Lecture 17
\(\omega\)-regular properties

Dr. Dave Parker

Department of Computer Science
University of Oxford
Long-run properties

• Last lecture: regular safety properties
 – e.g. “a message failure never occurs”
 – e.g. “an alarm is only ever triggered by an error”
 – bad prefixes represented by a regular language
 – property always refuted by a finite trace/path

• Liveness properties
 – e.g. "for every request, an acknowledge eventually follows”
 – no finite prefix refutes the property
 – any finite prefix can be extended to a satisfying trace

• Fairness assumptions
 – e.g. “every process that is enabled infinitely often is scheduled
 infinitely often”

• Need properties of infinite paths
Overview

- ω–regular expressions and ω–regular languages
- Nondeterministic Büchi automata (NBA)
- Deterministic Büchi automata (DBA)
- Deterministic Rabin automata (DRA)
- Deterministic ω–automata and DTMCs
ω–regular expressions

- Regular expressions E over alphabet Σ are given by:
 $$E ::= \emptyset \mid \varepsilon \mid \alpha \mid E + E \mid E.E \mid E^* \quad (\text{where } \alpha \in \Sigma)$$

- An ω–regular expression takes the form:
 $$G = E_1.(F_1)^\omega + E_2.(F_2)^\omega + \ldots + E_n.(F_n)^\omega$$
 where E_i and F_i are regular expressions with $\varepsilon \not\in L(F_i)$

- The language $L(G) \subseteq \Sigma^\omega$ of an ω–regular expression G
 - is $L(E_1).L(F_1)^\omega \cup L(E_2).L(F_2)^\omega + \ldots + L(E_n).L(F_n)^\omega$
 - where $L(E)$ is the language of regular expression E
 - and $L(E)^\omega = \{ w^\omega \mid w \in L(E) \}$

- Example: $(\alpha + \beta + \gamma)^*(\beta + \gamma)^\omega$ for $\Sigma = \{ \alpha, \beta, \gamma \}$
ω–regular languages/properties

• A language $L \subseteq \Sigma^\omega$ over alphabet Σ is an ω–regular language if and only if:
 – $L = L(G)$ for some ω–regular expression G

• ω–regular languages are:
 – closed under intersection
 – closed under complementation

• $P \subseteq (2^{AP})^\omega$ is an ω–regular property
 – if P is an ω–regular language over 2^{AP}
 – (where AP is the set of atomic propositions for some model)
 – path ω satisfies P if $\text{trace}(\omega) \in P$
 – NB: any regular safety property is an ω–regular property
Examples

• A message is sent successfully infinitely often
 \[((\neg \text{succ})^*.\text{succ})^\omega \]

• Every time the process tries to send a message, it eventually succeeds in sending it
 \[((\neg \text{try})^* + \text{try.}(\neg \text{succ})^*.\text{succ})^\omega \]
Büchi automata

• A nondeterministic Büchi automaton (NBA) is…

 – a tuple \(A = (Q, \Sigma, \delta, Q_0, F) \) where:

 – \(Q \) is a finite set of states
 – \(\Sigma \) is an alphabet
 – \(\delta : Q \times \Sigma \rightarrow 2^Q \) is a transition function
 – \(Q_0 \subseteq Q \) is a set of initial states
 – \(F \subseteq Q \) is a set of “accept” states

 – i.e. just like a nondeterministic finite automaton (NFA)

• The difference is the accepting condition…
Language of an NBA

• Consider a Büchi automaton $A = (Q, \Sigma, \delta, Q_0, F)$

• A run of A on an infinite word $\alpha_1\alpha_2\ldots$ is:
 - an infinite sequence of automata states $q_0 q_1\ldots$ such that:
 - $q_0 \in Q_0$ and $q_{i+1} \in \delta(q_i, \alpha_{i+1})$ for all $i \geq 0$

• An accepting run is a run with $q_i \in F$ for infinitely many i

• The language $L(A)$ of A is the set of all infinite words on which there exists an accepting run of A
Example

• Infinitely often a
Example…

- As in the last lecture, we use automata to represent languages of the form $L \subseteq (2^{AP})^\omega$

- So, if $AP = \{a,b\}$, then:

- …is actually:

- …is actually:
Properties of Büchi automata

- \(\omega \)-regular languages
 - \(L(A) \) is an \(\omega \)-regular language for any NBA \(A \)
 - any \(\omega \)-regular language can be represented by an NBA

- \(\omega \)-regular expressions
 - like for finite automata, can construct an NBA from an arbitrary \(\omega \)-regular expression \(E_1.(F_1)^\omega + \ldots + E_n.(F_n)^\omega \)
 - i.e. there are operations on NBAs to:
 - construct NBA accepting \(L^\omega \) for regular language \(L \)
 - construct NBA from NFA for (regular) \(E \) and NBA for (\(\omega \)-regular) \(F \)
 - construct NBA accepting union \(L(A_1) \cup L(A_2) \) for NBA \(A_1 \) and \(A_2 \)
Büchi automata and LTL

- **LTL formulae**
 - \(\psi ::= \text{true} \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi \cup \psi \)
 - where \(a \in \text{AP} \) is an atomic proposition

- **Can convert any LTL formula \(\psi \) into an NBA \(A \) over \(2^\text{AP} \)**
 - i.e. \(\omega \models \psi \iff \text{trace}(\omega) \in L(A) \) for any path \(\omega \)

- **LTL–to–NBA translation (see e.g. [VW94], [DGV99])**
 - construct a generalized NBA (multiple sets of accept states)
 - based on decomposition of LTL formula into subformulae
 - can convert GNBA into an equivalent NBA
 - various optimisations to the basic techniques developed
 - not covered here; see e.g. section 5.2 of [BK08]
Büchi automata and LTL

- \(GF \, a \) ("infinitely often a")

- \(G(a \rightarrow F \, b) \) ("b always eventually follows a")
Deterministic Büchi automata

- Like for finite automata...

- A NBA is deterministic if:
 - $|Q_0| = 1$
 - $|\delta(q, \alpha)| \leq 1$ for all $q \in Q$ and $\alpha \in \Sigma$
 - i.e. one initial state and no nondeterministic successors

- A deterministic Büchi automaton (DBA) is total if:
 - $|\delta(q, \alpha)| = 1$ for all $q \in Q$ and $\alpha \in \Sigma$
 - i.e. unique successor states

- But, NBA can not always be determinised...
 - i.e. NBA are strictly more expressive than DBA
NBA and DBA

- NBA and DBA for the LTL formula $G b \land GF a$

\[\text{NBA: } \quad q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{a} q_1 \]

\[\text{DBA: } \quad q_0 \xrightarrow{\neg a} q_0 \xrightarrow{a} q_1 \xrightarrow{\neg a} q_1 \]
No DBA possible

• Consider the ω-regular expression $(\alpha + \beta)^* \alpha^\omega$ over $\Sigma = \{\alpha, \beta\}$
 – i.e. words containing only finitely many instances of β
 – there is no deterministic Büchi automata accepting this

• In particular, take $\alpha = \{a\}$ and $\beta = \emptyset$, i.e. $\Sigma = 2^{\text{AP}}$, $\text{AP} = \{a\}$
 – $(\alpha + \beta)^* \alpha^\omega$ represents the LTL formula $FG \ a$

• $FG \ a$ is represented by the following NBA:

• But there is no DBA for $FG \ a$
Deterministic Rabin automata

- A deterministic Rabin automaton (DRA) is...

 - a tuple $A = (Q, \Sigma, \delta, q_0, \text{Acc})$ where:

 - Q is a finite set of states
 - Σ is an alphabet
 - $\delta : Q \times \Sigma \rightarrow Q$ is a transition function
 - $q_0 \in Q$ is an initial state
 - $\text{Acc} \subseteq 2^Q \times 2^Q$ is an acceptance condition

- The acceptance condition is a set of pairs of state sets

 - $\text{Acc} = \{ (L_i, K_i) \mid 1 \leq i \leq k \}$
Deterministic Rabin automata

• A run of a word on a DRA is accepting iff:
 – for some pair \((L_i, K_i)\), the states in \(L_i\) are visited finitely often and (some of) the states in \(K_i\) are visited infinitely often
 – or in LTL: \(\forall i (FG \neg L_i \land GF K_i)\)

• Hence:
 – a deterministic Büchi automaton is a special case of a deterministic Rabin automaton where \(Acc = \{ (\emptyset, \{F\}) \}\)
FG a

- NBA for FG a (no DBA exists)

- DRA for FG a

 - where acceptance condition is $\text{Acc} = \{(q_0, q_1)\}$
Example – DRA

• Another example of a DRA (over alphabet \(2^{\{a,b\}}\))

\[
\begin{array}{c}
\begin{array}{c}
\text{q}_0 \\
\text{q}_1
\end{array}
\end{array}
\]

\(a\)
\(a \lor \neg b\)
\(\neg a \land b\)
\(\neg a\)

– where acceptance condition is \(\text{Acc} = \{ (\{q_1\},\{q_0\}) \} \)

• **In LTL:** \(G(a \rightarrow F(\neg a \land b)) \land FG \neg a\)
Properties of DRA

• Any ω–regular language can represented by a DRA
 – (and $L(A)$ is an ω–regular language for any DRA A)

• i.e. DRA and NBA are equally expressive
 – (but NBA may be more compact)
 – and DRA are strictly more expressive than DBA

• Any NBA can be converted to an equivalent DRA [Saf88]
 – size of the resulting DRA is $2^{O(n\log n)}$
Deterministic ω–automata and DTMCs

• Let A be a DBA or DRA over the alphabet 2^{AP}
 – i.e. $L(A) \subseteq (2^{AP})^\omega$ identifies a set of paths in a DTMC

• Let $\text{Prob}^D(s, A)$ denote the corresponding probability
 – from state s in a discrete–time Markov chain D
 – i.e. $\text{Prob}^D(s, A) = \text{Pr}^D_s\{ \omega \in \text{Path}(s) \mid \text{trace}(\omega) \in L(A) \}$

• Like for finite automata (i.e. DFA), we can evaluate $\text{Prob}^D(s, A)$ by constructing a product of D and A
 – which records the state of both the DTMC and the automaton
Product DTMC for a DBA

- For a DTMC $D = (S, s_{init}, P, L)$
- and a (total) DBA $A = (Q, \Sigma, \delta, q_0, F)$

- The product DTMC $D \otimes A$ is:
 - the DTMC $(S \times Q, (s_{init},q_{init}), P', L')$ where:

 $q_{init} = \delta(q_0, L(s_{init}))$

 $P'((s_1, q_1), (s_2, q_2)) = \begin{cases}
 P(s_1, s_2) & \text{if } q_2 = \delta(q_1, L(s_2)) \\
 0 & \text{otherwise}
 \end{cases}$

 $L'(s,q) = \{ \text{accept} \}$ if $q \in F$ and $L'(s,q) = \emptyset$ otherwise

- Since A is deterministic
 - unique mappings between paths of D, A and $D \otimes A$
 - probabilities of paths are preserved
Product DTMC for a DBA

- For DTMC D and DBA A

$$\text{Prob}^D(s, A) = \text{Prob}^{D \otimes A}((s, q_s), \text{GF accept})$$

- where $q_s = \delta(q_0, L(s))$

- Hence:

$$\text{Prob}^D(s, A) = \text{Prob}^{D \otimes A}((s, q_s), F T_{\text{GF accept}})$$

- where $T_{\text{GF accept}} = \text{union of } D \otimes A \text{ BSCCs } T \text{ with } T \cap \text{Sat}(% accepts) \neq \emptyset$

- Reduces to computing BSCCs and reachability probabilities
Example

• Compute Prob(s₀, GF a)
 – property can be represented as a DBA

Result: 1
Example 2

- Compute $\text{Prob}(s_0, G \neg b \land GF a)$
 - property can be represented as a DBA

- Result: 0.75
Product DTMC for a DRA

- For a DTMC $D = (S, s_{\text{init}}, P, L)$
- and a (total) DRA $A = (Q, \Sigma, \delta, q_0, \text{Acc})$
 - where $\text{Acc} = \{ (L_i, K_i) \mid 1 \leq i \leq k \}$

- The product DTMC $D \otimes A$ is:
 - the DTMC $(S \times Q, (s_{\text{init}}, q_{\text{init}}), P', L')$ where:
 $q_{\text{init}} = \delta(q_0, L(s_{\text{init}}))$
 $P'((s_1, q_1), (s_2, q_2)) = \begin{cases} P(s_1, s_2) & \text{if } q_2 = \delta(q_1, L(s_2)) \\ 0 & \text{otherwise} \end{cases}$
 $l_i \in L'(s, q)$ if $q \in L_i$ and $k_i \in L'(s, q)$ if $q \in K_i$
 (i.e. state sets of acceptance condition used as labels)

- (same product as for DBA, except for state labelling)
Product DTMC for a DRA

• For DTMC D and DRA A

\[
\text{Prob}^D(s, A) = \text{Prob}^{D \otimes A}((s, q_s), \bigvee_{1 \leq i \leq k} (\text{FG} \neg l_i \land \text{GF} k_i))
\]

– where \(q_s = \delta(q_0, L(s))\)

• Hence:

\[
\text{Prob}^D(s, A) = \text{Prob}^{D \otimes A}((s, q_s), F T_{\text{Acc}})
\]

– where \(T_{\text{Acc}}\) is the union of all accepting BSCCs in \(D \otimes A\)

– an accepting BSCC \(T\) of \(D \otimes A\) is such that, for some \(1 \leq i \leq k\):

 • \(q \models \neg l_i\) for all \((s, q) \in T\) and \(q \models k_i\) for some \((s, q) \in T\)

 • i.e. \(T \cap (S \times L_i) = \emptyset\) and \(T \cap (S \times K_i) \neq \emptyset\)

• Reduces to computing BSCCs and reachability probabilities
Example 3

- Compute $\text{Prob}(s_0, \text{FG a})$
 - property can be represented as a DRA

\[
\begin{align*}
\text{Acc} &= \{ (\{q_0\}, \{q_1\}) \}
\end{align*}
\]

- Result: 0.125
Example 4

• Compute $\text{Prob}(s_0, G(b \rightarrow F(\neg b \land a)) \land FG \neg b)$

 – property can be represented as a DRA

• Result: 1

DP/Probabilistic Model Checking, Michaelmas 2011
Summing up…

• ω–regular expressions and ω–regular languages
 – languages of infinite words: $E_1.(F_1)^\omega + E_2.(F_2)^\omega + \ldots + E_n.(F_n)^\omega$

• Nondeterministic Büchi automata (NBA)
 – accepting runs visit a state in F infinitely often
 – can represent any ω–regular language by an NBA
 – can translate any LTL formula into equivalent NBA

• Deterministic Büchi automata (DBA)
 – strictly less expressive than NBA (e.g. no NBA for $FG \ a$)

• Deterministic Rabin automata (DRA)
 – generalised acceptance condition: $\{ (L_i, K_i) \mid 1 \leq i \leq k \}$
 – as expressive as NBA; can convert any NBA to a DRA

• Deterministic ω–automata and DTMCs
 – product DTMC + BSCC computation + reachability