Probabilistic Model Checking

Marta Kwiatkowska
Dave Parker

Oxford University Computing Laboratory

ESSLLI’10 Summer School, Copenhagen, August 2010
Part 5

Probabilistic timed automata
Probabilistic models

<table>
<thead>
<tr>
<th></th>
<th>Fully probabilistic</th>
<th>Nondeterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discrete–time Markov chains (DTMCs)</td>
<td></td>
<td>Markov decision processes (MDPs) (probabilistic automata)</td>
</tr>
<tr>
<td>Continuous time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous–time Markov chains (CTMCs)</td>
<td></td>
<td>CTMDPs/IMCs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Probabilistic timed automata (PTAs)</td>
</tr>
</tbody>
</table>
Recall – MDPs

• **Markov decision processes (MDPs)**
 – mix probability and nondeterminism
 – in a state, there is a nondeterministic choice between multiple probability distributions over successor states

• **Adversaries**
 – resolve nondeterministic choices based on history so far
 – properties quantify over all possible adversaries
 – e.g. $P_{<0.1}[\Diamond \text{err}]$ – maximum probability of an error is < 0.1
Real-world protocol examples

- **Systems with probability, nondeterminism and real-time**
 - e.g. communication protocols, randomised security protocols

- **Randomised back-off schemes**
 - Ethernet, WiFi (802.11), Zigbee (802.15.4)

- **Random choice of waiting time**
 - Bluetooth device discovery phase
 - Root contention in IEEE 1394 FireWire

- **Random choice over a set of possible addresses**
 - IPv4 dynamic configuration (link-local addressing)

- **Random choice of a destination**
 - Crowds anonymity, gossip-based routing
Overview (Part 5)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards
Time, clocks and clock valuations

• **Dense time domain:** non-negative reals $\mathbb{R}_{\geq 0}$
 - from this point on, we will abbreviate $\mathbb{R}_{\geq 0}$ to \mathbb{R}

• **Finite set of clocks** $x \in X$
 - variables taking values from time domain \mathbb{R}
 - increase at the same rate as real time

• **A clock valuation** is a tuple $v \in \mathbb{R}^X$. Some notation:
 - $v(x)$: value of clock x in v
 - $v+t$: time increment of t for v
 - $(v+t)(x) = v(x)+t \quad \forall x \in X$
 - $v[Y:=0]$: clock reset of clocks $Y \subseteq X$ in v
 - $v[Y:=0](x) = 0$ if $x \in Y$ and $v(x)$ otherwise
Zones (clock constraints)

- Zones (clock constraints) over clocks X, denoted $\text{Zones}(X)$:
 $$\zeta ::= x \leq d \mid c \leq x \mid x+c \leq y+d \mid \neg \zeta \mid \zeta \lor \zeta$$
 - where $x, y \in X$ and $c, d \in \mathbb{N}$
 - used for both syntax of PTAs/properties and algorithms

- Can derive:
 - logical connectives, e.g. $\zeta_1 \land \zeta_2 \equiv \neg(\neg \zeta_1 \lor \neg \zeta_2)$
 - strict inequalities, through negation, e.g. $x > 5 \equiv \neg(x \leq 5)$…

- Some useful classes of zones:
 - closed: no strict inequalities (e.g. $x > 5$)
 - diagonal-free: no comparisons between clocks (e.g. $x \leq y$)
 - convex: define a convex set, efficient to manipulate
Zones and clock valuations

• A clock valuation v satisfies a zone ζ, written $v \triangleright \zeta$ if
 – ζ resolves to true after substituting each clock x with $v(x)$

• The semantics of a zone $\zeta \in \text{Zones}(X)$ is the set of clock valuations which satisfy it (i.e. a subset of \mathbb{R}^X)
 – NB: multiple zones may have the same semantics
 – e.g. $(x \leq 2) \land (y \leq 1) \land (x \leq y+2)$ and $(x \leq 2) \land (y \leq 1) \land (x \leq y+3)$

• We consider only canonical zones
 – i.e. zones for which the constraints are as ‘tight’ as possible
 – $O(|X|^3)$ algorithm to compute (unique) canonical zone [Dil89]
 – allows us to use syntax for zones interchangeably with semantic, set-theoretic operations
c-equivalence and c-closure

• Clock valuations v and v' are c-equivalent if for any $x,y \in X$
 – either $v(x) = v'(x)$, or $v(x) > c$ and $v'(x) > c$
 – either $v(x) - v(y) = v'(x) - v'(y)$ or $v(x) - v(y) > c$ and $v'(x) - v'(y) > c$

• The c-closure of the zone ζ, denoted $\text{close}(\zeta, c)$, equals
 – the greatest zone $\zeta' \supseteq \zeta$ such that, for any $v' \in \zeta'$,
 there exists $v \in \zeta$ and v and v' are c-equivalent
 – c-closure ignores all constraints which are greater than c
 – for a given c, there are only a finite number of c-closed zones
Operations on zones – Set theoretic

- Intersection of two zones: $\zeta_1 \cap \zeta_2$
Operations on zones – Set theoretic

- Union of two zones: $\zeta_1 \cup \zeta_2$
Operations on zones – Set theoretic

- Difference of two zones: $\zeta_1 \setminus \zeta_2$
Operations on zones – Clock resets

• \(\zeta[Y:=0] = \{ \nu[Y:=0] \mid \nu \triangleright \zeta \} \)
 – clock valuations obtained from \(\zeta \) by resetting the clocks in \(Y \)
Operations on zones – Clock resets

- \([Y:=0]\zeta = \{ v \mid v[Y:=0] \triangleright \zeta \}\)
 - clock valuations which are in \(\zeta\) if the clocks in \(Y\) are reset
Operations on zones: Projections

- Forwards diagonal projection
- \(\zeta = \{ v \mid \exists t \geq 0 . (v-t) \triangleright \zeta \} \)
 - contains the clock valuations that can be reached from \(\zeta \) by letting time pass
Operations on zones: Projections

- Backwards diagonal projection
- $\prec_{\zeta'} \zeta = \{ v \mid \exists t \geq 0 . ((v+t) \triangleright \zeta \land \forall t' < t . ((v+t') \triangleright \zeta')) \}$
 - contains the clock valuations that, by letting time pass, reach a clock valuation in ζ and remain in ζ' until ζ is reached
Operations on zones: c–closure

- **c–closure: close(ζ,c)**
 - ignores all constraints which are greater than c
Overview (Part 5)

- Time, clocks and zones
- **Probabilistic timed automata (PTAs)**
 - definition, examples, semantics, time divergence
- **PTCTL**: A temporal logic for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards
Probabilistic timed automata (PTAs)

• Probabilistic timed automata (PTAs)
 – Markov decision processes (MDPs) + real-valued clocks
 – or: timed automata + discrete probabilistic choice
 – model probabilistic, nondeterministic and timed behaviour

• Syntax: A PTA is a tuple \((\text{Loc}, l_{\text{init}}, \text{Act}, X, \text{inv}, \text{prob}, L)\)
 – \(\text{Loc}\) is a finite set of locations
 – \(l_{\text{init}} \in \text{Loc}\) is the initial location
 – \(\text{Act}\) is a finite set of actions
 – \(X\) is a finite set of clocks
 – \(\text{inv} : \text{Loc} \rightarrow \text{Zones}(X)\)
 is the invariant condition
 – \(\text{prob} \subseteq \text{Loc} \times \text{Zones}(X) \times \text{Dist}(\text{Loc} \times 2^X)\)
 is the probabilistic edge relation
 – \(L : \text{Loc} \rightarrow \text{AP}\) is a labelling function

![Diagram of Probabilistic Timed Automata]
Probabilistic edge relation

- Probabilistic edge relation
 - \(\text{prob } \subseteq \text{Loc} \times \text{Zones}(X) \times \text{Act} \times \text{Dist}(\text{Loc} \times 2^X) \)

- Probabilistic edge \((l,g,a,p) \in \text{prob} \)
 - \(l \) is the source location
 - \(g \) is the guard
 - \(a \) is the action
 - \(p \) target distribution

- Edge \((l,g,a,p,l',Y) \)
 - from probabilistic edge \((l,g,a,p) \) where \(p(l',Y)>0 \)
 - \(l' \) is the target location
 - \(Y \) is the set of clocks to be reset
• **Models a simple probabilistic communication protocol**
 – starts in location \(\text{di} \); after between 1 and 2 time units, the protocol attempts to send the data:
 • with probability 0.9 data is sent correctly, move to location \(\text{sr} \)
 • with probability 0.1 data is lost, move to location \(\text{si} \)
 – in location \(\text{si} \), after 2 to 3 time units, attempts to resend
 • correctly sent with probability 0.95 and lost with probability 0.05
• A state of a PTA is a pair \((l,v) \in \text{Loc} \times \mathbb{R}^x\) such that \(v \triangleright inv(l)\)

• A PTAs start in the initial location with all clocks set to zero
 – let \(0\) denote the clock valuation where all clocks have value 0

• For any state \((l,v)\), there is nondeterministic choice between making a discrete transition and letting time pass
 – discrete transition \((l,g,a,p)\) enabled if \(v \triangleright g\) and probability of moving to location \(l'\) and resetting the clocks \(Y\) equals \(p(l',Y)\)
 – time transition available only if invariant \(inv(l)\) is continuously satisfied while time elapses
PTA – Example

PTA:

Example execution:

(di,x=0) → 1.1
(di,x=1.1)

(sr,x=0) (si,x=0)

(sr,x=8.66) (si,x=2.7)

...
PTA semantics

- Formally, the semantics of a PTA P is an infinite-state MDP $M_P = (S_P, s_{init}, \text{Steps}, L_P)$ with:

- States: $S_P = \{ (l,v) \in \text{Loc} \times \mathbb{R}^X \text{ such that } v \triangleright inv(l) \}$

- Initial state: $s_{init} = (l_{init}, 0)$

- Steps: $S_P \rightarrow 2^{(\text{Act} \cup \mathbb{R}) \times \text{Dist}(S)}$ such that $(\alpha, \mu) \in \text{Steps}(l,v)$ iff:
 - (time transition) $\alpha = t \in \mathbb{R}$, $\mu(l,v+t) = 1$ and $v+t' \triangleright inv(l)$ for all $t' \leq t$
 - (discrete transition) $\alpha = a \in \text{Act}$ and there exists $(l,g,a,p) \in \text{prob}$ such that $v \triangleright g$ and, for any $(l',v') \in S_P$: $\mu(l', v') = \sum_{Y \subseteq X \land v[Y := 0] = v'} p(l', Y)$

- Labelling: $L_P(l,v) = L(l)$

actions of MDP M_P are the actions of PTA P or real time delays

multiple resets may give same clock valuation
Time divergence

- **We restrict our attention to time divergent behaviour**
 - a common restriction imposed in real-time systems
 - unrealisable behaviour (i.e. corresponding to time not advancing beyond a time bound) is disregarded
 - also called non-zeno behaviour

- **For a path** $\omega = s_0(\alpha_0, \mu_0)s_1(\alpha_1, \mu_1)s_2(\alpha_2, \mu_2)...$ **in the MDP M_P**
 - $D_\omega(n)$ denotes the duration up to state s_n
 - i.e. $D_\omega(n) = \sum \{|\alpha_i| \; 0 \leq i < n \land \alpha_i \in \mathbb{R} |\}$

- **A path ω is time divergent if, for any $t \in \mathbb{R}_{\geq 0}$:**
 - there exists $j \in \mathbb{N}$ such that $D_\omega(j) > t$

- **Example of non-divergent path:**
 - $s_0(1, \mu_0)s_0(0.5, \mu_1)s_0(0.25, \mu_2)s_0(0.125, \mu_2)s_0...$
Time divergence

• An adversary of M_p is **divergent** if, for each state $s \in S_p$:
 – the probability of divergent paths under A is 1
 – i.e $\Pr_A^s\{ \omega \in \text{Path}^A(s) \mid \omega \text{ is divergent} \} = 1$

• Motivation for probabilistic definition of divergence:

 – in this PTA, **any** adversary has one non-divergent path:
 - takes the loop in l_0 infinitely often, without 1 time unit passing
 - but the probability of such behaviour is 0
 – a stronger notion of divergence would mean no divergent adversaries exist for this PTA
Overview (Part 5)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards
PTCTL – Syntax

- **PTCTL**: Probabilistic timed computation tree logic
 - derived from PCTL [BdA95] and TCTL [AD94]

- **Syntax**:
 - \(\phi ::= \text{true} \mid a \mid \zeta \mid z. \phi \mid \phi \land \phi \mid \neg \phi \mid P_{\sim p} [\phi U \phi] \)

- **where**:
 - where \(Z \) is a set of formula clocks, \(\zeta \in \text{Zones}(X \cup Z) \), \(z \in Z \),
 - \(a \) is an atomic proposition, \(p \in [0,1] \) and \(\sim \in \{ <, >, \leq, \geq \} \)

- \(\phi U \phi \) is true with probability \(\sim p \)

- “zone over \(X \cup Z \)”
- “freeze quantifier”
• \(z \cdot P_{>0.99} \left[\text{packet2unsent} \lor \text{packet1delivered} \land (z<5) \right] \)
 – “with probability greater than 0.99, the system delivers packet 1 within 5 time units and does not try to send packet 2 in the meantime”

• \(z \cdot P_{>0.95} \left[(x\leq3) \lor (z=8) \right] \)
 – “with probability at least 0.95, the system clock x does not exceed 3 before 8 time units elapse”

• \(z \cdot P_{\leq0.1} \left[G \left(\text{failure} \lor (z\leq60) \right) \right] \)
 – “the system fails after the first 60 time units have elapsed with probability at most 0.01”
• Let \((l,v) \in S_p\) and \(\mathcal{E} \in \mathbb{R}^Z\) be a formula clock valuation

\[
\begin{align*}
- (l,v), \mathcal{E} \models a & \iff a \in L(l,v) \\
- (l,v), \mathcal{E} \models \zeta & \iff v, \mathcal{E} \triangleright \zeta \\
- (l,v), \mathcal{E} \models z.\phi & \iff (l,v), \mathcal{E}[z:=0] \models \phi \\
- (l,v), \mathcal{E} \models \phi_1 \land \phi_2 & \iff (l,v), \mathcal{E} \models \phi_1 \text{ and } (l,v), \mathcal{E} \models \phi_2 \\
- (l,v), \mathcal{E} \models \neg \phi & \iff (l,v), \mathcal{E} \models \phi \text{ is false} \\
- (l,v), \mathcal{E} \models P_{\sim p}[\psi] & \iff \Pr^A_{(l,v)}\{ \omega \in \text{Path}^A(l,v) \mid \omega, \mathcal{E} \models \psi \} \sim p \\
\end{align*}
\]

the probability of a path satisfying \(\psi\) meets \(~p\) for all divergent adversaries
PTCTL – Semantics of until

• Let \(\omega \) be a path in \(M_p \) and \(\mathcal{E} \) be a formula clock valuation
 \(-\) \(\omega, \mathcal{E} \models \psi \) satisfaction of \(\psi \) by \(\omega \), assuming \(\mathcal{E} \) initially

• \(\omega, \mathcal{E} \models \phi_1 U \phi_2 \) if and only if
 there exists \(i \in \mathbb{N} \) and \(t \in D_\omega(i+1) - D_\omega(i) \) such that
 \(-\) \(\omega(i) + t, \mathcal{E} + (D_\omega(i) + t) \models \phi_2 \)
 \(-\) \(\forall t' \leq t . \omega(i) + t', \mathcal{E} + (D_\omega(i) + t') \models \phi_1 \lor \phi_2 \)
 \(-\) \(\forall j < i . \forall t' \leq D_\omega(j+1) - D_\omega(j) . \omega(j) + t', \mathcal{E} + (D_\omega(j) + t') \models \phi_1 \lor \phi_2 \)

• Condition “\(\phi_1 \lor \phi_2 \)” different from PCTL and CSL
 \(-\) usually \(\phi_2 \) becomes true and \(\phi_1 \) is true until this point
 \(-\) difference due to the density of the time domain
 \(-\) to allow for open intervals use disjunction \(\phi_1 \lor \phi_2 \)
 \(-\) for example consider \(x \leq 5 \ U x > 5 \) and \(x < 5 \ U x \geq 5 \)
Probabilistic reachability in PTAs

• For simplicity, in some cases, we just consider probabilistic reachability, rather than full PTCTL model checking
 – i.e. min/max probability of reaching a set of target locations
 – can also encode time-bounded reachability (with extra clock)

• Still captures a wide range of properties
 – probabilistic reachability: “with probability at least 0.999, a data packet is correctly delivered”
 – probabilistic invariance: “with probability 0.875 or greater, the system never aborts”
 – probabilistic time-bounded reachability: “with probability 0.01 or less, a data packet is lost within 5 time units”
 – bounded response: “with probability 0.99 or greater, a data packet will always be delivered within 5 time units”
Overview (Part 5)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards
Several different approaches developed
- basic idea: reduce to the analysis of a finite-state model
- in most cases, this is a Markov decision process (MDP)

Region graph construction [KNSS02]
- shows decidability, but gives exponential complexity

Digital clocks approach [KNPS06]
- (slightly) restricted classes of PTAs
- works well in practice, still some scalability limitations

Zone-based approaches:
- (preferred approach for non-probabilistic timed automata)
- forwards reachability [KNSS02]
- backwards reachability [KNSW07]
- game-based abstraction refinement [KNP09c]
The region graph

- **Region graph construction for PTAs** [KNSS02]
 - adapts region graph construction for timed automata [ACD93]
 - partitions PTA states into a finite set of regions
 - based on notion of clock equivalence
 - construction is also dependent on PTCTL formula

- **For a PTA P and PTCTL formula φ**
 - construct a time-abstract, finite-state MDP $R(\phi)$
 - translate PTCTL formula ϕ to PCTL formula ϕ'
 - ϕ is preserved by region equivalence
 - i.e. ϕ holds in a state of M_P if and only if ϕ' holds in the corresponding state of $R(\phi)$
 - model check $R(\phi)$ using standard methods for MDPs
• **Regions** are sets of clock equivalent clock valuations

• **Some notation:**
 – let c be largest constant appearing in PTA or PTCTL formula
 – let $[t]$ denotes the integral part of t
 – t and t' agree on their integral parts if and only if
 1. $[t] = [t']$
 2. t and t' are both integers or neither is an integer

• **The clock valuations** v and v' are clock equivalent ($v \cong v'$) if:
 – for all clocks $x \in X$, either:
 1. $v(x)$ and $v'(x)$ agree on their integral parts
 2. $v(x) > c$ and $v'(x) > c$
 – for all clock pairs $x, y \in X$, either:
 1. $v(x) - v(x')$ and $v'(x) - v'(x')$ agree on their integral parts
 2. $v(x) - v(x') > c$ and $v'(x) - v'(x') > c$
Region graph – Clock equivalence

- Example regions (for 2 clocks x and y)

- $x=1 \land y=2$

- $x<y \land 1<x<2 \land 1<y<2$

- $x=y \land 0<x<1$

- $y=1 \land 2<x<3$
Region graph – Clock equivalence

- Fundamental result: if $v \cong v'$, then $v \triangleright \zeta \iff v' \triangleright \zeta$
 - it follows that $r \triangleright \zeta$ is well defined for a region r

- r' is the successor region of r, written $\text{succ}(r) = r'$, if
 - for each $v \in r$, there exists $t > 0$ such that $v + t \in r'$
 - and $v + t' \in r \cup r'$ for all $t' < t$

![Region Graph Diagram](image)
The region graph

- The **region graph MDP** is \((S_R, s_{\text{init}}, \text{Steps}_R, L_R)\) where...

 - the set of **states** \(S_R\) comprises pairs \((l, r)\) such that \(l\) is a location and \(r\) is a region over \(X \cup Z\)
 - the **initial state** is \((l_{\text{init}}, 0)\)
 - the set of **actions** is \(\{\text{succ}\} \cup \text{Act}\)
 - \(\text{succ}\) is a unique action denoting passage of time
 - the **probabilistic transition function** \(\text{Steps}_R\) is defined as:
 - \(S_R \times 2^{(\{\text{succ}\} \cup \text{Act}) \times \text{Dist}(S_R)}\)
 - \((\text{succ}, \mu) \in \text{Steps}_R(l, r)\) iff \(\mu(l, \text{succ}(r)) = 1\)
 - \((a, \mu) \in \text{Steps}_R(l, r)\) if and only if \(\exists (l, g, a, p) \in \text{prob}\) such that
 \[
 r \triangleright g \text{ and, for any } (l', r') \in S_R: \quad \mu(l', r') = \sum_{Y \subseteq X \wedge r[Y := 0] = r'} p(l', Y)
 \]
 - the **labelling** is given by: \(L_R(l, r) = L(l)\)
Region graph – Example

- **PTCTL formula:** $z.P_{\sim p} [\text{true} U (sr<4)]$

$$
\begin{align*}
(di,x=z=0) & \xrightarrow{\text{succ}} (di,0<x=z<1) & \xrightarrow{\text{succ}} (di,x=z=1) & \xrightarrow{\text{succ}} (di,1<x=z<2) \\
0.9 & & 0.1 \\
(sr,x=0 \land z=1) & & (si,x=0 \land z=1)
\end{align*}
$$

$$
\begin{align*}
\text{di} & \quad x \leq 2 \\
\text{send} & \quad x \geq 1 \\
\text{sr} & \quad \text{true} \\
\text{retry} & \quad x \geq 2 \\
\text{si} & \quad x \leq 3 \\
x:=0 & \quad 0.95 \\
x:=0 & \quad 0.05
\end{align*}
$$
Region graph construction

- **Region graph**
 - useful for establishing **decidability** of model checking
 - or proving **complexity** results for model checking algorithms

- **But…**
 - the number of regions is **exponential** in the number of clocks and the size of largest constant
 - so model checking based on this is extremely expensive
 - and so not implemented (even for timed automata)

- **Improved approaches based on:**
 - digital clocks
 - zones (unions of regions)
Overview (Part 5)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards
Digital clocks

- **Simple idea:** Clocks can only take integer (digital) values
 - i.e. time domain is \(\mathbb{N} \) as opposed to \(\mathbb{R} \)
 - based on notion of \(\epsilon \)-digitisation [HMP92]

- **Only applies to a restricted class of PTAs; zones must be:**
 - **closed** – no strict inequalities (e.g. \(x > 5 \))

- **Digital clocks semantics yields a finite-state MDP**
 - state space is a subset of \(\text{Loc} \times \mathbb{N}^X \), rather than \(\text{Loc} \times \mathbb{R}^X \)
 - clocks bounded by \(c_{\text{max}} \) (max constant in PTA and formula)
 - then use standard techniques for finite-state MDPs
Example – Digital clocks

MDP: (digital clocks)

- (di, x = z = 0) → (di, x = z = 1) → (di, x = z = 2)

 - 0.9 → (sr, x = 0 ∧ z = 1) → (si, x = 0 ∧ z = 1) → (sr, x = 0 ∧ z = 2)
 - 0.1 → (si, x = 1 ∧ z = 2) → (si, x = 2 ∧ z = 3)

PTA:

- di, x ≤ 2
 - send
 - x = 0 → 0.9 → (sr, true)
 - x ≥ 1
 - retry
 - 0.95
 - x = 0 → 0.1
 - x ≥ 2
- si, x ≤ 3
 - x = 0 → 0.05
 - x := 0

PTA:

\[\vdots\]

MDP:

\[\vdots\]
Digital clocks

- Digital clocks approach preserves:
 - minimum/maximum reachability probabilities
 - a subset of PTCTL properties
 - (no nesting, only closed zones in formulae)
 - only works for the initial state of the PTA
 - (but can be extended to any state with integer clock values)

- In practice:
 - translation from PTA to MDP can often be done manually
 - (by encoding the PTA directly into the PRISM language)
 - automated translations exist: mcpta and (soon) PRISM
 - many case studies, despite “closed” restriction

- Problem: can lead to very large MDPs
 - alleviated partially by efficient symbolic model checking
Digital clocks do not preserve PTCTL

Consider the PTCTL formula $\phi = z.P_{<1} \left[\text{true} \ U (a \land z\leq1) \right]$

- a is an atomic proposition only true in location l_1

Digital semantics:

- no state satisfies ϕ since for any state we have $\text{Prob}^A(s, \varepsilon[z:=0], \text{true} \ U (a\land z\leq1)) = 1$ for some adversary A

- hence $P_{<1} \left[\text{true} \ U \phi \right]$ is trivially true in all states
Digital clocks do not preserve PTCTL

Consider the PTCTL formula $\phi = z.P_{<1} \ [\text{true} \ U (a \land z \leq 1)]$
- a is an atomic proposition only true in location l_1

Dense time semantics:
- any state (l_0, v) where $v(x) \in (1, 2)$ satisfies ϕ
 more than one time unit must pass before we can reach l_1
- hence $P_{<1} \ [\text{true} \ U \phi]$ is not true in the initial state
Overview (Part 5)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards
• An alternative is to use zones to construct an MDP

• Conventional symbolic model checking relies on computing
 – \texttt{post}(S') the states that can be reached from a state in S' in a single step
 – \texttt{pre}(S') the states that can reach S' in a single step

• Extend these operators to include time passage
 – \texttt{dpost[e]}(S') the states that can be reached from a state in S' by traversing the edge e
 – \texttt{tpost}(S') the states that can be reached from a state in S' by letting time elapse
 – \texttt{pre[e]}(S') the states that can reach S' by traversing the edge e
 – \texttt{tpre}(S') the states that can reach S' by letting time elapse
Zone-based approaches

- **Symbolic states** \((l, \zeta)\) where
 - \(l \in \text{Loc}\) (location)
 - \(\zeta\) is a zone over PTA clocks and formula clocks
 - generally fewer zones than regions

- \(t_{\text{post}}(l, \zeta) = (l, \zeta \wedge \text{inv}(l))\)
 - \(\zeta\) can be reached from \(\zeta\) by letting time pass
 - \(\zeta \wedge \text{inv}(l)\) must satisfy the **invariant** of the location \(l\)

- \(t_{\text{pre}}(l, \zeta) = (l, \neg \zeta \wedge \text{inv}(l))\)
 - \(\neg \zeta\) can reach \(\zeta\) by letting time pass
 - \(\neg \zeta \wedge \text{inv}(l)\) must satisfy the **invariant** of the location \(l\)
Zone–based approaches

• For an edge $e = (l, g, a, p, l', Y)$ where
 – l is the source
 – g is the guard
 – a is the action
 – l' is the target
 – Y is the clock reset

• $dpost[e](l, \zeta) = (l', (\zeta \land g)[Y:=0])$
 – $\zeta \land g$ satisfy the guard of the edge
 – $(\zeta \land g)[Y:=0]$ reset the clocks Y

• $dpre[e](l', \zeta') = (l, [Y:=0]\zeta' \land (g \land inv(l)))$
 – $[Y:=0]\zeta'$ the clocks Y were reset
 – $[Y:=0]\zeta' \land (g \land inv(l))$ satisfied guard and invariant of l
Forwards reachability

- Based on the operation $\text{post}[e](l, \zeta) = \text{tpost}(\text{dpost}[e](l, \zeta))$

 - $(l', v') \in \text{post}[e](l, \zeta)$ if there exists $(l, v) \in (l, \zeta)$ such that after traversing edge e and letting time pass one can reach (l', v')

- Forwards algorithm (part 1)
 - start with initial state $S_F = \{\text{tpost}((l_{init}, 0))\}$ then iterate
 for each symbolic state $(l, \zeta) \in S_F$ and edge e
 add $\text{post}[e](l, \zeta)$ to S_F
 - until set of symbolic states S_F does not change

- To ensure termination need to take c–closure of each zone encountered (c is the largest constant in the PTA)
Forwards reachability

- **Forwards algorithm (part 2)**
 - construct finite state MDP \((S_F, (l_{\text{init}},0), \text{Steps}_F, L_F)\)
 - states \(S_F\) (returned from first part of the algorithm)
 - \(L_F(l,\zeta) = L(l)\) for all \((l,\zeta) \in S_F\)
 - \(\mu \in \text{Steps}_F(l,\zeta)\) if and only if
 there exists a probabilistic edge \((l,g,a,p)\) of PTA
 such that for any \((l',\zeta') \in Z:\)
 \[
 \mu(l',\zeta') = \sum \{|p(l',X)| (l,g,\sigma,p,l',X) \in \text{edges}(p) \land \text{post}[e](l,\zeta) = (l',\zeta')|
 \]

 summation over all the edges of \((l,g,a,p)\) such that
 applying \texttt{post} to \((l,\zeta)\) leads to the symbolic state \((l',\zeta')\)
Forwards reachability – Example

PTA:

\[PTA: \begin{align*} l_0 & \xrightarrow{0.5} l_1 \\
& \xrightarrow{0.5} true \\
& \xrightarrow{true} l_0 \\
& \xrightarrow{x:=0} l_1 \\
& \xrightarrow{y:=0} l_2 \\
& \xrightarrow{x=0 \land y=1} l_3 \\
& \xrightarrow{x=0 \land y=0} l_2 \end{align*} \]

MDP:

\[MDP: \begin{align*} (l_0, x \leq y) & \xrightarrow{0.5} (l_0, x = y) \\
(l_0, x = y) & \xrightarrow{0.5} (l_0, x = y) \end{align*} \]
Forwards reachability – Limitations

- Only obtain **upper bounds on maximum probabilities**
 - caused by when edges are combined

- Suppose $\text{post}[e_1](l, \zeta) = (l_1, \zeta_1)$ and $\text{post}[e_2](l, \zeta) = (l_2, \zeta_2)$
 - where e_1 and e_2 from the same probabilistic edge

- By definition of post
 - there exists $(l, v_i) \in (l, \zeta)$ such that a state in (l_i, ζ_i) can be reached by traversing the edge e_i and letting time pass

- Problem
 - we combine these transitions but are (l, v_1) and (l, v_2) the same?
 - may **not exist** states in (l, ζ) for which both edges are enabled
Forwards reachability – Example

- Maximum probability of reaching l_3 is 0.5 in the PTA
 - for the left branch need to take the first transition when $x=1$
 - for the right branch need to take the first transition when $x=0$
- However, in the forwards reachability graph probability is 1
 - can reach l_3 via either branch from $(l_0, x=y)$

PTA:

```
\begin{align*}
  l_0 & \xrightarrow{0.5} \text{true} \\
  l_0 & \xrightarrow{0.5} l_0 \\
  l_1 & \xrightarrow{x=0 \wedge y=1} l_3 \\
  l_2 & \xleftarrow{x=0 \wedge y=0} l_3 \\
  l_3 & \xrightarrow{y:=0} l_1 \\
  l_3 & \xleftarrow{x:=0} l_2 \\
\end{align*}
```

MDP:

```
\begin{align*}
  (l_3, x=y) & \xrightarrow{0.5} (l_0, x \leq y) \\
  (l_3, x=y) & \xrightarrow{0.5} (l_0, x=y) \\
  (l_0, x=y) & \xrightarrow{0.5} (l_0, x=y) \\
\end{align*}
```
Forwards reachability

- Main result [KNSS02]
 - obtain time-abstract, finite-state MDP over zones
 - bound on maximum reachability probabilities only
 - can model check the MDP using standard methods
 - loss of on-the fly, must construct MDP first

- Implementations
 - KRONOS pre-processor into PRISM input language, outputs time-abstract MDP [DKN02]
 - Explicit, using Difference Bound Matrices (DBMs), to PRISM input language [WK05]
 - Symbolic, using Difference Decision Diagrams (DDDs), via MTBDD-coded PTA syntax directly to PRISM engine [WK05]
Backwards reachability

• An alternative zone–based method: backwards reachability
 – state–space exploration in opposite direction, from target to initial states; uses pre rather than post operator

• Basic ideas: (see [KNSW07] for details)
 – construct a finite–state MDP comprising symbolic states
 – need to keep track of branching structure and take conjunctions of symbolic states if necessary
 – MDP yields maximum reachability probabilities for PTA
 – for min. probs, do graph–based analysis and convert to max.

• Advantages:
 – gives (exact) minimum/maximum reachability probabilities
 – extends to full PTCTL model checking

• Disadvantage:
 – operations to implement are expensive, limits applicability
 – (requires manipulation of non–convex zones)
Overview (Part 5)

• Time, clocks and zones
• Probabilistic timed automata (PTAs)
 – definition, examples, semantics, time divergence
• PTCTL: A temporal logic for PTAs
 – syntax, examples, semantics
• Model checking for PTAs
 – the region graph
 – digital clocks
 – zone-based approaches:
 – (i) forwards reachability
 – (ii) backwards reachability
 – (iii) game-based abstraction refinement
• Costs and rewards
Abstraction

• Very successful in (non–probabilistic) formal methods
 – essential for verification of large/infinite–state systems
 – hide details irrelevant to the property of interest
 – yields smaller/finite model which is easier/feasible to verify
 – loss of precision: verification can return “don’t know”

• Construct abstract model of a concrete system
 – e.g. based on a partition of the concrete state space
 – an abstract state represents a set of concrete states

• Automatic generation of abstractions using refinement
 – start with a simple coarse abstraction; iteratively refine
Abstraction of MDPs

- Abstraction increases degree of nondeterminism
 - i.e. minimum probabilities are lower and maximums higher

- We construct abstractions of MDPs using stochastic games
 - yields lower/upper bounds for min/max probabilities
Abstraction refinement

- Consider (max) difference between lower/upper bounds
 - gives a quantitative measure of the abstraction’s precision

- If the difference (“error”) is too great, refine the abstraction
 - a finer partition yields a more precise abstraction
 - lower/upper bounds can tell us where to refine (which states)
 - (memoryless) strategies can tell us how to refine
Abstraction–refinement loop

- **Quantitative abstraction–refinement loop for MDPs**

- Refinements yield strictly finer partition
- Guaranteed to converge for finite models
- Guaranteed to converge for infinite models with finite bisimulation
Abstraction refinement for PTAs

- Model checking for PTAs using abstraction refinement

Initial abstraction from forwards reachability

Initial partition

Abstract

New partition

Splitting of zones (DBMs)

Bounds and strategies

[error \geq \epsilon]

Refine

Return bounds

Abstraction computed and stored using zones (DBMs)

Guaranteed convergence for any \epsilon \geq 0
Abstraction refinement for PTAs

• Computes reachability probabilities in PTAs
 – minimum or maximum, exact values (“error” $\varepsilon=0$)
 – also time– bounded reachability, with extra clock

• Integrated in PRISM (next release)
 – PRISM modelling language extended with clocks
 – implemented using DBMs

• In practice performs, performs very well
 – faster than digital clocks or backwards on large example set
 – (sometimes by several orders of magnitude)
 – handles larger PTAs than the digital clocks approach
Overview (Part 5)

• Time, clocks and zones
• Probabilistic timed automata (PTAs)
 – definition, examples, semantics, time divergence
• PTCTL: A temporal logic for PTAs
 – syntax, examples, semantics
• Model checking for PTAs
 – the region graph
 – digital clocks
 – zone-based approaches:
 – (i) forwards reachability
 – (ii) backwards reachability
 – (iii) game-based abstraction refinement
• Costs and rewards
Costs and rewards

- Like other models, we can define a reward structure \((\rho, \iota)\) for a probabilistic timed automaton
 - \(\rho : \text{Loc} \rightarrow \mathbb{R}_{\geq 0}\) location reward function
 - \(\rho(l)\) is the rate at which the reward is accumulated in location \(l\)
 - \(\iota : \text{Act} \rightarrow \mathbb{R}_{\geq 0}\) action reward function
 - \(\iota(a)\) is the reward associated with performing the action \(a\)

- Generalises notion for uniformly priced timed automata
 - A useful special case is the elapsed time
 - \(\rho(l) = 1\) for all locations \(l \in \text{Loc}\)
 - \(\iota(a) = 0\) for all actions \(a \in \text{Act}\)
Expected reachability

• **Expected reachability:**
 – min./max. expected cumulated reward until some set of states (locations) is reached

• **Example properties**
 – “the maximum expected time until a data packet is delivered”
 – “the minimum expected number of retransmissions before the message is correctly delivered”
 – “the maximum expected number of lost messages within the first 200 seconds”

• **Model checking**
 – digital clocks semantics preserves expected reachability
 – so can use existing MDP reward model checking techniques
 – no zone–based approaches (yet)
Summary

• Probabilistic timed automata (PTAs)
 – combine probability, nondeterminism, real-time
 – well suited for e.g. for randomised communication protocols
 – MDPs + clocks (or timed automata + discrete probability)
 – extension with continuous distributions exists, but model checking only approximate

• PTCTL: Temporal logic for properties of PTAs
 – but many useful properties expressible with just reachability

• PTA model checking
 – region graph: decidability results, exponential complexity
 – digital clocks: simple and effective, some scalability issues
 – forwards reachability: only upper bounds on max. prob.s
 – backwards reachability: exact results but often expensive
 – abstraction refinement using stochastic games: performs well
 – tool support: (PRISM) coming soon, mcpta, UPPAAL–Pro
Thanks for your attention

More info here:
www.prismmodelchecker.org