Lecture 17 ω-regular properties

Dr. Dave Parker

Department of Computer Science University of Oxford

Long-run properties

- Last lecture: regular safety properties
 - e.g. "a message failure never occurs"
 - e.g. "an alarm is only ever triggered by an error"
 - bad prefixes represented by a regular language
 - property always refuted by a finite trace/path
- Liveness properties
 - e.g. "for every request, an acknowledge eventually follows"
 - no finite prefix refutes the property
 - any finite prefix can be extended to a satisfying trace
- Fairness assumptions
 - e.g. "every process that is enabled infinitely often is scheduled infinitely often"
- Need properties of infinite paths

Overview

- ω -regular expressions and ω -regular languages
- Nondeterministic Büchi automata (NBA)
- Deterministic Büchi automata (DBA)
- Deterministic Rabin automata (DRA)
- Deterministic ω -automata and DTMCs

ω-regular expressions

- Regular expressions **E** over alphabet Σ are given by:
 - $E ::= \emptyset | \epsilon | \alpha | E + E | E.E | E^* \qquad \text{(where } \alpha \in \Sigma\text{)}$
- An ω -regular expression takes the form:

 $- \ G = E_1.(F_1)^{\omega} + E_2.(F_2)^{\omega} + \dots + E_n.(F_n)^{\omega}$

- where E_i and F_i are regular expressions with $\epsilon \notin L(F_i)$

- The language $L(G) \subseteq \Sigma^{\omega}$ of an ω -regular expression G
 - $\text{ is } L(E_1).L(F_1)^\omega \,\cup\, L(E_2).L(F_2)^\omega \,+\, \ldots \,+\, L(E_n).L(F_n)^\omega$
 - where L(E) is the language of regular expression E
 - and $L(E)^{\omega} = \{ w^{\omega} \mid w \in L(E) \}$
- Example: $(\alpha + \beta + \gamma)^* (\beta + \gamma)^{\omega}$ for $\Sigma = \{ \alpha, \beta, \gamma \}$

ω -regular languages/properties

- A language $L \subseteq \Sigma^{\omega}$ over alphabet Σ is an ω -regular language if and only if:
 - L = L(G) for some ω -regular expression G
- ω-regular languages are:
 - closed under intersection
 - closed under complementation
- $P \subseteq (2^{AP})^{\omega}$ is an ω -regular property
 - if P is an $\omega\text{-regular}$ language over 2^{AP}
 - (where AP is the set of atomic propositions for some model)
 - path ω satisfies P if trace(ω) \in P
 - NB: any regular safety property is an ω -regular property

Examples

- A message is sent successfully infinitely often
 - ((¬succ)*.succ) $^{\omega}$
- Every time the process tries to send a message, it eventually succeeds in sending it
 - $((\neg try)^* + try.(\neg succ)^*.succ)^{\omega}$

Büchi automata

- A nondeterministic Büchi automaton (NBA) is...
 - a tuple $A = (Q, \Sigma, \delta, Q_0, F)$ where:
 - **Q** is a finite set of states
 - $-\Sigma$ is an alphabet
 - δ : $Q \times \Sigma \rightarrow 2^Q$ is a transition function
 - $\mathbf{Q}_0 \subseteq \mathbf{Q}$ is a set of initial states
 - $\mathbf{F} \subseteq \mathbf{Q}$ is a set of "accept" states
 - i.e. just like a nondeterministic finite automaton (NFA)
- The difference is the accepting condition...

Language of an NBA

- Consider a Büchi automaton $A = (Q, \Sigma, \delta, Q_0, F)$
- A run of A on an infinite word $\alpha_1 \alpha_2 \dots$ is:
 - an infinite sequence of automata states $q_0q_1...$ such that:
 - $\ q_0 \in Q_0 \ \text{ and } \ q_{i+1} \in \delta(q_i, \, \alpha_{i+1}) \text{ for all } i {\geq} 0$
- An accepting run is a run with $q_i \in F$ for infinitely many i
- The language L(A) of A is the set of all infinite words on which there exists an accepting run of A

Example

• Infinitely often a

Example...

- As in the last lecture, we use automata to represent languages of the form $L \subseteq (2^{AP})^{\omega}$
- So, if $AP = \{a, b\}$, then:

• ... is actually:

Properties of Büchi automata

- ω-regular languages
 - L(A) is an ω -regular language for any NBA A
 - any ω -regular language can be represented by an NBA
- ω -regular expressions
 - like for finite automata, can construct an NBA from an arbitrary ω -regular expression $E_1.(F_1)^{\omega} + ... + E_n.(F_n)^{\omega}$
 - i.e. there are operations on NBAs to:
 - $\cdot\,$ construct NBA accepting L^ω for regular language L
 - $\cdot\,$ construct NBA from NFA for (regular) E and NBA for ($\omega-$ regular) F
 - · construct NBA accepting union $L(A_1) \cup L(A_2)$ for NBA A_1 and A_2

Büchi automata and LTL

- LTL formulae
 - $-\psi ::= true \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi \cup \psi$
 - where $a \in AP$ is an atomic proposition
- Can convert any LTL formula ψ into an NBA A over 2^{AP}

- i.e. $\omega \models \psi \Leftrightarrow trace(\omega) \in L(A)$ for any path ω

- LTL-to-NBA translation (see e.g. [VW94], [DGV99])
 - construct a generalized NBA (multiple sets of accept states)
 - based on decomposition of LTL formula into subformulae
 - can convert GNBA into an equivalent NBA
 - various optimisations to the basic techniques developed
 - not covered here; see e.g. section 5.2 of [BK08]

Büchi automata and LTL

• GF a ("infinitely often a")

• $G(a \rightarrow F b)$ ("b always eventually follows a")

Deterministic Büchi automata

- Like for finite automata...
- A NBA is deterministic if:
 - $|Q_0| = 1$
 - $\ |\delta(q,\,\alpha)| \le 1 \ \text{for all} \ q \in Q \ \text{and} \ \alpha \in \Sigma$
 - i.e. one initial state and no nondeterministic successors
- A deterministic Büchi automaton (DBA) is total if:
 - $\ |\delta(q,\,\alpha)| = 1 \ \text{for all} \ q \in Q \ \text{and} \ \alpha \in \Sigma$
 - i.e. unique successor states
- But, NBA can not always be determinised...
 - i.e. NBA are strictly more expressive than DBA

NBA and DBA

+ NBA and DBA for the LTL formula G b \wedge GF a

No DBA possible

- Consider the ω -regular expression $(\alpha + \beta)^* \alpha^{\omega}$ over $\Sigma = \{\alpha, \beta\}$
 - i.e. words containing only finitely many instances of $\boldsymbol{\beta}$
 - there is no deterministic Büchi automata accepting this
- In particular, take $\alpha = \{a\}$ and $\beta = \emptyset$, i.e. $\Sigma = 2^{AP}$, $AP = \{a\}$
 - $(\alpha + \beta)^* \alpha^{\omega}$ represents the LTL formula FG a
- FG a is represented by the following NBA:

• But there is no DBA for FG a

Deterministic Rabin automata

- A deterministic Rabin automaton (DRA) is...
 - a tuple A = (Q, Σ , δ , q_0 , Acc) where:
 - Q is a finite set of states
 - $-\Sigma$ is an alphabet
 - $-\delta: \mathbf{Q} \times \mathbf{\Sigma} \rightarrow \mathbf{Q}$ is a transition function
 - $q_0 \in Q$ is an initial state
 - Acc \subseteq 2^Q \times 2^Q is an acceptance condition
- The acceptance condition is a set of pairs of state sets $- Acc = \{ (L_i, K_i) \mid 1 \le i \le k \}$

Deterministic Rabin automata

- A run of a word on a DRA is accepting iff:
 - for some pair (L_i, K_i) , the states in L_i are visited finitely often and (some of) the states in K_i are visited infinitely often

- or in LTL:
$$V_{1 \le i \le k}$$
 (FG $\neg L_i \land GFK_i$)

- Hence:
 - a deterministic Büchi automaton is a special case of a deterministic Rabin automaton where Acc = { (Ø, {F}) }

• NBA for FG a (no DBA exists)

• DRA for FG a

- where acceptance condition is $Acc = \{ (\{q_0\}, \{q_1\}) \}$

Example – DRA

• Another example of a DRA (over alphabet 2^{a,b})

- where acceptance condition is $Acc = \{ (\{q_1\}, \{q_0\}) \}$

• In LTL: G(a \rightarrow F($\neg a \land b$)) \land FG $\neg a$

Properties of DRA

- Any ω -regular language can represented by a DRA
 - (and L(A) is an ω -regular language for any DRA A)
- i.e. DRA and NBA are equally expressive
 - (but NBA may be more compact)
 - and DRA are strictly more expressive than DBA
- Any NBA can be converted to an equivalent DRA [Saf88]
 - size of the resulting DRA is $2^{O(nlogn)}$

Deterministic ω -automata and DTMCs

• Let A be a DBA or DRA over the alphabet 2^{AP}

– i.e. L(A) \subseteq (2^{AP}) $^{\omega}$ identifies a set of paths in a DTMC

- Let Prob^D(s, A) denote the corresponding probability
 - from state s in a discrete-time Markov chain D
 - i.e. $Prob^{D}(s, A) = Pr^{D}_{s} \{ \omega \in Path(s) \mid trace(\omega) \in L(A) \}$
- Like for finite automata (i.e. DFA), we can evaluate Prob^D(s, A) by constructing a product of D and A
 - which records the state of both the DTMC and the automaton

Product DTMC for a DBA

- For a DTMC $D = (S, s_{init}, P, L)$
- and a (total) DBA $A = (Q, \Sigma, \delta, q_0, F)$
- The product DTMC $D \otimes A$ is:

– the DTMC (S×Q, (s_{init},q_{init}), P', L') where:

$$\begin{aligned} q_{init} &= \delta(q_0, L(s_{init})) \\ P'((s_1, q_1), (s_2, q_2)) &= \begin{cases} P(s_1, s_2) & \text{if } q_2 = \delta(q_1, L(s_2)) \\ 0 & \text{otherwise} \end{cases} \\ L'(s, q) &= \{ \text{ accept } \} \text{ if } q \in F \text{ and } L'(s, q) = \emptyset \text{ otherwise} \end{cases} \end{aligned}$$

- Since A is deterministic
 - unique mappings between paths of D, A and D \otimes A
 - probabilities of paths are preserved

Product DTMC for a DBA

For DTMC D and DBA A

 $Prob^{D}(s, A) = Prob^{D \otimes A}((s,q_s), GF accept)$

- where $q_s = \delta(q_0, L(s))$

• Hence:

 $Prob^{D}(s, A) = Prob^{D \otimes A}((s,q_s), F T_{GFaccept})$

− where $T_{GFaccept}$ = union of D⊗A BSCCs T with $T \cap Sat(accept) \neq \emptyset$

Reduces to computing BSCCs and reachability probabilities

Example

- Compute Prob(s₀, GF a)
 - property can be represented as a DBA

• Result: 1

Example 2

- Compute Prob(s₀, G \neg b \land GF a)
 - property can be represented as a DBA

• Result: 0.75

Product DTMC for a DRA

- For a DTMC $D = (S, s_{init}, P, L)$
- and a (total) DRA A = (Q, Σ , δ , q_0 , Acc)
 - where Acc = { $(L_i, K_i) \mid 1 \le i \le k$ }
- The product DTMC $D \otimes A$ is:
 - the DTMC (S×Q, (s_{init}, q_{init}), P', L') where: $q_{init} = \delta(q_0, L(s_{init}))$ P'((s_1, q_1), (s_2, q_2)) = $\begin{cases}
 P(s_1, s_2) & \text{if } q_2 = \delta(q_1, L(s_2)) \\
 0 & \text{otherwise} \\
 l_i \in L'(s,q) & \text{if } q \in L_i \text{ and } k_i \in L'(s,q) & \text{if } q \in K_i \\
 \text{(i.e. state sets of acceptance condition used as labels)}
 \end{cases}$
- (same product as for DBA, except for state labelling)

Product DTMC for a DRA

For DTMC D and DRA A

 $Prob^{D}(s, A) = Prob^{D \otimes A}((s,q_{s}), \vee_{1 \leq i \leq k} (FG \neg I_{i} \land GF k_{i})$

- where $q_s = \delta(q_0, L(s))$
- Hence:

$$Prob^{D}(s, A) = Prob^{D\otimes A}((s,q_s), F T_{Acc})$$

- where T_{Acc} is the union of all accepting BSCCs in $D{\otimes}A$
- an accepting BSCC T of D \otimes A is such that, for some $1 \le i \le k$:
 - · $q \models \neg I_i$ for all $(s,q) \in T$ and $q \models k_i$ for some $(s,q) \in T$
 - i.e. $T \cap (S \times L_i) = \emptyset$ and $T \cap (S \times K_i) \neq \emptyset$
- Reduces to computing BSCCs and reachability probabilities

Example 3

- Compute Prob(s₀, FG a)
 - property can be represented as a DRA

• Result: 0.125

Example 4

- Compute Prob(s₀, G(b \rightarrow F(\neg b \land a)) \land FG \neg b)
 - property can be represented as a DRA

• Result: 1

Summing up...

- + ω -regular expressions and ω -regular languages
 - languages of infinite words: $E_1.(F_1)^{\omega} + E_2.(F_2)^{\omega} + ... + E_n.(F_n)^{\omega}$
- Nondeterministic Büchi automata (NBA)
 - accepting runs visit a state in F infinitely often
 - can represent any $\omega\text{-}\text{regular}$ language by an NBA
 - can translate any LTL formula into equivalent NBA
- Deterministic Büchi automata (DBA)
 - strictly less expressive than NBA (e.g. no NBA for FG a)
- Deterministic Rabin automata (DRA)
 - generalised acceptance condition: { $(L_i, K_i) \mid 1 \le i \le k$ }
 - as expressive as NBA; can convert any NBA to a DRA
- Deterministic ω -automata and DTMCs
 - product DTMC + BSCC computation + reachability