Lecture 7
Costs & Rewards

Dr. Dave Parker

Department of Computer Science
University of Oxford
Overview

• Specifying costs and rewards
 – DTMCs
 – PRISM language
• Properties: expected reward values
 – instantaneous
 – cumulative
 – reachability
 – temporal logic extensions
• Model checking
 – computing reward values
• Case study
 – randomised contract signing
Costs and rewards

• We augment DTMCs with rewards (or, conversely, costs)
 – real-valued quantities assigned to states and/or transitions
 – these can have a wide range of possible interpretations

• Some examples:
 – elapsed time, power consumption, size of message queue,
 number of messages successfully delivered, net profit, …

• Costs? or rewards?
 – mathematically, no distinction between rewards and costs
 – when interpreted, we assume that it is desirable to minimise costs and to maximise rewards
 – we will consistently use the terminology “rewards” regardless
Reward–based properties

- Properties of DTMCs augmented with rewards
 - allow a wide range of quantitative measures of the system
 - basic notion used here: expected value of rewards
 - formal property specifications will be in an extension of PCTL

- More precisely, we use two distinct classes of property...

- Instantaneous properties
 - e.g. the expected value of the reward at some time point

- Cumulative properties
 - e.g. the expected cumulated reward over some period
DTMC reward structures

- For a DTMC \((S, s_{init}, P, L)\), a reward structure is a pair \((\rho, \iota)\)
 - \(\rho : S \rightarrow \mathbb{R}_{\geq 0}\) is the state reward function (vector)
 - \(\iota : S \times S \rightarrow \mathbb{R}_{\geq 0}\) is the transition reward function (matrix)

- Example (for use with instantaneous properties)
 - “size of message queue”: \(\rho\) maps each state to the number of jobs in the queue in that state, \(\iota\) is not used

- Examples (for use with cumulative properties)
 - “time–steps”: \(\rho\) returns 1 for all states and \(\iota\) is zero
 (equivalently, \(\rho\) is zero and \(\iota\) returns 1 for all transitions)
 - “number of messages lost”: \(\rho\) is zero and \(\iota\) maps transitions corresponding to a message loss to 1
 - “power consumption”: \(\rho\) is defined as the per–time–step energy consumption in each state and \(\iota\) as the energy cost of each transition
Rewards in the PRISM language

(rewards “total_queue_size”
 true : queue1+queue2;
 endrewards)

(instantaneous, state rewards)

(rewards "dropped"
 [receive] q=q_max : 1;
 endrewards)

(cumulative, transition rewards)

(rewards “time”
 true : 1;
 endrewards)

(cumulative, state rewards)

(rewards “power”
 sleep=true : 0.25;
 sleep=false : 1.2 * up;
 [wake] true : 3.2;
 endrewards)

(cumulative, state/trans. rewards)

(q = queue size, q_max = max. queue size, receive = action label)

(up = num. operational components, wake = action label)
Expected reward properties

- Expected ("average") values of rewards...

- Instantaneous
 - "the expected value of the state reward at time-step k"
 - e.g. "the expected queue size after exactly 90 seconds"

- Cumulative (time-bounded)
 - "the expected reward cumulated up to time-step k"
 - e.g. "the expected power consumption over one hour"

- Reachability (also cumulative)
 - "the expected reward cumulated before reaching states $T \subseteq S$"
 - e.g. "the expected time for the algorithm to terminate"
Expectation

- **Probability space** (Ω, Σ, \Pr)
 - probability measure $\Pr : \Sigma \rightarrow [0,1]$

- **Random variable** X
 - a measurable function $X : \Omega \rightarrow \Delta$
 - usually real-valued, i.e.: $X : \Omega \rightarrow \mathbb{R}$

- **Expected (“average”) value of the random variable**: $\text{Exp}(X)$

 \[
 \text{Exp}(X) = \sum_{\omega \in \Omega} X(\omega) \cdot \Pr(\omega)
 \]
 \[
 \text{Exp}(X) = \int_{\omega \in \Omega} X(\omega) \, d\Pr
 \]

 discrete case
Reachability + rewards

- Expected reward cumulated before reaching states $T \subseteq S$
- Define a random variable:
 - $X_{\text{Reach}(T)} : \text{Path}(s) \rightarrow \mathbb{R}_{\geq 0}$
 - where for an infinite path $\omega = s_0s_1s_2\ldots$
 \[
 X_{\text{Reach}(T)}(\omega) = \begin{cases}
 0 & \text{if } s_0 \in T \\
 \infty & \text{if } s_i \not\in T \text{ for all } i \geq 0 \\
 \sum_{i=0}^{k_T-1} \rho(s_i) + \ell(s_i, s_{i+1}) & \text{otherwise}
 \end{cases}
 \]
 - where $k_T = \min\{ j \mid s_j \in T \}$
- Then define:
 - $\text{ExpReach}(s, T) = \text{Exp}(s, X_{\text{Reach}(T)})$
 - denoting: expectation of the random variable $X_{\text{Reach}(T)}$
 with respect to the probability measure \Pr_s, i.e.:
 \[
 \int_{\omega \in \text{Path}(s)} X_{\text{Reach}(T)}(\omega) \, d\Pr_s
 \]
Computing the rewards

• Determine states for which $\text{ProbReach}(s, T) = 1$

• Solve linear equation system:

$$
\text{ExpReach}(s, T) = \begin{cases}
\infty & \text{if } \text{ProbReach}(s, T) < 1 \\
0 & \text{if } s \in T \\
\rho(s) + \sum_{s' \in S} P(s, s') \cdot (\nu(s, s') + \text{ExpReach}(s', T)) & \text{otherwise}
\end{cases}
$$
Example

• Let $\rho = [0, 1, 0, 0]$ and $\iota(s, s') = 0$ for all $s, s' \in S$

• Compute $\text{ExpReach}(s_0, \{s_3\})$

 (“expected number of times pass through s_1 to get to s_3”)

• First check:

 $\text{ProbReach}(\{s_3\}) = \{1, 1, 1, 1\}$

• Then solve linear equation system:

 (letting $x_i = \text{ExpReach}(s_i, \{s_3\})$):

 $x_0 = 0 + 1 \cdot (0 + x_1)$

 $x_1 = 1 + 0.01 \cdot (0 + x_2) + 0.01 \cdot (0 + x_1) + 0.98 \cdot (0 + x_3)$

 $x_2 = 0 + 1 \cdot (0 + x_0)$

 $x_3 = 0$

 Solution: $\text{ExpReach}(\{s_3\}) = [100/98, 100/98, 100/98, 0]$

• So: $\text{ExpReach}(s_0, \{s_3\}) = 100/98 \approx 1.020408$
Specifying reward properties

- PRISM extends PCTL to include expected reward properties
 - add an R operator, which is similar to the existing P operator

\[\phi ::= \ldots \mid P_{\preceq p} [\psi] \mid R_{\preceq r}[I^=k] \mid R_{\preceq r}[C^{\leq k}] \mid R_{\preceq r}[F \phi] \]

- where \(r \in \mathbb{R}_{\geq 0}, \sim \in \{<,>,\leq,\geq\}, k \in \mathbb{N} \)

- \(R_{\preceq r}[\cdot] \) means “the expected value of \(\cdot \) satisfies \(\sim r \)”
Random variables for reward formulae

• Definition of random variables for the R operator:
 - for an infinite path $\omega = s_0 s_1 s_2 \ldots$

$$X_{l=k}(\omega) = \rho(s_k)$$

$$X_{c_{sk}}(\omega) = \begin{cases}
 0 & \text{if } k = 0 \\
 \sum_{i=0}^{k-1} \rho(s_i) + \tau(s_i, s_{i+1}) & \text{otherwise}
\end{cases}$$

$$X_{F_{\phi}}(\omega) = \begin{cases}
 0 & \text{if } s_0 \in \text{Sat}(\phi) \\
 \sum_{i=0}^{k_{\phi}-1} \rho(s_i) + \tau(s_i, s_{i+1}) & \text{if } s_i \not\in \text{Sat}(\phi) \text{ for all } i \geq 0 \\
 \infty & \text{otherwise}
\end{cases}$$

- where $k_{\phi} = \min\{ j \mid s_j \models \phi \}$

$X_{F_{\phi}}$ same as $X_{\operatorname{Reach(Sat}(\phi))}$ from earlier
Reward formula semantics

- Formal semantics of the three reward operators:

- For a state s in the DTMC:

 - $s \models R_{\sim r}[l=k] \iff \text{Exp}(s, X_{l=k}) \sim r$
 - $s \models R_{\sim r}[C \leq k] \iff \text{Exp}(s, X_{C \leq k}) \sim r$
 - $s \models R_{\sim r}[F \Phi] \iff \text{Exp}(s, X_{\Phi}) \sim r$

 where: $\text{Exp}(s, X)$ denotes the expectation of the random variable $X : \text{Path}(s) \rightarrow \mathbb{R}_{\geq 0}$ with respect to the probability measure Pr_s

- We can also define $R_{\leq ?} [...]$ properties, as for the P operator
 - e.g. $R_{\leq ?}[F \Phi]$ returns the value $\text{Exp}(s, X_{\Phi})$

$\text{Exp}(s, X_{F\Phi})$ same as $\text{ExpReach}(s, \text{Sat}(\Phi))$ from earlier
Model checking reward operators

- Like for model checking $P_{\sim p}$ [...], to check $R_{\sim r}$ [...]
 - compute reward values for all states, compare with bound r

- Instantaneous: $R_{\sim r} [I=K]$ – compute $\text{Exp}(X_{I=K})$
 - solution of recursive equations
 - essentially: k matrix–vector multiplications

- Cumulative: $R_{\sim r} [C\leq t]$ – compute $\text{Exp}(X_{C\leq k})$
 - solution of recursive equations
 - essentially: k matrix–vector multiplications

- Reachability: $R_{\sim r} [F \phi]$ – compute $\text{Exp}(X_{F\phi})$
 - graph analysis + linear equation system
 - (see computation of $\text{ExpReach}(s, T)$ earlier)
Model checking $R_{\sim r} [I=k]$

- **Expected instantaneous reward at step k**
 - can be defined in terms of transient probabilities for step k

- $\text{Exp}(s, X_{I=k}) = \sum_{s' \in S} \pi_{s,k}(s') \cdot \rho(s')$

- $\text{Exp}(X_{I=k}) = P^k \cdot \rho$

- **Yielding recursive definition:**
 - $\text{Exp}(X_{I=0}) = \rho$
 - $\text{Exp}(X_{I=k}) = P \cdot \text{Exp}(X_{I=(k-1)})$
 - i.e. k matrix-vector multiplications
 - note: “backwards” computation (like bounded until prob.s) rather than “forwards” computation (like transient prob.s)
Example

• Let $\rho = [0, 1, 0, 0]$ and $\iota(s,s') = 0$ for all $s,s' \in S$

• Compute $\text{Exp}(s_0, X_{i=2})$

 – (“probability of being in state s_1”)
 – $\text{Exp}(X_{i=0}) = [0, 1, 0, 0]$
 – $\text{Exp}(X_{i=1}) = P \cdot \text{Exp}(X_{i=0})$

 $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.01 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

 – $\text{Exp}(X_{i=2}) = P \cdot \text{Exp}(X_{i=1})$

 $\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.01 \\ 0.01 \\ 0.0001 \\ 1 \end{bmatrix} = \begin{bmatrix} 0.0001 \\ 0.0001 \\ 0 \\ 0 \end{bmatrix}$

• Result: $\text{Exp}(s_0, X_{i=2}) = 0.01$
Model checking $\mathcal{R} \sim_r [C \leq k]$

- Expected reward cumulated up to time-step k

- Again, a recursive definition:

$$\text{Exp}(s, X_{C_{\leq k}}) = \begin{cases}
\rho(s) + \sum_{s' \in S} P(s, s') \cdot (\ell(s, s') + \text{Exp}(s', X_{C_{\leq k-1}})) & \text{if } k > 0 \\
0 & \text{if } k = 0
\end{cases}$$

- And in matrix/vector notation:

$$\overline{\text{Exp}}(X_{C_{\leq k}}) = \begin{cases}
\rho + (P \cdot \ell) \cdot \mathbf{1} + P \cdot \overline{\text{Exp}}(X_{C_{\leq k-1}}) & \text{if } k > 0 \\
0 & \text{if } k = 0
\end{cases}$$

- where \cdot denotes Schur (pointwise) matrix multiplication
- and $\mathbf{1}$ is a vector of all 1s
Case study: Contract signing

- Two parties want to agree on a contract
 - each will sign if the other will sign, but do not trust each other
 - there may be a trusted third party (judge)
 - but it should only be used if something goes wrong

- In real life: contract signing with pen and paper
 - sit down and write signatures simultaneously

- On the Internet…
 - how to exchange commitments on an asynchronous network?
 - “partial secret exchange protocol” [EGL85]
Contract signing – EGL protocol

• Partial secret exchange protocol for 2 parties (A and B)

• A (B) holds 2N secrets \(a_1,\ldots,a_{2N} \) (\(b_1,\ldots,b_{2N} \))
 – a secret is a binary string of length \(L \)
 – secrets partitioned into pairs: e.g. \(\{ (a_i, a_{N+i}) \mid i=1,\ldots,N \} \)
 – A (B) committed if B (A) knows one of A’s (B’s) pairs

• Uses “1–out–of–2 oblivious transfer protocol” \(\text{OT}(S,R,x,y) \)
 – Sender \(S \) sends \(x \) and \(y \) to receiver \(R \)
 – \(R \) receives \(x \) with probability \(\frac{1}{2} \) otherwise receives \(y \)
 – \(S \) does not know which one \(R \) receives
 – if \(S \) cheats then \(R \) can detect this with probability \(\frac{1}{2} \)
EGL protocol – Step 1

(repeat for i=1…N)
EGL protocol – Step 2

Party A

A sends bit i of a_j to B for $j=1…2N$

Then B does the same for b_j

(repeat for $i=1…L$)

Party B
Contract signing – Results

• Modelled in PRISM as a DTMC (no concurrency) [NS06]

• Highlights a weakness in the protocol
 – party B can act maliciously by quitting the protocol early
 – this behaviour not considered in the original analysis

• PRISM analysis shows
 – if B stops participating in the protocol as soon as he/she has obtained one of A pairs, then, with probability 1, at this point:
 • B possesses a pair of A’s secrets
 • A does not have complete knowledge of any pair of B’s secrets
 – protocol is not fair under this attack:
 – B has a distinct advantage over A
Contract signing – Results

• The protocol is unfair because in step 2:
 – A sends a bit for each of its secret before B does

• Can we make this protocol fair by changing the message sequence scheme?

• Since the protocol is asynchronous the best we can hope for is:
 – B (or A) has this advantage with probability $\frac{1}{2}$

• We consider 3 possible alternative message sequence schemes (EGL2, EGL3, EGL4)
Contract signing – EGL2

(step 1)
...
(step 2)
for (i=1,…,L)
 for (j=1,…,N) A transmits bit i of secret \(a_j\) to B
 for (j=1,…,N) B transmits bit i of secret \(b_j\) to A
 for (j=N+1,…,2N) A transmits bit i of secret \(a_j\) to B
 for (j=N+1,…,2N) B transmits bit i of secret \(b_j\) to A
Modified step 2 for EGL2

Party A

1...L

1...N

N+1...2N

A sends bit i of a_j to B for $j=1...N$

Then B does the same for b_j

Party B

1...L

1...N

N+1...2N

(after $j=1...N$, send $j=N+1...2N$)

(then repeat for $i=1...L$)
(step 1)
...

(step 2)
\[\text{for } (i=1,\ldots,L) \text{ for } (j=1,\ldots,N) \]
A transmits bit i of secret \(a_j \) to B
B transmits bit i of secret \(b_j \) to A
\[\text{for } (i=1,\ldots,L) \text{ for } (j=N+1,\ldots,2N) \]
A transmits bit i of secret \(a_j \) to B
B transmits bit i of secret \(b_j \) to A
Modified step 2 for EGL3

Party A

A sends bit i of a_j to B for

Then B does the same for b_j

(repeat for $j=1\ldots N$ and for $i=1\ldots L$)
(then send $j=N+1\ldots 2N$ for $i=1\ldots L$)

Party B
(step 1)
...
(step 2)
for \(i=1,\ldots,L \)
 A transmits bit \(i \) of secret \(a_1 \) to B
for \(j=1,\ldots,N \) B transmits bit \(i \) of secret \(b_j \) to A
for \(j=2,\ldots,N \) A transmits bit \(i \) of secret \(a_j \) to B
for \(i=1,\ldots,L \)
 A transmits bit \(i \) of secret \(a_{N+1} \) to B
for \(j=N+1,\ldots,2N \) B transmits bit \(i \) of secret \(b_j \) to A
for \(j=N+2,\ldots,2N \) A transmits bit \(i \) of secret \(a_j \) to B
Modified step 2 for EGL4

A sends bit i of a_1 to B

Then B sends bit i of b_j to B for $j=1\ldots N$

Then A sends bit i of a_j to B for $j=2\ldots N$

(repeat for $i=1\ldots L$)

(then send $j=N+1\ldots 2N$ in same fashion)
Contract signing – Results

• The chance that the protocol is unfair
 – probability that one party gains knowledge first
 – $P_{\rightarrow}[F \text{ know}_B \land \neg \text{ know}_A]$ and $P_{\rightarrow}[F \text{ know}_A \land \neg \text{ know}_B]$
Contract signing – Results

- The influence that each party has on the fairness
 - once a party knows a pair, the expected number of messages from this party required before the other party knows a pair

\[R = \text{?} \left[F \text{ know}_A \right] \]

Reward structure:

Assign 1 to transitions corresponding to messages being sent from B to A after B knows a pair (and 0 to all other transitions)
Contract signing – Results

- The duration of unfairness of the protocol
 - once a party knows a pair, the expected total number of messages that need to be sent before the other knows a pair

\[R = \mathbb{E} \left[F \text{ know}_A \right] \]

Reward structure:

Assign 1 to transitions corresponding to any message being sent between A and B after B knows a pair

(and 0 to all other transitions)
Contract signing – Results

• Results show EGL4 is the ‘fairest’ protocol

• Except for “duration of fairness” measure
 – expected messages that need to be sent for a party to know a pair once the other party knows a pair
 – this value is larger for B than for A
 – and, in fact, as n increases, this measure:
 • increases for B
 • decreases for A

• Solution:
 – if a party sends a sequence of bits in a row (without the other party sending messages in between), require that the party send these bits as a single message
Contract signing – Results

- The duration of unfairness of the protocol
 - (with the solution on the previous slide applied to all variants)
Summing up…

- **Costs and rewards**
 - real-valued assigned to states/transitions of a DTMC

- **Properties**
 - expected instantaneous/cumulative reward values
 - PRISM property specifications: adds R operator to PCTL

- **Model checking**
 - instantaneous: matrix–vector multiplications
 - cumulative: matrix–vector multiplications
 - reachability: graph analysis + linear equation systems

- **Case study**
 - randomised contract signing