Lecture 10
Model Checking for CTMCs

Dr. Dave Parker

Department of Computer Science
University of Oxford
Overview

- **CSL model checking**
 - basic algorithm
 - untimed properties
 - time-bounded until
 - the S (steady-state) operator

- **Rewards**
 - reward structures for CTMCs
 - properties: extension of CSL
 - model checking
CSL: Continuous Stochastic Logic

- **CSL syntax:**

 - $\phi ::= \text{true} \mid a \mid \phi \land \phi \mid \neg \phi \mid P_{\sim p}[\psi] \mid S_{\sim p}[\phi]$ (state formulae)

 - $\psi ::= X \phi \mid \phi \cup I \phi$ (path formulae)

- where a is an atomic proposition, I an interval of $\mathbb{R}_{\geq 0}$, $p \in [0,1]$ and $\sim \in \{<,>,\leq,\geq\}$

- ψ is true with probability $\sim p$

- “next”

- “time bounded until”

- in the “long run” ϕ is true with probability $\sim p$
CSL model checking for CTMCs

• Algorithm for CSL model checking [BHHK03]
 – inputs: CTMC $C = (S, s_{\text{init}}, R, L)$, CSL formula ϕ
 – output: $\text{Sat}(\phi) = \{ s \in S \mid s \models \phi \}$, the set of states satisfying ϕ

• Often, also consider quantitative results
 – e.g. compute result of $P = \mu \{ F^{[0,t]} \ \text{minimum} \}$ for $0 \leq t \leq 100$

• Basic algorithm similar to PCTL for DTMCs
 – proceeds by induction on parse tree of ϕ

• For the non-probabilistic operators:
 – $\text{Sat}(\text{true}) = S$
 – $\text{Sat}(a) = \{ s \in S \mid a \in L(s) \}$
 – $\text{Sat}(\neg \phi) = S \setminus \text{Sat}(\phi)$
 – $\text{Sat}(\phi_1 \land \phi_2) = \text{Sat}(\phi_1) \cap \text{Sat}(\phi_2)$
CSL model checking for CTMCs

- Main task: computing probabilities for $P_{\sim p} [\cdot]$ and $S_{\sim p} [\cdot]$

- $\phi ::= \text{true} \mid a \mid \phi \land \phi \mid \neg \phi$

- $P_{\sim p} [\text{X} \phi] \mid P_{\sim p} [\phi \mathcal{U} \phi] \mid P_{\sim p} [\phi \mathcal{U^l} \phi] \mid S_{\sim p} [\phi]$

- where $\phi_1 \mathcal{U} \phi_2 \equiv \phi_1 \mathcal{U}^{[0, \infty)} \phi_2$

- untimed \hspace{1cm} time bounded \hspace{1cm} steady-state
Untimed properties

• Untimed properties can be verified on the embedded DTMC
 – properties of the form: $P_{\sim p} \left[X \phi \right]$ or $P_{\sim p} \left[\phi_1 U \phi_2 \right]$
 – use algorithms for checking PCTL against DTMCs

• Certain qualitative time–bounded until formulae can also be verified on the embedded DTMC
 – for any (non–empty) interval I

 \[s \models P_{\sim 0} \left[\phi_1 U^I \phi_2 \right] \text{ if and only if } s \models P_{\sim 0} \left[\phi_1 U^{[0,\infty)} \phi_2 \right] \]

 – can use precomputation algorithm Prob0
Model checking – Time-bounded until

- Compute $\text{Prob}(s, \phi_1 \mathcal{U}^l \phi_2)$ for all states where l is an arbitrary interval of the non-negative real numbers

- Note:
 - $\text{Prob}(s, \phi_1 \mathcal{U}^l \phi_2) = \text{Prob}(s, \phi_1 \mathcal{U}^{\text{cl}(l)} \phi_2)$
 where $\text{cl}(l)$ denotes the closure of the interval l
 - $\text{Prob}(s, \phi_1 \mathcal{U}^{[0,\infty)} \phi_2) = \text{Prob}^{\text{emb}(C)}(s, \phi_1 \mathcal{U} \phi_2)$
 where $\text{emb}(C)$ is the embedded DTMC

- Therefore, 3 remaining cases to consider:
 - $l = [0,t]$ for some $t \in \mathbb{R}_{\geq 0}$
 - $l = [t,t']$ for some $t \leq t' \in \mathbb{R}_{\geq 0}$
 - $l = [t,\infty)$ for some $t \in \mathbb{R}_{\geq 0}$

- Two methods: 1. Integral equations; 2. Uniformisation
Computing the probabilities reduces to determining the least solution of the following set of integral equations
 – (note similarity to bounded until for DTMCs)

\[\text{Prob}(s, \phi_1 \sqcup_{[0,t]} \phi_2) \text{ equals} \]
 – 1 if \(s \in \text{Sat} (\phi_2) \),
 – 0 if \(s \in \text{Sat} (\neg \phi_1 \land \neg \phi_2) \)
 – and otherwise equals

\[\int_0^t \sum_{s' \in S} \left(P^{\text{emb}(C)}(s, s') \cdot E(s) \cdot e^{-E(s) \cdot x} \right) \cdot \text{Prob}(s', \phi_1 \sqcup_{[0,t-x]} \phi_2) \, dx \]

One possibility: solve these integrals numerically
 – e.g. trapezoidal, Simpson and Romberg integration
 – expensive, possible problems with numerical stability
Time-bounded until (uniformisation)

- **Reduction to transient analysis...**

- **Make all** ϕ_2 **states absorbing**
 - from such a state $\phi_1 \cup [0,x] \phi_2$ holds with probability 1

- **Make all** $\neg \phi_1 \wedge \neg \phi_2$ **states absorbing**
 - from such a state $\phi_1 \cup [0,x] \phi_2$ holds with probability 0

- **Formally:** Construct CTMC $C[\phi_2][\neg \phi_1 \wedge \neg \phi_2]$
 - where for CTMC $C=(S,s_{init},R,L)$, let $C[\theta]=(S,s_{init},R[\theta],L)$ where $R[\theta](s,s')=R(s,s')$ if $s \not\in \text{Sat}(\theta)$ and 0 otherwise
Time-bounded until (uniformisation)

- Problem then reduces to calculating transient probabilities of the CTMC $C[\phi_2][\neg \phi_1 \land \neg \phi_2]$:

$$\text{Prob}(s, \phi_1 U_{[0,t]} \phi_2) = \sum_{s' \in \text{Sat}(\phi_2)} \prod_{s, t}^{C[\phi_2][\neg \phi_1 \land \neg \phi_2]} (s')$$

transient probability: starting in state s, the probability of being in state s' at time t
Time-bounded until (uniformisation)

- Can now adapt uniformisation to computing the vector of probabilities $\text{Prob}(\phi_1 U^{[0,t]} \phi_2)$
 - recall Π_t is matrix of transient probabilities $\Pi_t(s,s') = \pi_{s,t}(s')$
 - computed via uniformisation: $\Pi_t = \sum_{i=0}^{\infty} \gamma_{q^i t, i} \cdot (P_{\text{unif}(C)})^i$

- Combining with: $\text{Prob}(s, \phi_1 U^{[0,t]} \phi_2) = \sum_{s' \in \text{Sat}(\phi_2)} \Pi_{s,t}^{C[\phi_2][\neg \phi_1 \land \neg \phi_2]}(s')$

\[
\text{Prob}(\phi_1 U^{[0,t]} \phi_2) = \Pi_t^{C[\phi_2][\neg \phi_1 \land \neg \phi_2]} \cdot \phi_2 \\
= \left(\sum_{i=0}^{\infty} \gamma_{q^i t, i} \cdot (P_{\text{unif}(C[\phi_2][\neg \phi_1 \land \neg \phi_2])}^i \right) \phi_2 \\
= \sum_{i=0}^{\infty} \left(\gamma_{q^i t, i} \cdot (P_{\text{unif}(C[\phi_2][\neg \phi_1 \land \neg \phi_2])}^i \right) \phi_2
\]
Time-bounded until (uniformisation)

- Have shown that we can calculate the probabilities as:

\[
\text{Prob}(\phi_1 \ U^{[0,t]} \phi_2) = \sum_{i=0}^{\infty} \left(\gamma_{q \cdot t, i} \cdot \left(P^{\text{unif}(C[\phi_2][\neg \phi_1 \land \neg \phi_2])} \right)^i \cdot \phi_2 \right)
\]

- Infinite summation can be truncated using the techniques of Fox and Glynn [FG88]

- Can compute iteratively to avoid matrix powers:

\[
\left(P^{\text{unif}(C)} \right)^0 \cdot \phi_2 = \phi_2 \\
\left(P^{\text{unif}(C)} \right)^{i+1} \cdot \phi_2 = P^{\text{unif}(C)} \cdot \left(P^{\text{unif}(C)} \right)^i \cdot \phi_2
\]
Time-bounded until – Example

- $P_{>0.65} [F^{[0,7.5]} \text{full}] \equiv P_{>0.65} [\text{true U}^{[0,7.5]} \text{full}]$
 - “probability of the queue becoming full within 7.5 time units”

- State s_3 satisfies full and no states satisfy $\neg \text{true}$
 - in $C[\text{full}][\neg \text{true} \land \neg \text{full}]$ only state s_3 made absorbing

$$
\begin{bmatrix}
\frac{2}{3} & \frac{1}{3} & 0 & 0 \\
\frac{2}{3} & 0 & \frac{1}{3} & 0 \\
0 & \frac{2}{3} & 0 & \frac{1}{3} \\
0 & 0 & 0 & 1
\end{bmatrix}
$$

matrix of $\text{unif}(C[\text{full}][\neg \text{true} \land \neg \text{full}])$ with uniformisation rate $\max_{s \in S} E(s) = 4.5$

s_3 made absorbing
Time-bounded until – Example

- Computing the summation of matrix–vector multiplications

\[\text{Prob}(\phi_1 U^{[0,t]} \phi_2) = \sum_{i=0}^{\infty} \left(\gamma_{q,t,i} \cdot (P^{\text{unif}(C[\phi_2][\neg\phi_1 \land \neg\phi_2])})^i \cdot \phi_2 \right) \]

- yields \(\text{Prob}(F^{[0,7.5]} \text{ full }) \approx [0.6482, 0.6823, 0.7811, 1] \)

- \(P_{>0.65}[F^{[0,7.5]} \text{ full }] \) satisfied in states \(s_1, s_2 \) and \(s_3 \)
Time-bounded until – $P_{\sim p} [\phi_1 U^{[t,t']} \phi_2]$

- In this case the computation can be split into two parts:
 1. Probability of remaining in ϕ_1 states until time t
 - can be computed as transient probabilities on the CTMC where are states satisfying $\neg \phi_1$ have been made absorbing
 2. Probability of reaching a ϕ_2 state, while remaining in states satisfying ϕ_1, within the time interval $[0,t'-t]$
 - i.e. computing $\text{Prob}(\phi_1 U^{[0,t'-t]} \phi_2)$

$$\text{Prob}(s, \phi_1 U^{[t,t']} \phi_2) = \sum_{s' \in \text{Sat}(\phi_1)} \prod_{s,t}^{C[\neg \phi_1]} (s') \cdot \text{Prob}(s', \phi_1 U^{[0,t'-t]} \phi_2)$$

- sum over states satisfying ϕ_1
- Probability of reaching state s' at time t and satisfying ϕ_1 up until this point
- probability $\phi_1 U^{[0,t'-t]} \phi_2$ holds in s'
Time-bounded until $- P_{\sim_p} [\phi_1 U^{[t,t']} \phi_2]$

- Let $\text{Prob}_{\phi_1}(s, \phi_1 U^{[0,t'-t]} \phi_2) = \text{Prob}(s, \phi_1 U^{[0,t'-t]} \phi_2)$ if $s \in \text{Sat}(\phi_1)$ and 0 otherwise
- From the previous slide we have:

$$\text{Prob}(\phi_1 U^{[t,t']} \phi_2) = \prod_t^{C[-\phi_1]} \cdot \text{Prob}_{\phi_1}(\phi_1 U^{[0,t'-t]} \phi_2)$$

$$= \left(\sum_{i=0}^{\infty} Y_{q,t,i} \cdot \left(P^{\text{unif}(C[-\phi_1])} \right) \right) \text{Prob}_{\phi_1}(\phi_1 U^{[0,t'-t]} \phi_2)$$

$$= \sum_{i=0}^{\infty} \left(Y_{q,t,i} \cdot \left(P^{\text{unif}(C[-\phi_1])} \right) \right) \cdot \text{Prob}_{\phi_1}(\phi_1 U^{[0,t'-t]} \phi_2)$$

- summation can be truncated using Fox and Glynn [FG88]
- can compute iteratively (only scalar and matrix–vector operations)
Time-bounded until $- P_{\sim p} [\phi_1 U^{[t,\infty)} \phi_2]$

- Similar to the case for $\phi_1 U^{[t,t']} \phi_2$ except second part is now unbounded, and hence the embedded DTMC can be used

- 1. Probability of remaining in ϕ_1 states until time t
- 2. Probability of reaching a ϕ_2 state, while remaining in states satisfying ϕ_1
 - i.e. computing $\text{Prob}(\phi_1 U^{[0,\infty)} \phi_2)$

\[
\text{Prob}(s, \phi_1 U^{[t,\infty)} \phi_2) = \sum_{s' \in \text{Sat}(\phi_1)} C_{[-\phi_1]}^{C[\phi_1]} (s') \cdot \text{Prob}^{\text{emb}(C)}(s', \phi_1 U \phi_2)
\]
Time–bounded until – $P_{\sim p} [\phi_1 \ U^{[t, \infty)} \phi_2]$

• Letting $\text{Prob}_{\phi_1}(s, \phi_1 U^{[0, \infty)} \phi_2) = \text{Prob}(s, \phi_1 U^{[0, \infty)} \phi_2)$ if $s \in \text{Sat}(\phi_1)$ and 0 otherwise, we have:

\[
\text{Prob}(\phi_1 U^{[t, \infty]} \phi_2) = \prod_t C[\neg \phi_1] \cdot \text{Prob}_{\phi_1}^{\text{emb}(C)} (\phi_1 U \phi_2) \\
= \left(\sum_{i=0}^{\infty} Y_{q \cdot t, i} \cdot (P^{\text{unif}(C[\neg \phi_1])})^i \right) \text{Prob}_{\phi_1}^{\text{emb}(C)} (\phi_1 U \phi_2) \\
= \sum_{i=0}^{\infty} \left(Y_{q \cdot t, i} \cdot (P^{\text{unif}(C[\neg \phi_1])})^i \cdot \text{Prob}_{\phi_1}^{\text{emb}(C)} (\phi_1 U \phi_2) \right)
\]

– summation can be truncated using Fox and Glynn [FG88]
– can compute iteratively (only scalar and matrix–vector operations)
Model Checking – \(S_{\sim p}[\phi] \)

- A state \(s \) satisfies the formula \(S_{\sim p}[\phi] \) if \(\sum_{s'} \models \phi \pi^C_s(s') \sim p \)
 - \(\pi^C_s(s') \) is probability, having started in state \(s \), of being in state \(s' \) in the long run
- Thus reduces to computing and then summing steady-state probabilities for the CTMC

- If CTMC is irreducible:
 - solution of one linear equation system
- If CTMC is reducible:
 - determine set of BSCCs for the CTMC
 - solve two linear equation systems for each BSCC \(T \)
 - one to obtain the vector \(\text{ProbReach}^{\text{emb}(C)}(T) \)
 - the other to compute the steady state probabilities \(\pi^T \) for \(T \)
$S_{\sim p}[\phi]$ – Example

- $S_{<0.1}[\text{full}]$
- CTMC is irreducible (comprises a single BSCC)
 - steady state probabilities independent of starting state
 - can be computed by solving $\pi \cdot Q = 0$ and $\sum \pi(s) = 1$

$$Q = \begin{bmatrix}
-3/2 & 3/2 & 0 & 0 \\
3 & -9/2 & 3/2 & 0 \\
0 & 3 & -9/2 & 3/2 \\
0 & 0 & 3 & -3
\end{bmatrix}$$

$$\begin{array}{c}
\text{S}_0 \quad \text{S}_1 \quad \text{S}_2 \quad \text{S}_3 \\
\{\text{empty}\} \quad \text{S}_0 \quad \text{S}_1 \quad \text{S}_2 \quad \{\text{full}\}
\end{array}$$
$S_{\sim p} [\phi]$ – Example

\[- \frac{3}{2} \cdot \pi(s_0) + 3 \cdot \pi(s_1) = 0\]
\[3 \cdot \pi(s_0) - \frac{9}{2} \cdot \pi(s_1) + 3 \cdot \pi(s_2) = 0\]
\[\pi(s_1) - \frac{9}{2} \cdot \pi(s_2) + 3 \cdot \pi(s_3) = 0\]
\[\pi(s_2) - 3 \cdot \pi(s_3) = 0\]
\[\pi(s_0) + \pi(s_1) + \pi(s_2) + \pi(s_3) = 1\]

- solution: $\pi = [8/15, 4/15, 2/15, 1/15]$
- $\sum_{s' \models \text{Sat(full)}} \pi(s') = 1/15 < 0.1$
- so all states satisfy $S_{<0.1}[\text{full}]$
Rewards (or costs)

• Like DTMCs, we can augment CTMCs with rewards
 – real-valued quantities assigned to states and/or transitions
 – can be interpreted in two ways: instantaneous/cumulative
 – properties considered here: expected value of rewards
 – formal property specifications in an extension of CSL

• For a CTMC \((S, s_{\text{init}}, R, L)\), a reward structure is a pair \((\rho, \iota)\)
 – \(\rho : S \rightarrow \mathbb{R}_{\geq 0}\) is a vector of state rewards
 – \(\iota : S \times S \rightarrow \mathbb{R}_{\geq 0}\) is a matrix of transition rewards

• For cumulative reward–based properties of CTMCs
 – state rewards interpreted as rate at which reward gained
 – if the CTMC remains in state \(s\) for \(t \in \mathbb{R}_{\geq 0}\) time units, a reward of \(t \cdot \rho(s)\) is acquired
Reward structures – Examples

- Example: “size of message queue”
 - $\rho(s_i) = i$ and $\iota(s_i, s_j) = 0 \ \forall i, j$

- Example: “time for which queue is not full”
 - $\rho(s_i) = 1$ for $i < 3$, $\rho(s_3) = 0$ and $\iota(s_i, s_j) = 0 \ \forall i, j$
Reward structures – Examples

- Example: “number of requests served”

\[
\rho = \begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}
\quad \text{and} \quad
\kappa = \begin{bmatrix}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]
PRISM extends CSL to incorporate reward-based properties
- adds R operator like the one added to PCTL

\[\phi ::= \ldots \mid R_\sim r [I=t] \mid R_\sim r [C \leq t] \mid R_\sim r [F \phi] \mid R_\sim r [S] \]

"instantaneous" "cumulative" "reachability" "steady-state"

- where \(r, t \in \mathbb{R}_{\geq 0}, \sim \in \{<,>,\leq,\geq\} \)

\[R_\sim r [\cdot] \text{ means "the expected value of } \cdot \text{ satisfies } \sim r \]
Types of reward formulae

- **Instantaneous**: $R_{\sim r} \ [l=t]$
 - the expected value of the reward at time-instant t is $\sim r$
 - “the expected queue size after 6.7 seconds is at most 2”

- **Cumulative**: $R_{\sim r} \ [C \leq t]$
 - the expected reward cumulated up to time-instant t is $\sim r$
 - “the expected requests served within the first 4.5 seconds of operation is less than 10”

- **Reachability**: $R_{\sim r} \ [F \phi]$
 - the expected reward cumulated before reaching ϕ is $\sim r$
 - “the expected requests served before the queue becomes full”

- **Steady-state**: $R_{\sim r} \ [S]$
 - the long-run average expected reward is $\sim r$
 - “expected long-run queue size is at least 1.2”
Reward properties in PRISM

• Quantitative form:
 – e.g. $R_{\leq t} \left[C \leq t \right]$
 – what is the expected reward cumulated up to time-instant t?

• Add labels to R operator to distinguish between multiple reward structures defined on the same CTMC
 – e.g. $R_{\{\text{num}_\text{req}\}} = ? \left[C \leq 4.5 \right]$
 – “the expected number of requests served within the first 4.5 seconds of operation”
 – e.g. $R_{\{\text{pow}\} = ? \left[C \leq 4.5 \right]$
 – “the expected power consumption within the first 4.5 seconds of operation”
Reward formula semantics

- Formal semantics of the four reward operators:

 - \(s \models R_r [I^= t] \) ⇔ \(\text{Exp}(s, X_{I^= t}) \sim r \)

 - \(s \models R_r [C^{\leq t}] \) ⇔ \(\text{Exp}(s, X_{C^{\leq t}}) \sim r \)

 - \(s \models R_r [F \Phi] \) ⇔ \(\text{Exp}(s, X_{F\Phi}) \sim r \)

 - \(s \models R_r [S] \) ⇔ \(\lim_{t \to \infty} \left(\frac{1}{t} \cdot \text{Exp}(s, X_{C^{\leq t}}) \right) \sim r \)

- where:

 - \(\text{Exp}(s, X) \) denotes the expectation of the random variable \(X : \text{Path}(s) \to \mathbb{R}_{\geq 0} \) with respect to the probability measure \(\Pr_s \)
Reward formula semantics

- Definition of random variables:
 - path $\omega = s_0 t_0 s_1 t_1 s_2 \ldots$
 - state of ω at time t
 - time spent in state s_i
 - time spent in state s_{j_t} before t time units have elapsed

$$X_{i-k}(\omega) = \rho(\omega @ t)$$

$$X_{Cst}(\omega) = \sum_{i=0}^{j_t-1} (t_i \cdot \rho(s_i) + \iota(s_i, s_{i+1})) + \left(t - \sum_{i=0}^{j_t-1} t_i \right) \cdot \rho(s_{j_t})$$

$$X_{F\phi}(\omega) = \begin{cases} 0 & \text{if } s_0 \in \text{Sat}(\phi) \\ \infty & \text{if } s_i \not\in \text{Sat}(\phi) \text{ for all } i \geq 0 \\ \sum_{i=0}^{k_\phi-1} t_i \cdot \rho(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise} \end{cases}$$

- where $j_t = \min\{ j \mid \sum_{i \leq j} t_i \geq t \}$ and $k_\phi = \min\{ i \mid s_i \models \phi \}$
Model checking reward formulae

- **Instantaneous:** $R_{\sim r}[I=1]$
 - reduces to transient analysis (state of the CTMC at time t)
 - use uniformisation

- **Cumulative:** $R_{\sim r}[C \leq t]$
 - extends approach for time-bounded until
 - based on uniformisation

- **Reachability:** $R_{\sim r}[F \phi]$
 - can be computed on the embedded DTMC
 - reduces to solving a system of linear equations

- **Steady-state:** $R_{\sim r}[S]$
 - similar to steady state formulae $S_{\sim r}[\phi]$
 - graph based analysis (compute BSCCs)
 - solve systems of linear equations (compute steady state probabilities of each BSCC)
CSL model checking complexity

• For model checking of a CTMC complexity:
 – linear in |\Phi| and polynomial in |S|
 – linear in q \cdot t_{max} (t_{max} is maximum finite bound in intervals)

• P_{\sim p}[\Phi_1 \cup [0,\infty) \Phi_2], S_{\sim p}[\Phi], R_{\sim r}[F \Phi] and R_{\sim r}[S]
 – require solution of linear equation system of size |S|
 – can be solved with Gaussian elimination: cubic in |S|
 – precomputation algorithms (max |S| steps)

• P_{\sim p}[\Phi_1 \cup I \Phi_2], R_{\sim r}[C \leq t] and R_{\sim r}[I=t]
 – at most two iterative sequences of matrix–vector products
 – operation is quadratic in the size of the matrix, i.e. |S|
 – total number of iterations bounded by Fox and Glynn
 – the bound is linear in the size of q \cdot t (q uniformisation rate)
Summing up…

- Model checking a CSL formula ϕ on a CTMC
 - recursive: bottom-up traversal of parse tree of ϕ
- Main work: computing probabilities for P and S operators
 - untimed ($X \phi$, $\Phi_1 U \Phi_2$): perform on embedded DTMC
 - time-bounded until: use uniformisation-based methods, rather than more expensive solution of integral equations
 - other forms of time-bounded until, i.e. $[t_1,t_2]$ and $[t,\infty)$, reduce to two sequential computations like for $[0,t]$
 - S operator: summation of steady-state probabilities
- Rewards – similar to DTMCs
 - except for continuous-time accumulation of state rewards
 - extension of CSL with R operator
 - model checking of R comparable with that of P