs: Apply(op, A, B)**
  – where A and B are BDDs and op is a binary operator over Boolean values, e.g. ∧, ∨, etc.
  – Apply(op, A, B) returns the BDD representing function $f_A \text{ op } f_B$
  – often just use infix notation, e.g. $\text{Apply}(\land, A, B) = A \land B$
  – efficient algorithm: recursive depth-first traversal of A and B
  – complexity (and size of result) is $O(|A| \cdot |B|)$
    \- where $|C|$ denotes size of BDD C
Apply – Example

- Example: $\text{Apply}(\lor, A, B)$

Argument BDDs, with node labels: Recursive calls to $\text{Apply}$:
Apply – Example

• Example: Apply(∨, A, B)
  – recursive call structure implicitly defines resulting BDD
Apply – Example

- Example: Apply(\lor, A, B)
  - but the resulting BDD needs to be reduced
  - in fact, we can do this as part of the recursive Apply operation, implementing reduction rules bottom-up
Implementation of BDDs

- Store all BDDs currently in use as one multi-rooted BDD
  - no duplicate BDD subtrees, even across multiple BDDs
  - every time a new node is created, check for existence first
  - sometimes called the “unique table”
  - implemented as set of hash tables, one per Boolean variable
  - need: node referencing/dereferencing, garbage collection

- Efficiency implications
  - very significant memory savings
  - trivial checking of BDD equality (pointer comparison)

- Caching of BDD operation results for reuse
  - store result of every BDD operation (memory dependent)
  - applied at every step of recursive BDD operations
  - relies on fast check for BDD equality
Operations with BDDs

- **Operations on sets of states easy with BDDs**
  - set union: $A \cup B$, in BDDs: $A \lor B$
  - set intersection: $A \cap B$, in BDDs: $A \land B$
  - set complement: $S \setminus A$, in BDDs: $\neg A$

- **Graph-based algorithms (e.g. reachability)**
  - need forwards or backwards image operator
    - i.e. computation of all successors/predecessors of a state
    - again, easy with BDD operations (conjunction, quantification)
  - other ingredients
    - set operations (see above)
    - equality of state sets (fixpoint termination) – equality of BDDs
Operations on MTBDDs

• The BDD operation Apply extends easily to MTBDDs

• For MTBDDs A, B and binary operation op over the reals:
  – Apply(op, A, B) returns the MTBDD representing \( f_A \text{ op } f_B \)
  – examples for op: +, -, \( \times \), \( \min \), \( \max \), ...
  – often just use infix notation, e.g. Apply(\(+\), A, B) = A + B

• BDDs are just an instance of MTBDDs
  – in this case, can use Boolean ops too, e.g. Apply(\(\lor\), A, B)

• The recursive algorithm for implementing Apply on BDDs
  – can be reused for Apply on MTBDDs
Some other MTBDD operations

- **Threshold(A, ~, c)**
  - for MTBDD A, relational operator op and bound c ∈ ℝ
  - converts MTBDD to BDD based on threshold ~c
  - i.e. builds BDD representing function f_A ~ c
  - e.g. computing the underlying transition relation from the probability matrix of a DTMC: \( R = \text{Threshold}(P, >, 0) \)

- **Abstract(op, \{x_1,...,x_n\}, A)**
  - for MTBDD A, variables \{x_1,...,x_n\} and commutative/associative binary operator over reals op
  - analogue of existential/universal quantification for BDDs
  - e.g. Abstract(+, \{x\}, A) constructs the MTBDD representing the function \( f_A|_{x=0} + f_A|_{x=1} \)
  - e.g. for BDD A: \( \exists(x_1,..,x_n).A \equiv \text{Abstract}(\vee, \{x_1,...,x_n\}, A) \)
MTBDD matrix/vector operations

- **Pointwise addition/multiplication and scalar multiplication**
  - can be implemented with the **Apply operator**
  - Matrices: $A + B$, MTBDDs: Apply(+, A, B)

- **Matrix–matrix multiplication $A \cdot B$**
  - can be expressed recursively based on 4-way matrix splits

\[
\begin{bmatrix}
A_1 & A_2 \\
A_3 & A_4
\end{bmatrix} = \begin{bmatrix}
B_1 & B_2 \\
B_3 & B_4
\end{bmatrix} \cdot \begin{bmatrix}
C_1 & C_2 \\
C_3 & C_4
\end{bmatrix}
\]

- which forms the basis of an MTBDD implementation
  - various optimisations are possible

- **Matrix–matrix multiplication $A \cdot v$** is done in similar fashion
Sparse matrices

- Explicit data structure for matrices with many zero entries
  - assume a matrix $P$ of size $n \times n$ with $\text{nnz}$ non-zero elements
  - store three arrays: $\text{val}$ and $\text{col}$ (of size $\text{nnz}$) and $\text{row}$ (of size $n$)
  - for each matrix entry $(r, c) = v$, $c$ and $v$ are stored in $\text{col/val}$
  - entries are grouped by row, with pointers stored in $\text{row}$
  - also possible to group by column

\[
\begin{array}{cccccc}
\text{val} & 0.5 & 0.5 & 1 & 0.3 & 0.7 & 1 \\
\text{col} & 1 & 3 & 2 & 0 & 3 & 0 \\
\text{row} & 0 & 2 & 3 & 5 & 6 \\
\end{array}
\]

\[
P = \begin{bmatrix}
\cdot & 0.5 & \cdot & 0.5 \\
\cdot & \cdot & 1 & \cdot \\
0.3 & \cdot & \cdot & 0.7 \\
1 & \cdot & \cdot & \cdot 
\end{bmatrix}
\]
Sparse matrices

• **Advantages**
  – compact storage (proportional to number of non-zero entries)
  – fast access to matrix entries
  – especially if usually need an entire row at once
  – (which is the case for e.g. matrix–vector multiplication)

• **Disadvantage**
  – less efficient to manipulate (i.e. add/delete matrix entries)

• **Storage requirements**
  – for a matrix of size \( n \times n \) with \( \text{nnz} \) non-zero elements
  – assume reals are 8 byte doubles, indices are 4 byte integers
  – we need \( 8 \cdot \text{nnz} + 4 \cdot \text{nnz} + 4 \cdot n = 12 \cdot \text{nnz} + 4 \cdot n \) bytes
Sparse matrices vs. MTBDDs

- **Storage requirements**
  - MTBDDs: each node is 20 bytes
  - Sparse matrices: $12 \cdot \text{nnz} + 4 \cdot n$ bytes (n states, nnz transitions)

- **Case study: Kanban manufacturing system, N jobs**
  - Store transition rate matrix $R$ of the corresponding CTMCs

<table>
<thead>
<tr>
<th>N</th>
<th>States (n)</th>
<th>Transitions (nnz)</th>
<th>MTBDD (KB)</th>
<th>Sparse matrix (KB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>58,400</td>
<td>446,400</td>
<td>48</td>
<td>5,459</td>
</tr>
<tr>
<td>4</td>
<td>454,475</td>
<td>3,979,850</td>
<td>96</td>
<td>48,414</td>
</tr>
<tr>
<td>5</td>
<td>2,546,432</td>
<td>24,460,016</td>
<td>123</td>
<td>296,588</td>
</tr>
<tr>
<td>6</td>
<td>11,261,376</td>
<td>115,708,992</td>
<td>154</td>
<td>1,399,955</td>
</tr>
<tr>
<td>7</td>
<td>41,644,800</td>
<td>450,455,040</td>
<td>186</td>
<td>5,441,445</td>
</tr>
<tr>
<td>8</td>
<td>133,865,325</td>
<td>1,507,898,700</td>
<td>287</td>
<td>13,193,599</td>
</tr>
</tbody>
</table>
Implementation in PRISM

- PRISM is a **symbolic** probabilistic model checker
  - the key underlying data structures are MTBDDs (and BDDs)

- In fact, has multiple numerical computation engines
  
  - MTBDDs: storage/analysis of very large models (given structure/regularity), numerical computation can blow up
  
  - Sparse matrices: fastest solution for smaller models (<$10^6$ states), prohibitive memory consumption for larger models
  
  - Hybrid: combine MTBDD storage with explicit storage, ten-fold increase in analysable model size (~$10^7$ states)
Summing up…

• Implementation of probabilistic model checking
  – graph-based algorithms, e.g. reachability, precomputation
  – manipulation of sets of states, transition relations
  – iterative numerical computation
  – key operation: matrix-vector multiplication
• Binary decision diagrams (BDDs)
  – representation for Boolean functions
  – efficient storage/manipulation of sets, transition relations
• Multi-terminal BDDs (MTBDDs)
  – extension of BDDs to real-valued functions
  – efficient storage/manipulation of real-valued vectors, matrices
    (assuming structure and regularity)
  – can be much more compact than (explicit) sparse matrices