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Long-run properties 
•  Last lecture: regular safety properties 

−  e.g. “a message failure never occurs” 
−  e.g. “an alarm is only ever triggered by an error” 
−  bad prefixes represented by a regular language 
−  property always refuted by a finite trace/path 

•  Liveness properties 
−  e.g. "for every request, an acknowledge eventually follows” 
−  no finite prefix refutes the property 
−  any finite prefix can be extended to a satisfying trace 

•  Fairness assumptions 
−  e.g. “every process that is enabled infinitely often is scheduled 

infinitely often” 
•  Need properties of infinite paths 
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Overview 

•  ω-regular expressions and ω-regular languages 

•  Nondeterministic Büchi automata (NBA) 

•  Deterministic Büchi automata (DBA) 

•  Deterministic Rabin automata (DRA) 

•  Deterministic ω-automata and DTMCs 
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ω-regular expressions 
•  Regular expressions E over alphabet Σ are given by: 

−  E ::= ∅ | ɛ | α | E + E | E.E | E*         (where α ∈ Σ) 

•  An ω-regular expression takes the form: 
−  G = E1.(F1)ω + E2.(F2)ω + … + En.(Fn)ω 

−  where Ei and Fi are regular expressions with ɛ ∉ L(Fi) 

•  The language L(G) ⊆ Σω of an ω-regular expression G 
−  is L(E1).L(F1)ω ∪ L(E2).L(F2)ω + … + L(En).L(Fn)ω 

−  where L(E) is the language of regular expression E 
−  and L(E)ω = { wω | w∈L(E) } 

•  Example: (α+β+γ)*(β+γ)ω for Σ = { α, β, γ } 



5 DP/Probabilistic Model Checking, Michaelmas 2011 

ω-regular languages/properties 
•  A language L ⊆ Σω over alphabet Σ is an ω-regular 

language if and only if: 
−  L = L(G) for some ω-regular expression G 

•  ω-regular languages are: 
−  closed under intersection 
−  closed under complementation 

•  P ⊆ (2AP)ω is an ω-regular property 
−  if P is an ω-regular language over 2AP 

−  (where AP is the set of atomic propositions for some model) 
−  path ω satisfies P if trace(ω) ∈ P 
−  NB: any regular safety property is an ω-regular property 
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Examples 
•  A message is sent successfully infinitely often 

−  ((¬succ)*.succ)ω 

•  Every time the process tries to send a message, it 
eventually succeeds in sending it 
−  ((¬try)* + try.(¬succ)*.succ)ω 
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Büchi automata 
•  A nondeterministic Büchi automaton (NBA) is… 

−  a tuple A = (Q, Σ, δ, Q0, F) where: 

−  Q is a finite set of states 
−  Σ is an alphabet 
−  δ : Q × Σ → 2Q is a transition function 
−  Q0 ⊆ Q is a set of initial states 
−  F ⊆ Q is a set of “accept” states 

−  i.e. just like a nondeterministic finite automaton (NFA) 

•  The difference is the accepting condition… 
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Language of an NBA 
•  Consider a Büchi automaton A = (Q, Σ, δ, Q0, F) 

•  A run of A on an infinite word α1α2… is: 
−  an infinite sequence of automata states q0q1… such that: 
−  q0 ∈ Q0  and  qi+1 ∈ δ(qi, αi+1) for all i≥0 

•  An accepting run is a run with qi ∈ F for infinitely many i 

•  The language L(A) of A is the set of all infinite words on 
which there exists an accepting run of A 
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Example 
•  Infinitely often a 

q0 q1 
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Example… 
•  As in the last lecture, we use automata to represent 

languages of the form L ⊆ (2AP)ω 

•  So, if AP = {a,b}, then: 

•  …is actually: 

q0 q1 
¬a 

a 
a 

¬a 

q0 q1 

∅, {b} 

{a}, {a,b} 
{a}, 
{a,b} 

∅, {b} 



11 DP/Probabilistic Model Checking, Michaelmas 2011 

Properties of Büchi automata 
•  ω-regular languages 

−  L(A) is an ω-regular language for any NBA A 
−  any ω-regular language can be represented by an NBA 

•  ω-regular expressions 
−  like for finite automata, can construct an NBA from an 

arbitrary ω-regular expression E1.(F1)ω + … + En.(Fn)ω 
−  i.e. there are operations on NBAs to: 

•  construct NBA accepting Lω for regular language L 
•  construct NBA from NFA for (regular) E and NBA for (ω-regular) F 
•  construct NBA accepting union L(A1) ∪ L(A2) for NBA A1 and A2 
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Büchi automata and LTL 
•  LTL formulae 

−  ψ ::=  true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ 
−  where a ∈ AP is an atomic proposition 

•  Can convert any LTL formula ψ into an NBA A over 2AP 

−  i.e. ω ⊨ ψ ⇔ trace(ω) ∈ L(A) for any path ω 

•  LTL-to-NBA translation (see e.g. [VW94], [DGV99]) 
−  construct a generalized NBA (multiple sets of accept states) 
−  based on decomposition of LTL formula into subformulae 
−  can convert GNBA into an equivalent NBA 
−  various optimisations to the basic techniques developed 
−  not covered here; see e.g. section 5.2 of [BK08] 
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Büchi automata and LTL 
•  GF a     (“infinitely often a”) 

•  G(a → F b)     (“b always eventually follows a”) 
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Deterministic Büchi automata 
•  Like for finite automata… 

•  A NBA is deterministic if: 
−  |Q0|=1 
−  |δ(q, α)| ≤ 1 for all q ∈ Q and α ∈ Σ 
−  i.e. one initial state and no nondeterministic successors 

•  A deterministic Büchi automaton (DBA) is total if: 
−  |δ(q, α)| = 1 for all q ∈ Q and α ∈ Σ 
−  i.e. unique successor states 

•  But, NBA can not always be determinised… 
−  i.e. NBA are strictly more expressive than DBA 
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NBA and DBA 
•  NBA and DBA for the LTL formula G b ∧ GF a 
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No DBA possible 
•  Consider the ω-regular expression (α+β)*αω over Σ={α,β} 

−  i.e. words containing only finitely many instances of β 
−  there is no deterministic Büchi automata accepting this 

•  In particular, take α = {a} and β = ∅,  i.e. Σ=2AP, AP={a} 
−  (α+β)*αω represents the LTL formula FG a 

•  FG a is represented by the following NBA: 

•  But there is no DBA for FG a 
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Deterministic Rabin automata 
•  A deterministic Rabin automaton (DRA) is… 

−  a tuple A = (Q, Σ, δ, q0, Acc) where: 

−  Q is a finite set of states 
−  Σ is an alphabet 
−  δ : Q × Σ → Q is a transition function 
−  q0 ∈ Q is an initial state 
−  Acc ⊆ 2Q × 2Q is an acceptance condition 

•  The acceptance condition is a set of pairs of state sets 
−  Acc = { (Li, Ki) | 1≤i≤k } 



18 DP/Probabilistic Model Checking, Michaelmas 2011 

Deterministic Rabin automata 
•  A run of a word on a DRA is accepting iff: 

−  for some pair (Li, Ki), the states in Li are visited finitely often 
and (some of) the states in Ki are visited infinitely often 

−  or in LTL:  

•  Hence: 
−  a deterministic Büchi automaton is a special case of a 

deterministic Rabin automaton where Acc = { (∅, {F}) } 
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FG a 
•  NBA for FG a  (no DBA exists) 

•  DRA for FG a 

−  where acceptance condition is Acc = { ({q0},{q1}) } 
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Example - DRA 
•  Another example of a DRA (over alphabet 2{a,b}) 

−  where acceptance condition is Acc = { ({q1},{q0}) } 

•  In LTL:  G(a → F(¬a∧b)) ∧ FG ¬a 
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Properties of DRA 

•  Any ω-regular language can represented by a DRA 
−  (and L(A) is an ω-regular language for any DRA A) 

•  i.e. DRA and NBA are equally expressive 
−  (but NBA may be more compact) 
−  and DRA are strictly more expressive than DBA 

•  Any NBA can be converted to an equivalent DRA [Saf88] 
−  size of the resulting DRA is 2O(nlogn) 
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Deterministic ω-automata and DTMCs 
•  Let A be a DBA or DRA over the alphabet 2AP 

−  i.e. L(A) ⊆ (2AP)ω identifies a set of paths in a DTMC 

•  Let ProbD(s, A) denote the corresponding probability 
−  from state s in a discrete-time Markov chain D 
−  i.e. ProbD(s, A) = PrD

s{ ω ∈ Path(s) | trace(ω) ∈ L(A) } 

•  Like for finite automata (i.e. DFA), we can evaluate  
ProbD(s, A) by constructing a product of D and A 
−  which records the state of both the DTMC and the automaton 
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Product DTMC for a DBA 
•  For a DTMC D = (S, sinit, P, L) 
•  and a (total) DBA A = (Q, Σ, δ, q0, F) 

•  The product DTMC D ⊗ A is: 
−  the DTMC (S×Q, (sinit,qinit), P’, L’) where: 
      qinit = δ(q0,L(sinit)) 

      L’(s,q) = { accept } if q ∈ F and L’(s,q) = ∅ otherwise 

•  Since A is deterministic 
−  unique mappings between paths of D, A and D ⊗ A 
−  probabilities of paths are preserved 
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Product DTMC for a DBA 
•  For DTMC D and DBA A 

−  where qs = δ(q0,L(s)) 

•  Hence: 

−  where TGFaccept = union of D⊗A BSCCs T with T∩Sat(accept)≠∅ 

•  Reduces to computing BSCCs and reachability probabilities 

ProbD(s, A) = ProbD⊗A((s,qs), GF accept) 

ProbD(s, A) = ProbD⊗A((s,qs), F TGFaccept) 
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Example 

•  Compute Prob(s0, GF a) 
−  property can be represented as a DBA 

•  Result: 1 

q0 q1 
¬a 

a 
a 

¬a 

s1 s0 s2 
0.1 

{b} 

0.3 

s4 s3 s5 

0.6 0.2 0.3 

0.5 

1 

{a} 

0.9 
0.1 

1 

1 

{a} 

{a} 



26 DP/Probabilistic Model Checking, Michaelmas 2011 

Example 2 
•  Compute Prob(s0, G ¬b ∧ GF a) 

−  property can be represented as a DBA 

•  Result: 0.75 
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Product DTMC for a DRA 
•  For a DTMC D = (S, sinit, P, L) 
•  and a (total) DRA A = (Q, Σ, δ, q0, Acc) 

−  where Acc = { (Li, Ki) | 1≤i≤k } 

•  The product DTMC D ⊗ A is: 
−  the DTMC (S×Q, (sinit,qinit), P’, L’) where: 
      qinit = δ(q0,L(sinit)) 

      li ∈ L’(s,q) if q ∈ Li and ki ∈ L’(s,q) if q ∈ Ki 
      (i.e. state sets of acceptance condition used as labels)  

•  (same product as for DBA, except for state labelling) 
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Product DTMC for a DRA 
•  For DTMC D and DRA A 

−  where qs = δ(q0,L(s)) 
•  Hence: 

−  where TAcc is the union of all accepting BSCCs in D⊗A 
−  an accepting BSCC T of D⊗A is such that, for some 1≤i≤k: 

•  q ⊨ ¬li for all (s,q) ∈ T and q ⊨ ki for some (s,q) ∈ T 
•  i.e. T ∩ (S × Li) = ∅ and T ∩ (S × Ki) ≠ ∅ 

•  Reduces to computing BSCCs and reachability probabilities 

ProbD(s, A) = ProbD⊗A((s,qs), F TAcc) 

ProbD(s, A) = ProbD⊗A((s,qs), ∨1≤i≤k (FG ¬li ∧ GF ki) 
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Example 3 
•  Compute Prob(s0, FG a) 

−  property can be represented as a DRA 

•  Result: 0.125 
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Example 4 
•  Compute Prob(s0, G(b → F(¬b∧a)) ∧ FG ¬b) 

−  property can be represented as a DRA 

•  Result: 1 
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Summing up… 
•  ω-regular expressions and ω-regular languages 

−  languages of infinite words: E1.(F1)ω + E2.(F2)ω + … + En.(Fn)ω 
•  Nondeterministic Büchi automata (NBA) 

−  accepting runs visit a state in F infinitely often 
−  can represent any ω-regular language by an NBA 
−  can translate any LTL formula into equivalent NBA 

•  Deterministic Büchi automata (DBA) 
−  strictly less expressive than NBA (e.g. no NBA for FG a) 

•  Deterministic Rabin automata (DRA) 
−  generalised acceptance condition: { (Li, Ki) | 1≤i≤k } 
−  as expressive as NBA; can convert any NBA to a DRA 

•  Deterministic ω-automata and DTMCs 
−  product DTMC + BSCC computation + reachability 


