Lecture 16
Automata–based properties

Dr. Dave Parker

Department of Computer Science
University of Oxford
Property specifications

1. Reachability properties, e.g. in PCTL
 - $F a$ or $F_{\leq t} a$ (reachability)
 - $a U b$ or $a U_{\leq t} b$ (until – constrained reachability)
 - $G a$ (invariance) (dual of reachability)
 - probability computation: graph analysis + solution of linear equation system (or linear optimisation problem)

2. Long–run properties, e.g. in LTL
 - $GF a$ (repeated reachability)
 - $FG a$ (persistence)
 - probability computation: BSCCs + probabilistic reachability

This lecture: more expressive class for type 1
Overview

• Nondeterministic finite automata (NFA)

• Regular expressions and regular languages

• Deterministic finite automata (DFA)

• Regular safety properties

• DFAs and DTMCs
Some notation

• Let Σ be a finite alphabet

• A (finite or infinite) word w over Σ is
 – a sequence of $\alpha_1\alpha_2\ldots$ where $\alpha_i \in \Sigma$ for all i

• A prefix w' of word $w = \alpha_1\alpha_2\ldots$ is
 – a finite word $\beta_1\beta_2\ldots \beta_n$ with $\beta_i=\alpha_i$ for all $1 \leq i \leq n$

• Σ^* denotes the set of finite words over Σ

• Σ^ω denotes the set of infinite words over Σ
Finite automata

- A nondeterministic finite automaton (NFA) is...

 - a tuple $A = (Q, \Sigma, \delta, Q_0, F)$ where:

 - Q is a finite set of states
 - Σ is an alphabet
 - $\delta : Q \times \Sigma \rightarrow 2^Q$ is a transition function
 - $Q_0 \subseteq Q$ is a set of initial states
 - $F \subseteq Q$ is a set of “accept” states

\[q_0 \xrightarrow{\beta} q_1 \xrightarrow{\alpha} q_2 \xleftarrow{\beta} q_0 \]
Language of an NFA

- Consider an NFA $A = (Q, \Sigma, \delta, Q_0, F)$

- A run of A on a finite word $w = \alpha_1 \alpha_2 \ldots \alpha_n$ is:
 - a sequence of automata states $q_0 q_1 \ldots q_n$ such that:
 - $q_0 \in Q_0$ and $q_{i+1} \in \delta(q_i, \alpha_{i+1})$ for all $0 \leq i < n$

- An accepting run is a run with $q_n \in F$

- Word w is accepted by A iff:
 - there exists an accepting run of A on w

- The language of A, denoted $L(A)$ is:
 - the set of all words accepted by A

- Automata A and A' are equivalent if $L(A) = L(A')$
Example – NFA

\[\begin{align*}
q_0 \xrightarrow{\alpha} q_1 \xrightarrow{\alpha} q_2 \\
q_1 \xrightarrow{\beta} q_2 \\
q_2 \xrightarrow{\beta} q_1
\end{align*}\]
Regular expressions

- Regular expressions \(E \) over a finite alphabet \(\Sigma \)
 - are given by the following grammar:
 \[
 E ::= \emptyset | \varepsilon | \alpha | E + E | E.E | E^*
 \]
 - where \(\alpha \in \Sigma \)

- Language \(L(E) \subseteq \Sigma^* \) of a regular expression:
 - \(L(\emptyset) = \emptyset \) (empty language)
 - \(L(\varepsilon) = \{ \varepsilon \} \) (empty word)
 - \(L(\alpha) = \{ \alpha \} \) (symbol)
 - \(L(E_1 + E_2) = L(E_1) \cup L(E_2) \) (union)
 - \(L(E_1.E_2) = \{ w_1.w_2 | w_1 \in L(E_1) \text{ and } w_2 \in L(E_2) \} \) (concatenation)
 - \(L(E^*) = \{ w^i | w \in L(E) \text{ and } i \in \mathbb{N} \} \) (finite repetition)
Regular languages

- A set of finite words L is a regular language...

 - iff $L = L(E)$ for some regular expression E

 - iff $L = L(A)$ for some finite automaton A

\[
q_0 \xleftarrow{\beta} q_1 \xrightarrow{\alpha} q_2 \xleftarrow{\beta} q_2 \xrightarrow{\beta} q_2
\]

\[
(\alpha + \beta)^* \beta (\alpha + \beta)
\]

(i.e. penultimate symbol is β)
Operations on NFA

• Can construct NFA from regular expression inductively
 − includes addition (and then removal) of ε-transitions

• Can construct the intersection of two NFA
 − build (synchronised) product automaton
 − cross product of $A_1 \otimes A_2$ accepts $L(A_1) \cap L(A_2)$
Deterministic finite automata

- A finite automaton is deterministic if:
 - $|Q_0| = 1$
 - $|\delta(q, \alpha)| \leq 1$ for all $q \in Q$ and $\alpha \in \Sigma$
 - i.e. one initial state and no nondeterministic successors

- A deterministic finite automaton (DFA) is total if:
 - $|\delta(q, \alpha)| = 1$ for all $q \in Q$ and $\alpha \in \Sigma$
 - i.e. unique successor states

- A total DFA
 - can always be constructed from a DFA
 - has a unique run for any word $w \in \Sigma^*$
Determinisation: NFA → DFA

- Determinisation of an NFA $A = (Q, \Sigma, \delta, Q_0, F)$
 - i.e. removal of choice in each automata state

- Equivalent DFA is $A_{det} = (2^Q, \Sigma, \delta_{det}, q_0, F_{det})$ where:

 - $\delta_{det}(Q', \alpha) = \bigcup_{q \in Q'} \delta(q, \alpha)$

 - $F_{det} = \{ Q' \subseteq Q | Q' \cap F \neq \emptyset \}$

- Note exponential blow-up in size...
Example

NFA A

\begin{tabular}{c}
\begin{tikzpicture}
 \node[state,blue] (q0) at (0,0) {q_0};
 \node[state,blue] (q1) at (1,0) {q_1};
 \node[state,blue] (q2) at (2,0) {q_2};
 \draw[-stealth] (q0) edge[bend left] node[above] {α} (q1);
 \draw[-stealth] (q1) edge[bend left] node[below] {β} (q0);
 \draw[-stealth] (q1) edge node[above] {α} (q2);
 \draw[-stealth] (q2) edge[bend left] node[below] {β} (q1);
\end{tikzpicture}
\end{tabular}

regexp: $(\alpha + \beta)^* \beta (\alpha + \beta)$
Example

NFA A

DFA A_{det}

regexp: $(\alpha + \beta)^* \beta (\alpha + \beta)$
Other properties of NFA/DFA

- NFA/DFA have the same expressive power
 - but NFA can be more efficient (up to exponentially smaller)

- NFA/DFA are closed under complementation
 - build total DFA, swap accept/non-accept states

- For any regular language L, there is a unique minimal DFA that accepts L (up to isomorphism)
 - efficient algorithm to minimise DFA into equivalent DFA
 - partition refinement algorithm (like for bisimulation)

- Language emptiness of an NFA reduces to reachability
 - \(L(A) \neq \emptyset \) iff can reach a state in F from an initial state in \(Q_0 \)
Languages as properties

• Consider a model, i.e. an LTS/DTMC/MDP/…
 – e.g. DTMC \(D = (S, s_{\text{init}}, P, \text{Lab}) \)
 – where labelling Lab uses atomic propositions from set \(\text{AP} \)
 – let \(\omega \in \text{Path}(s) \) be some infinite path

• Temporal logic properties
 – for some temporal logic (path) formula \(\psi \), does \(\omega \models \psi \) ?

• Traces and languages
 – \(\text{trace}(\omega) \in (2^{\text{AP}})^{\omega} \) denotes the projection of state labels of \(\omega \)
 – i.e. \(\text{trace}(s_0s_1s_2s_3...) = \text{Lab}(s_0)\text{Lab}(s_1)\text{Lab}(s_2)\text{Lab}(s_3)... \)
 – for some language \(L \subseteq (2^{\text{AP}})^{\omega} \), is \(\text{trace}(\omega) \in L \) ?
Example

- **Atomic propositions**
 - $\text{AP} = \{ \text{fail, try} \}$
 - $2^{\text{AP}} = \{ \emptyset, \{\text{fail}\}, \{\text{try}\}, \{\text{fail, try}\} \}$

- **Paths and traces**
 - e.g. $\omega = s_0 s_1 s_1 s_2 s_0 s_1 s_2 s_0 s_1 s_3 s_3 s_3 \ldots$
 - $\text{trace}(\omega) = \emptyset \{\text{try}\} \{\text{try}\} \{\text{fail}\} \emptyset \{\text{try}\} \{\text{fail}\} \emptyset \{\text{try}\} \emptyset \emptyset \emptyset \ldots$

- **Languages**
 - e.g. “no failures”
 - $L = \{ \alpha_1 \alpha_2 \ldots \in (2^{\text{AP}})^\omega \mid \alpha_i \text{ is } \emptyset \text{ or } \{\text{try}\} \text{ for all } i \}$
Regular safety properties

• A safety property P is a language over 2^{AP} such that
 – for any word w that violates P (i.e. is not in the language),
 w has a prefix w', all extensions of which, also violate P

• A regular safety property is
 – safety property for which the set of “bad prefixes” (finite violations) forms a regular language

• Formally…
 – $P \subseteq (2^{AP})^\omega$ is a safety property if:
 • $\forall w \in ((2^{AP})^\omega \setminus P). \exists$ finite prefix w' of w such that:
 • $P \cap \{ w'' \in (2^{AP})^\omega \mid w'$ is a prefix of $w'' \} = \emptyset$
 – P is a regular safety property if:
 • $\{ w' \in (2^{AP})^* \mid \forall w'' \in (2^{AP})^\omega . w'.w'' \notin P \}$ is regular
Regular safety properties

- A safety property P is a language over 2^{AP} such that
 - for any word w that violates P (i.e. is not in the language), w has a prefix w', all extensions of which, also violate P

- A regular safety property is
 - safety property for which the set of “bad prefixes” (finite violations) forms a regular language

- Examples:
 - “at least one traffic light is always on”
 - “two traffic lights are never on simultaneously”
 - “a red light is always preceded immediately by an amber light”
• **Regular safety property:**
 - “at most 2 failures occur”
 - language over:
 \[2^{AP} = \{ \emptyset, \{ \text{fail} \}, \{ \text{try} \}, \{ \text{fail,try} \} \} \]
Example

- Regular safety property:
 - “at most 2 failures occur”
 - language over:
 $2^{\text{AP}} = \{ \emptyset, \{\text{fail}\}, \{\text{try}\}, \{\text{fail,try}\} \}$

- Bad prefixes (regexp):
 $\neg\text{fail}^* \cdot \text{fail} \cdot (\neg\text{fail})^* \cdot \text{fail} \cdot (\neg\text{fail})^* \cdot \text{fail}$

- Bad prefixes (DFA):

 fail denotes: $\{\text{fail}\}, \{\text{fail,try}\}$
 \negfail denotes: $(\emptyset + \{\text{try}\})$
Regular safety properties + DTMCs

- Consider a DTMC D (with atomic propositions from AP) and a regular safety property $P \subseteq (2^{AP})^\omega$

- Let $\text{Prob}^D(s, P)$ denote the probability of P being satisfied
 - i.e. $\text{Prob}^D(s, P) = \text{Pr}^D_s\{ \omega \in \text{Path}(s) \mid \text{trace}(\omega) \in P \}$
 - where Pr^D_s is the probability measure over $\text{Path}(s)$ for D
 - this set is always measurable (see later)

- Example (safety) specifications
 - “the probability that at most 2 failures occur is ≥ 0.999”
 - “what is the probability that at most 2 failures occur?”

- How to compute $\text{Prob}^D(s, P)$?
Product DTMC

• **We construct the product of**
 - a DTMC \(D = (S, s_{\text{init}}, P, L) \)
 - and a (total) DFA \(A = (Q, \Sigma, \delta, q_0, F) \)
 - intuitively: records state of \(A \) for path fragments of \(D \)

• **The product DTMC \(D \otimes A \) is:**
 - the DTMC \((S \times Q, (s_{\text{init}}, q_{\text{init}}), P', L') \) where:

 - \(q_{\text{init}} = \delta(q_0, L(s_{\text{init}})) \)
 - \(P'((s_1, q_1), (s_2, q_2)) \) = \[
 \begin{cases}
 P(s_1, s_2) & \text{if } q_2 = \delta(q_1, L(s_2)) \\
 0 & \text{otherwise}
 \end{cases}
 \]
 - \(L'(s, q) = \{ \text{accept} \} \) if \(q \in F \) and \(L'(s, q) = \emptyset \) otherwise
Example

DTMC D

DFA A

\[\text{fail}\] denotes: \{fail\}, \{fail,try\}

\[\neg\text{fail}\] denotes: \emptyset, \{try\}
Example

Product DTMC $D \otimes A$

states beyond “accept” state unimportant

$s_0, \delta(q_0, L(s_0))$
Product DTMC

- **One interpretation of** $D \otimes A$:
 - unfolding of D where q for each state (s, q) records state of automata A for path fragment so far

- **In fact, since** A **is deterministic**…
 - for any $\omega \in \text{Path}(s)$ of the DTMC D:
 - there is a unique run in A for $\text{trace}(\omega)$
 - and a corresponding (unique) path through $D \otimes A$
 - for any path $\omega' \in \text{Path}^{D \otimes A}(s, q_{\text{init}})$ where $q_{\text{init}} = \delta(q_0, L(s))$
 - there is a corresponding path in D and a run in A

- **DFA has no effect on probabilities**
 - i.e. probabilities preserved in product DTMC
Regular safety properties + DTMCs

- **Regular safety property** \(P \subseteq (2^\mathbb{AP})^\omega \)
 - “bad prefixes” (finite violations) represented by DFA \(A \)

- **Probability of \(P \) being satisfied in state \(s \) of \(D \)**
 - \(\text{Prob}^D(s, P) = \Pr^D_s\{ \omega \in \text{Path}(s) \mid \text{trace}(\omega) \in P \} \)
 \(= 1 - \Pr^D_s\{ \omega \in \text{Path}(s) \mid \text{trace}(\omega) \notin P \} \)
 \(= 1 - \Pr^D_s\{ \omega \in \text{Path}(s) \mid \text{pref}(\text{trace}(\omega)) \cap L(A) \neq \emptyset \} \)
 - where \(\text{pref}(w) = \) set of all finite prefixes of infinite word \(w \)

\[
\begin{align*}
\text{Prob}^D(s, P) &= 1 - \text{Prob}^D \otimes A((s, q_s), F \text{ accept}) \\
&= 1 - \delta(q_0, L(s))
\end{align*}
\]
Example

- $\text{Prob}^D(s_0, \text{“at most 2 failures occur”})$

 $= 1 - \text{Prob}^D \otimes A((s_0, q_0), \text{F accept})$

 $= 1 - (1/99)^3$

 ≈ 0.9999989694
Summing up…

• **Nondeterministic finite automata (NFA)**
 – can represent any regular language, regular expression
 – closed under complementation, intersection, …
 – (non-)emptiness reduces to reachability

• **Deterministic finite automata (DFA)**
 – can be constructed from NFA through determinisation
 – equally expressive as NFA, but may be larger

• **Regular safety properties**
 – language representing set of possible traces
 – bad (violating) prefixes form a regular language

• **Probability of a regular safety property on a DTMC**
 – construct product DTMC
 – reduces to probabilistic reachability