Lecture 18

LTL model checking for DTMCs and MDPs

Dr. Dave Parker

Department of Computer Science
University of Oxford
Overview

- **Recall**
 - deterministic ω-automata (DBA or DRA) and DTMCs

- **LTL model checking for DTMCs**
 - measurability
 - complexity
 - PCTL* model checking for DTMCs

- **LTL model checking for MDPs**
Recall – DBA and DRA

• Deterministic Büchi automata (DBA)
 – \((Q, \Sigma, \delta, q_0, F)\)
 – accepting run must visit some state in \(F\) infinitely often
 – less expressive than nondeterministic Büchi automata (NBA)

• Deterministic Rabin automata (DRA)
 – \((Q, \Sigma, \delta, q_0, \text{Acc})\)
 – \(\text{Acc} = \{ (L_i, K_i) \mid 1 \leq i \leq k \}\)
 – for some pair \((L_i, K_i)\), the states in \(L_i\) must be visited finitely often and (some of) the states in \(K_i\) visited infinitely often
 – equally expressive as NBA
 – (i.e. all \(\omega\)-regular properties; and hence all LTL formulae)
Product DTMC for a DBA

- For DTMC D and DBA A

\[
\text{Prob}^{D}(s, A) = \text{Prob}^{D \otimes A}((s, q_s), \text{GF accept})
\]

- where $q_s = \delta(q_0, L(s))$

- Hence:

\[
\text{Prob}^{D}(s, A) = \text{Prob}^{D \otimes A}((s, q_s), F T_{\text{GF accept}})
\]

- where $T_{\text{GF accept}}$ is the union of all BSCCs T in $D \otimes A$ with $T \cap \text{Sat (accept)} \neq \emptyset$

- Reduces to computing BSCCs and reachability probabilities
Product DTMC for a DRA

- For DTMC D and DRA A

$$\text{Prob}^D(s, A) = \text{Prob}^{D \otimes A}((s, q_s), \bigvee_{1 \leq i \leq k} (\text{FG } \neg l_i \land \text{GF } k_i))$$

- where $q_s = \delta(q_0, L(s))$

- Hence:

$$\text{Prob}^D(s, A) = \text{Prob}^{D \otimes A}((s, q_s), F T_{\text{Acc}})$$

- where T_{Acc} is the union of all accepting BSCCs in $D \otimes A$

- an accepting BSCC T of $D \otimes A$ is such that, for some $1 \leq i \leq k$:
 - $q \models \neg l_i$ for all $(s, q) \in T$ and $q \models k_i$ for some $(s, q) \in T$
 - i.e. $T \cap (S \times L_i) = \emptyset$ and $T \cap (S \times K_i) \neq \emptyset$

- Reduces to computing BSCCs and reachability probabilities
LTL model checking for DTMCs

• Model check LTL specification $P_{\neg p}[\psi]$ against DTMC D

• 1. Generate a deterministic Rabin automaton (DRA) for ψ
 – build nondeterministic Büchi automaton (NBA) for ψ [VW94]
 – convert the NBA to a DRA [Saf88]

• 2. Construct product DTMC $D \otimes A$

• 3. Identify accepting BSCCs of $D \otimes A$

• 4. Compute probability of reaching accepting BSCCs
 – from all states of the $D \otimes A$

• 5. Compare probability for (s, q_s) against p for each s

• Qualitative LTL model checking – no probabilities needed
Example 3 (Lec 17) revisited

- Model check $P_{>0.2} [\text{FG a}]$

- Result:
 - $\text{Prob}(\text{FG a}) = [0.125, 0.5, 1, 0, 0, 1]$
 - $\text{Sat}(P_{>0.2} [\text{FG a}]) = \{ s_1, s_2, s_5 \}$
Measurability of ω–regular properties

• For any ω–regular property ψ
 – the set of ψ–satisfying paths in any DTMC D is measurable

• Hence, the same applies to
 – any regular safety property
 – any LTL formula

• Proof sketch
 – any ω–regular property can be represented by a DRA A
 – we can construct $D \otimes A$, in which there is a direct mapping from
 any path ω in D to a path ω' in $D \otimes A$
 – $\omega \models \psi$ iff $\omega' \models \bigvee_{1 \leq i \leq k} \left(\text{FG } \neg l_i \land \text{GF } k_i \right)$
 – GF Φ and FG Φ are measurable (see lecture 3)
 – \land and \lor = intersection/union (which preserve measurability)
Complexity

- **Complexity of model checking LTL formula ψ on DTMC D**
 - is doubly exponential in $|\psi|$ and polynomial in $|D|$ (for the algorithm presented in these lectures)
- **Converting LTL formula ψ to DRA A**
 - for some LTL formulae of size n, size of smallest DRA is 2^{2n}
- **BSCC computation**
 - Tarjan algorithm – linear in model size (states/transitions)
- **Probabilistic reachability**
 - linear equations – cubic in (product) model size
- **In total: $O(poly(|D|,|A|))$**
- **In practice: $|\psi|$ is small and $|D|$ is large**
- **Complexity can be reduced to single exponential in $|\psi|$**
 - see e.g. [CY88,CY95]
PCTL* model checking

- **PCTL* syntax:**

 - $\phi ::= \text{true} \mid a \mid \phi \land \phi \mid \neg \phi \mid P_{\sim p} [\psi]$

 - $\psi ::= \phi \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi U \psi$

- **Example:**

 - $P_{>p} [\text{GF (send } \to \ P_{>0} [\text{ F ack }])]$

- **PCTL* model checking algorithm**

 - bottom-up traversal of parse tree for formula (like PCTL)

 - to model check $P_{\sim p} [\psi]$:

 - replace maximal state subformulae with atomic propositions

 - (state subformulae already model checked recursively)

 - modified formula ψ is now an LTL formula

 - which can be model checked as for LTL
Recall – end components in MDPs

- End components of MDPs are the analogue of BSCCs in DTMCs.
- An end component is a strongly connected sub-MDP.
- A sub-MDP comprises a subset of states and a subset of the actions/distributions available in those states, which is closed under probabilistic branching.

Note:
- Action labels omitted.
- Probabilities omitted where $=1$.
Recall – end components in MDPs

- End components of MDPs are the analogue of BSCCs in DTMCs

- For every end component, there is an adversary which, with probability 1, forces the MDP to remain in the end component, and visit all its states infinitely often

- Under every adversary σ, with probability 1, the set of states visited infinitely often forms an end component
Recall – long-run properties of MDPs

• Maximum probabilities
 – \(p_{\text{max}}(s, GF a) = p_{\text{max}}(s, F T_{GFa}) \)
 • where \(T_{GFa} \) is the union of sets \(T \) for all end components
 \((T,\text{Steps}')\) with \(T \cap \text{Sat}(a) \neq \emptyset \)

 – \(p_{\text{max}}(s, FG a) = p_{\text{max}}(s, F T_{FGa}) \)
 • where \(T_{FGa} \) is the union of sets \(T \) for all end components
 \((T,\text{Steps}')\) with \(T \subseteq \text{Sat}(a) \)

• Minimum probabilities
 – need to compute from maximum probabilities...
 – \(p_{\text{min}}(s, GF a) = 1 - p_{\text{max}}(s, FG \neg a) \)
 – \(p_{\text{min}}(s, FG a) = 1 - p_{\text{max}}(s, GF \neg a) \)
Automata–based properties for MDPs

- For an MDP M and automaton A over alphabet 2^{AP}
 - consider probability of “satisfying” language $L(A) \subseteq (2^{AP})^\omega$
 - $\text{Prob}^M,\sigma(s, A) = \Pr_{s}^{M,\sigma}\{ \omega \in \text{Path}^M,\sigma(s) \mid \text{trace}(\omega) \in L(A) \}$
 - $p_{\text{max}}^M(s, A) = \sup_{\sigma \in \text{Adv}} \text{Prob}^M,\sigma(s, A)$
 - $p_{\text{min}}^M(s, A) = \inf_{\sigma \in \text{Adv}} \text{Prob}^M,\sigma(s, A)$

- Might need minimum or maximum probabilities
 - e.g. $s \models P_{\geq 0.99} [\psi_{\text{good}}] \iff p_{\text{min}}^M(s, \psi_{\text{good}}) \geq 0.99$
 - e.g. $s \models P_{\leq 0.05} [\psi_{\text{bad}}] \iff p_{\text{max}}^M(s, \psi_{\text{bad}}) \leq 0.05$

- But, ψ–regular properties are closed under negation
 - as are the automata that represent them
 - so can always consider maximum probabilities…
 - $p_{\text{max}}^M(s, \psi_{\text{bad}})$ or $1 - p_{\text{max}}^M(s, \neg \psi_{\text{good}})$
LTL model checking for MDPs

- Model check LTL specification $P \neg p [\psi]$ against MDP M

 - 1. Convert problem to one needing maximum probabilities
 - e.g. convert $P_{>p} [\psi]$ to $P_{<1-p} [\neg \psi]$

 - 2. Generate a DRA for ψ (or $\neg \psi$)
 - build nondeterministic Büchi automaton (NBA) for ψ [VW94]
 - convert the NBA to a DRA [Saf88]

 - 3. Construct product MDP $M \otimes A$

 - 4. Identify accepting end components (ECs) of $M \otimes A$

 - 5. Compute max. probability of reaching accepting ECs
 - from all states of the $D \otimes A$

 - 6. Compare probability for (s, q_s) against p for each s
Product MDP for a DRA

- For a MDP $M = (S, s_{init}, \text{Steps}, L)$
- and a (total) DRA $A = (Q, \Sigma, \delta, q_0, \text{Acc})$
 - where $\text{Acc} = \{ (L_i, K_i) \mid 1 \leq i \leq k \}$

- The product MDP $M \otimes A$ is:
 - the MDP $(S \times Q, (s_{init}, q_{init}), \text{Steps}', L')$ where:
 $q_{init} = \delta(q_0, L(s_{init}))$
 $\text{Steps}'(s,q) = \{ \mu^q \mid \mu \in \text{Step}(s) \}$
 $\mu^q(s',q') = \begin{cases}
 \mu(s') & \text{if } q' = \delta(q, L(s)) \\
 0 & \text{otherwise}
 \end{cases}$

$l_i \in L'(s,q) \text{ if } q \in L_i \text{ and } k_i \in L'(s,q) \text{ if } q \in K_i$
(i.e. state sets of acceptance condition used as labels)
Product MDP for a DRA

• For MDP \(M \) and DRA \(A \)

\[
p_{\text{max}}^M(s, A) = p_{\text{max}}^{M \otimes A}((s, q_s), \bigvee_{1 \leq i \leq k} (\text{FG } \neg l_i \land \text{GF } k_i))
\]

– where \(q_s = \delta(q_0, L(s)) \)

• Hence:

\[
p_{\text{max}}^M(s, A) = p_{\text{max}}^{M \otimes A}((s, q_s), \text{F } T_{\text{Acc}})
\]

– where \(T_{\text{Acc}} \) is the union of all sets \(T \) for accepting end components \((T, \text{Steps'})\) in \(D \otimes A \)

– an accepting end components is such that, for some \(1 \leq i \leq k \):
 • \((s, q) \models \neg l_i \) for all \((s, q) \in T \) and \((s, q) \models k_i \) for some \((s, q) \in T \)
 • i.e. \(T \cap (S \times L_i) = \emptyset \) and \(T \cap (S \times K_i) \neq \emptyset \)
MDPs – Example 1

- **Model check** $P_{<0.8} [G \neg b \land GF \ a]$

 - **Result:**
 - $p_{\text{max}}(G \neg b \land GF \ a) = [0.7, 0, 1, 1]$
 - $\text{Sat}(P_{<0.8} [G \neg b \land GF \ a]) = \{ s_0, s_1 \}$

DRA (in fact DBA):

Acc = \{(\emptyset, \{q_1\})\}
• **Model check** $P_{>0} [G \neg b \land GF a]$

 $- p_{\text{min}}(s, G \neg b \land GF a) = 1 - p_{\text{max}}(s, \neg(G \neg b \land GF a))$

 $= 1 - p_{\text{max}}(s, F b \lor FG \neg a))$

 Result: $p_{\text{min}}(G \neg b \land GF a) = [0, 0, 0, 1]$

 $- \text{Sat}(P_{>0} [G \neg b \land GF a]) = \{s_3\}$
LTL model checking for MDPs

- **Maximal end components**
 - can optimise LTL model checking using maximal end components (there may be exponentially many ECs)

- **Qualitative LTL model checking**
 - no numerical computation: use Prob1E, Prob0A algorithms

- **Complexity of model checking LTL formula ψ on MDP M**
 - is doubly exponential in $|\psi|$ and polynomial in $|M|$
 - unlike DTMCs, this cannot be improved upon

- **PCTL* model checking**
 - LTL model checking can be adapted to PCTL*, as for DTMCs

- **Optimal adversaries for LTL formulae**
 - memoryless adversary always exists for $p_{\text{max}}(s, \text{GF} \ a)$ and for $p_{\text{max}}(s, \text{FG} \ a)$ but not for arbitrary LTL formulae
Summing up…

- **Deterministic ω–automata (DBA or DRA) and DTMCs**
 - probability of language acceptance reduces to probabilistic reachability of set of accepting BSCCs in product DTMC

- **LTL model checking for DTMCs**
 - via construction of DRA for LTL formula
 - complexity: (doubly) exponential in the size of the LTL formula and polynomial in the size of the DTMC
 - measurability of any ω–regular property on a DTMC

- **PCTL* model checking for DTMCs**
 - combination of PCTL and LTL model checking algorithms

- **LTL model checking for MDPs**
 - max. probabilities of reaching accepting end components
 - min. probabilities through negation and max. probabilities