Lecture 16
Automata-based properties

Dr. Dave Parker

Department of Computer Science
University of Oxford
Property specifications

• 1. Reachability properties, e.g. in PCTL
 – \(F a \) or \(F^{\leq t} a \) (reachability)
 – \(a U b \) or \(a U^{\leq t} b \) (until – constrained reachability)
 – \(G a \) (invariance) (dual of reachability)
 – probability computation: graph analysis + solution of linear equation system (or linear optimisation problem)

• 2. Long-run properties, e.g. in LTL
 – \(GF a \) (repeated reachability)
 – \(FG a \) (persistence)
 – probability computation: BSCCs + probabilistic reachability

• This lecture: more expressive class for type 1
Overview

- Nondeterministic finite automata (NFA)
- Regular expressions and regular languages
- Deterministic finite automata (DFA)
- Regular safety properties
- DFAs and DTMCs
Some notation

- Let Σ be a finite alphabet

- A (finite or infinite) word w over Σ is
 - a sequence of $\alpha_1 \alpha_2 \ldots$ where $\alpha_i \in \Sigma$ for all i

- A prefix w' of word $w = \alpha_1 \alpha_2 \ldots$ is
 - a finite word $\beta_1 \beta_2 \ldots \beta_n$ with $\beta_i = \alpha_i$ for all $1 \leq i \leq n$

- Σ^* denotes the set of finite words over Σ

- Σ^ω denotes the set of infinite words over Σ
Finite automata

• A nondeterministic finite automaton (NFA) is...

 - a tuple $A = (Q, \Sigma, \delta, Q_0, F)$ where:

 - Q is a finite set of states
 - Σ is an alphabet
 - $\delta : Q \times \Sigma \rightarrow 2^Q$ is a transition function
 - $Q_0 \subseteq Q$ is a set of initial states
 - $F \subseteq Q$ is a set of “accept” states
Language of an NFA

• Consider an NFA $A = (Q, \Sigma, \delta, Q_0, F)$

• A run of A on a finite word $w = \alpha_1 \alpha_2 \ldots \alpha_n$ is:
 – a sequence of automata states $q_0 q_1 \ldots q_n$ such that:
 – $q_0 \in Q_0$ and $q_{i+1} \in \delta(q_i, \alpha_{i+1})$ for all $0 \leq i < n$

• An accepting run is a run with $q_n \in F$

• Word w is accepted by A iff:
 – there exists an accepting run of A on w

• The language of A, denoted $L(A)$ is:
 – the set of all words accepted by A

• Automata A and A' are equivalent if $L(A) = L(A')$
Example – NFA

\(q_0 \) \(\xrightarrow{\alpha} q_1 \) \(\xrightarrow{\beta} q_2 \)

\(q_1 \) \(\xrightarrow{\alpha} q_0 \) \(\xrightarrow{\beta} q_2 \)

\(q_2 \) \(\xrightarrow{\beta} q_0 \) \(\xrightarrow{\beta} q_1 \)
Regular expressions

- Regular expressions E over a finite alphabet Σ
 - are given by the following grammar:

 $E ::= \emptyset \mid \varepsilon \mid \alpha \mid E + E \mid E.E \mid E^*$

 - where $\alpha \in \Sigma$

- Language $L(E) \subseteq \Sigma^*$ of a regular expression:

 - $L(\emptyset) = \emptyset$ (empty language)
 - $L(\varepsilon) = \{ \varepsilon \}$ (empty word)
 - $L(\alpha) = \{ \alpha \}$ (symbol)
 - $L(E_1 + E_2) = L(E_1) \cup L(E_2)$ (union)
 - $L(E_1.E_2) = \{ w_1.w_2 \mid w_1 \in L(E_1) \text{ and } w_2 \in L(E_2) \}$ (concatenation)
 - $L(E^*) = \{ w^i \mid w \in L(E) \text{ and } i \in \mathbb{N} \}$ (finite repetition)
Regular languages

• A set of finite words \(L \) is a regular language...

\[\text{iff } L = L(E) \text{ for some regular expression } E \]

\[\text{iff } L = L(A) \text{ for some finite automaton } A \]

\[(\alpha + \beta)^* \beta (\alpha + \beta) \]

(i.e. penultimate symbol is \(\beta \))
Operations on NFA

- Can construct NFA from regular expression inductively
 - includes addition (and then removal) of ε-transitions

- Can construct the intersection of two NFA
 - build (synchronised) product automaton
 - cross product of $A_1 \otimes A_2$ accepts $L(A_1) \cap L(A_2)$
Deterministic finite automata

• A finite automaton is deterministic if:
 – \(|Q_0| = 1\)
 – \(|\delta(q, \alpha)| \leq 1\) for all \(q \in Q\) and \(\alpha \in \Sigma\)
 – i.e. one initial state and no nondeterministic successors

• A deterministic finite automaton (DFA) is total if:
 – \(|\delta(q, \alpha)| = 1\) for all \(q \in Q\) and \(\alpha \in \Sigma\)
 – i.e. unique successor states

• A total DFA
 – can always be constructed from a DFA
 – has a unique run for any word \(w \in \Sigma^*\)
Determinisation: NFA \rightarrow DFA

- Determinisation of an NFA $A = (Q, \Sigma, \delta, Q_0, F)$
 - i.e. removal of choice in each automata state

- Equivalent DFA is $A_{\text{det}} = (2^Q, \Sigma, \delta_{\text{det}}, q_0, F_{\text{det}})$ where:
 - $\delta_{\text{det}}(Q', \alpha) = \bigcup_{q \in Q'} \delta(q, \alpha)$
 - $F_{\text{det}} = \{ Q' \subseteq Q \mid Q' \cap F \neq \emptyset \}$

- Note exponential blow-up in size...
Example

NFA A

regexp: $(\alpha + \beta)^* \beta (\alpha + \beta)$
Example

\[
\begin{align*}
\text{NFA } A & \quad \text{DFA } A_{\text{det}} \\
\begin{array}{c}
\text{regexp:} \\
(\alpha + \beta)^*\beta(\alpha + \beta)
\end{array}
\end{align*}
\]
Other properties of NFA/DFA

• NFA/DFA have the same expressive power
 – but NFA can be more efficient (up to exponentially smaller)

• NFA/DFA are closed under complementation
 – build total DFA, swap accept/non-accept states

• For any regular language L, there is a unique minimal DFA that accepts L (up to isomorphism)
 – efficient algorithm to minimise DFA into equivalent DFA
 – partition refinement algorithm (like for bisimulation)

• Language emptiness of an NFA reduces to reachability
 – $L(A) \neq \emptyset$ iff can reach a state in F from an initial state in Q_0
Languages as properties

- Consider a model, i.e. an LTS/DTMC/MDP/…
 - e.g. DTMC $D = (S, s_{\text{init}}, P, \text{Lab})$
 - where labelling Lab uses atomic propositions from set AP
 - let $\omega \in \text{Path}(s)$ be some infinite path

- Temporal logic properties
 - for some temporal logic (path) formula ψ, does $\omega \models \psi$?

- Traces and languages
 - $\text{trace}(\omega) \in (2^{AP})^\omega$ denotes the projection of state labels of ω
 - i.e. $\text{trace}(s_0s_1s_2s_3\ldots) = \text{Lab}(s_0)\text{Lab}(s_1)\text{Lab}(s_2)\text{Lab}(s_3)\ldots$
 - for some language $L \subseteq (2^{AP})^\omega$, is $\text{trace}(\omega) \in L$?
Example

- **Atomic propositions**
 - $\text{AP} = \{ \text{fail, try} \}$
 - $2^\text{AP} = \{ \emptyset, \{\text{fail}\}, \{\text{try}\}, \{\text{fail, try}\} \}$

- **Paths and traces**
 - e.g. $\omega = s_0 s_1 s_1 s_2 s_0 s_1 s_2 s_0 s_1 s_3 s_3 s_3 \ldots$
 - $\text{trace}(\omega) = \emptyset \{\text{try}\} \{\text{try}\} \{\text{fail}\} \emptyset \{\text{try}\} \{\text{fail}\} \emptyset \{\text{try}\} \emptyset \emptyset \emptyset \ldots$

- **Languages**
 - e.g. “no failures”
 - $L = \{ \alpha_1 \alpha_2 \ldots \in (2^\text{AP})^\omega \mid \alpha_i \text{ is } \emptyset \text{ or } \{\text{try}\} \text{ for all } i \}$
Regular safety properties

• **A safety property** \(P \) is a language over \(2^{AP} \) such that
 - for any word \(w \) that violates \(P \) (i.e. is not in the language), \(w \) has a prefix \(w' \), all extensions of which, also violate \(P \)

• **A regular safety property** is
 - safety property for which the set of “bad prefixes” (finite violations) forms a regular language

• **Formally…**
 - \(P \subseteq (2^{AP})^\omega \) is a safety property if:
 1. \(\forall w \in ((2^{AP})^\omega \setminus P) \cdot \exists \) finite prefix \(w' \) of \(w \) such that:
 2. \(P \cap \{ w'' \in (2^{AP})^\omega | w' \text{ is a prefix of } w'' \} = \emptyset \)
 - \(P \) is a regular safety property if:
 1. \(\{ w' \in (2^{AP})^* | \forall w'' \in (2^{AP})^\omega . w'.w'' \notin P \} \) is regular
Regular safety properties

- A safety property P is a language over 2^{AP} such that
 - for any word w that violates P (i.e. is not in the language), w has a prefix w', all extensions of which, also violate P

- A regular safety property is
 - safety property for which the set of “bad prefixes” (finite violations) forms a regular language

- Examples:
 - “at least one traffic light is always on”
 - “two traffic lights are never on simultaneously”
 - “a red light is always preceded immediately by an amber light”
Example

- Regular safety property:
 - “at most 2 failures occur”
 - language over:
 \[2^{AP} = \{ \emptyset, \{\text{fail}\}, \{\text{try}\}, \{\text{fail,try}\} \}\]

\[
\begin{array}{c}
\text{s}_0 \\
\text{s}_1 \\
\text{s}_2 \\
\text{s}_3 \\
\end{array}
\]

\[
\begin{array}{c}
\{\text{try}\} \\
0.01 \quad 0.98 \\
0.01 \\
\{\text{fail}\} \\
1 \\
\end{array}
\]
Example

• Regular safety property:
 – “at most 2 failures occur”
 – language over:
 \[2^{\text{AP}} = \{ \emptyset, \{\text{fail}\}, \{\text{try}\}, \{\text{fail,try}\} \} \]

• Bad prefixes (regexp):
 \[(\neg \text{fail})^* \cdot \text{fail} \cdot (\neg \text{fail})^* \cdot \text{fail} \cdot (\neg \text{fail})^* \cdot \text{fail} \]

• Bad prefixes (DFA):

 \(\neg \text{fail} \) denotes: \[(\{\text{fail}\} + \{\text{fail,try}\}) \]
 \(\neg \text{fail} \) denotes: \[(\emptyset + \{\text{try}\}) \]

 fail denotes:
 \[\{\text{fail}\}, \{\text{fail,try}\} \]
 \(\neg \text{fail} \) denotes:
 \[\emptyset, \{\text{try}\} \]
Regular safety properties + DTMCs

- Consider a DTMC D (with atomic propositions from AP) and a regular safety property $P \subseteq (2^AP)^\omega$

- Let $\text{Prob}^D(s, P)$ denote the probability of P being satisfied
 - i.e. $\text{Prob}^D(s, P) = \Pr^D_s\{ \omega \in \text{Path}(s) \mid \text{trace}(\omega) \in P \}$
 - where \Pr^D_s is the probability measure over $\text{Path}(s)$ for D
 - this set is always measurable (see later)

- Example (safety) specifications
 - “the probability that at most 2 failures occur is ≥ 0.999”
 - “what is the probability that at most 2 failures occur?”

- How to compute $\text{Prob}^D(s, P)$?
Product DTMC

- We construct the product of
 - a DTMC $D = (S, s_{\text{init}}, P, L)$
 - and a (total) DFA $A = (Q, \Sigma, \delta, q_0, F)$
 - intuitively: records state of A for path fragments of D

- The product DTMC $D \otimes A$ is:
 - the DTMC $(S \times Q, (s_{\text{init}}, q_{\text{init}}), P', L')$ where:
 - $q_{\text{init}} = \delta(q_0, L(s_{\text{init}}))$
 - $P'((s_1, q_1), (s_2, q_2)) = \begin{cases} P(s_1, s_2) & \text{if } q_2 = \delta(q_1, L(s_2)) \\ 0 & \text{otherwise} \end{cases}$
 - $L'(s, q) = \{ \text{accept} \}$ if $q \in F$ and $L'(s, q) = \emptyset$ otherwise
Example

DTMC D

DFA A

fail denotes: \{\text{fail}\}, \{\text{fail,try}\}

\neg \text{fail} \text{ denotes: } \emptyset, \{\text{try}\}
Example

Product DTMC $D \otimes A$

states beyond “accept” state unimportant

{s_0, \varepsilon(q_0, L(s_0))}
Product DTMC

- **One interpretation of** $D \otimes A$:
 - unfolding of D where q for each state (s,q) records state of automata A for path fragment so far

- **In fact, since** A **is deterministic…**
 - for any $\omega \in \text{Path}(s)$ of the DTMC D:
 - there is a unique run in A for $\text{trace}(\omega)$
 - and a corresponding (unique) path through $D \otimes A$
 - for any path $\omega' \in \text{Path}^{D \otimes A}(s,q_{\text{init}})$ where $q_{\text{init}} = \delta(q_0,L(s))$
 - there is a corresponding path in D and a run in A

- **DFA has no effect on probabilities**
 - i.e. probabilities preserved in product DTMC
Regular safety properties + DTMCs

- Regular safety property $P \subseteq (2^{AP})^\omega$
 - “bad prefixes” (finite violations) represented by DFA A

- Probability of P being satisfied in state s of D
 - $\Pr_D^{s} \{ \omega \in \text{Path}(s) \mid \text{trace}(\omega) \in P \} = 1 - \Pr_D^{s} \{ \omega \in \text{Path}(s) \mid \text{trace}(\omega) \notin P \} = 1 - \Pr_D^{s} \{ \omega \in \text{Path}(s) \mid \text{pref}(\text{trace}(\omega)) \cap L(A) \neq \emptyset \}$
 - where $\text{pref}(w)$ = set of all finite prefixes of infinite word w

\[
\Pr_D^{s}(P) = 1 - \Pr_D^{s\otimes A}((s,q_s), F \text{ accept})
\]

- where $q_s = \delta(q_0,L(s))$
Example

• $\text{Prob}^D(s_0, \text{“at most 2 failures occur”})$

 $= 1 - \text{Prob}^{D \otimes A}((s_0,q_0), \text{F accept})$

 $= 1 - (1/99)^3$

 ≈ 0.9999989694
Summing up…

- **Nondeterministic finite automata (NFA)**
 - can represent any regular language, regular expression
 - closed under complementation, intersection, ...
 - (non-)emptiness reduces to reachability

- **Deterministic finite automata (DFA)**
 - can be constructed from NFA through determinisation
 - equally expressive as NFA, but may be larger

- **Regular safety properties**
 - language representing set of possible traces
 - bad (violating) prefixes form a regular language

- **Probability of a regular safety property on a DTMC**
 - construct product DTMC
 - reduces to probabilistic reachability