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Course overview 

•  5 lectures: Mon-Fri, 11am-12.30pm 

−  Introduction 
−  1 – Discrete time Markov chains 
−  2 – Markov decision processes 
−  3 – Continuous-time Markov chains 
−  4 – Probabilistic model checking in practice 
−  5 – Probabilistic timed automata 

•  Course materials available here: 
−  http://www.prismmodelchecker.org/lectures/esslli10/ 
−  lecture slides, reference list 
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Probabilistic models 

Discrete 
time 

Continuous 
time 

Nondeterministic Fully probabilistic 

Discrete-time 
Markov chains 

(DTMCs) 

Continuous-time 
Markov chains 

(CTMCs) 

Markov decision 
processes (MDPs) 

(probabilistic automata) 

CTMDPs/IMCs 

Probabilistic timed 
automata (PTAs) 



Continuous-time Markov chains 

Part 3 



4 

Time in DTMCs 

•  Time in a DTMC (or MDP) proceeds in discrete steps 

•  Two possible interpretations: 
−  accurate model of (discrete) time units 

•  e.g. clock ticks in model of an embedded device 
−  time-abstract 

•  no information assumed about the time transitions take 

•  Continuous-time Markov chains (CTMCs) 
−  dense model of time 
−  transitions can occur at any (real-valued) time instant 
−  modelled using exponential distributions 
−  suits modelling of: performance/reliability (e.g. of computer 

networks, manufacturing systems, queueing networks), 
biological pathways, chemical reactions, … 
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Overview (Part 3) 

•  Exponential distribution and its properties 

•  Continuous-time Markov chains (CTMCs) 
−  definition, race conditions, examples 
−  paths and probability spaces 

•  CSL: A temporal logic for CTMCs 

•  CSL model checking 
−  uniformisation, steady-state probabilities 

•  Extensions: Costs & rewards 
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Continuous probability distributions 

•  Defined by: 
−  cumulative distribution function  

−  where f is the probability density function 
−  Pr(X=t) = 0 for all t 

•  Example: uniform distribution: U(a,b) 
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Exponential distribution  

•  A continuous random variable X is exponential with 
parameter λ>0 if the density function is given by: 

•  Cumulative distribution function (for t≥0): 

•  Other properties: 
−  negation:  
−  mean (expectation):  
−  variance: Var(X) = 1/λ2 

 λ = “rate” 
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Exponential distribution - Examples 

•  The more λ increases, the faster the c.d.f. approaches 1 

Cumulative distribution function  Probability distribution function  
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Exponential distribution 

•  Adequate for modelling many real-life phenomena 
−  failures 

•  e.g. time before machine component fails 
−  inter-arrival times 

•  e.g. time before next call arrives to a call centre 
−  biological systems 

•  e.g. times for reactions between proteins to occur 

•  Maximal entropy if just the mean is known 
−  i.e. best approximation when only mean is known 

•  Can approximate general distributions arbitrarily closely 
−  phase-type distributions 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Exponential distribution - Properties 

•  Two useful properties of the exponential distribution: 

•  The exponential distribution is memoryless: 
−  Pr( X>t1+t2 I X>t1 ) = Pr( X>t2 ) 
−  it is the only memoryless continuous distribution 
−  the discrete-time equivalent is the geometric distribution 

•  The minimum of two independent exponential distributions 
is an exponential distribution (parameter is sum) 
−  X1 ~ Exponential(λ1),  X2 ~ Exponential(λ2) 
−  Y = min(X1,X2) ~ Exponential(λ1+λ2) 
−  generalises to minimum of n distributions 
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Overview (Part 3) 

•  Exponential distribution and its properties 

•  Continuous-time Markov chains (CTMCs) 
−  definition, race conditions, examples 
−  paths and probability spaces 

•  CSL: A temporal logic for CTMCs 

•  CSL model checking 
−  uniformisation, steady-state probabilities 

•  Extensions: Costs & rewards 



12 

Continuous-time Markov chains 

•  Continuous-time Markov chains (CTMCs) 
−  labelled transition systems augmented with rates 
−  continuous time delays, exponentially distributed 

•  Formally, a CTMC C is a tuple (S,sinit,R,L) where:  
−  S is a finite set of states (“state space”) 
−  sinit ∈ S is the initial state 
−  R : S × S → ℝ≥0 is the transition rate matrix 
−  L : S → 2AP is a labelling with atomic propositions 

•  Transition rate matrix assigns rates to each pair of states 
−  used as a parameter to the exponential distribution 
−  transition between s and s’ when R(s,s’)>0 
−  probability triggered before t time units: 1 – e-R(s,s’)·t 
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Simple CTMC example 

•  Modelling a queue of jobs 
−  initially the queue is empty 
−  jobs arrive with rate 3/2 (i.e. mean inter-arrival time is 2/3) 
−  jobs are served with rate 3 (i.e. mean service time is 1/3) 
−  maximum size of the queue is 3 
−  state space: S = {si}i=0..3 where si indicates i jobs in queue 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 
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Race conditions 

•  What happens when there exists multiple s’ with R(s,s’)>0? 
−  race condition: first transition triggered determines next state 
−  two questions: 
−  1. How long is spent in s before a transition occurs? 
−  2. Which transition is eventually taken? 

•  1. Time spent in a state before a transition 
−  minimum of exponential distributions  
−  exponential with parameter given by summation: 

−  probability of leaving a state s within [0,t] is 1-e-E(s)·t 

−  E(s) is the exit rate of state s 
−  s is called absorbing if E(s)=0 (no outgoing transitions) 
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Race conditions… 

•  2. Which transition is taken from state s? 
−  the choice is independent of the time at which it occurs 
−  e.g. if X1 ~ Exponential(λ1),  X2 ~ Exponential(λ2) 
−  then the probability that X1<X2 is λ1/(λ1+λ2) 
−  more generally, the probability is given by… 

•  The embedded DTMC: emb(C)=(S,sinit,Pemb(C),L) 
−  state space, initial state and labelling as the CTMC 
−  for any s,s’∈S 

•  Probability that next state from s is s’ given by Pemb(C)(s,s’) 
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Two interpretations of a CTMC 

•  Consider a (non-absorbing) state s ∈ S with multiple 
outgoing transitions, i.e. multiple s’ ∈ S with R(s,s’)>0 

•  1. Race condition 
−  each transition triggered after exponentially distributed delay 

•  probability triggered before t time units: 1 – e-R(s,s’)·t 
−  first transition triggered determines the next state 

•  2. Separate delay/transition 
−  remain in s for delay exponentially distributed with rate E(s) 

•  i.e. probability of taking an outgoing transition from s within [0,t] 
is given by 1-e-E(s)·t 

−  probability that next state is s’ is given by Pemb(C)(s,s’) 
•  i.e. R(s,s’)/E(s) = R(s,s’) / Σs’∈S R(s,s’) 
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Continuous-time Markov chains 

•  Infinitesimal generator matrix 
    

•  Alternative definition: a CTMC is: 
−  a family of random variables { X(t) | t ∈ ℝ≥0 } 
−  X(t) are observations made at time instant t 
−  i.e. X(t) is the state of the system at time instant t 
−  which satisfies… 

•  Memoryless (Markov property) 
P[X(tk)=sk | X(tk-1)=sk-1, …,X(t0)=s0] = P[X(tk)=sk | X(tk-1)=sk-1] 
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Simple CTMC example… 

C = ( S, sinit, R, L ) 
S = {s0, s1, s2, s3}  
sinit = s0 

AP = {empty, full} 
L(s0)={empty}, L(s1)=L(s2)=∅ and L(s3)={full} 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 

infinitesimal 
generator matrix 

transition 
rate matrix 

embedded 
DTMC 
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Example 2 

•  3 machines, each can fail independently 
−  failure rate λ, i.e. mean-time to failure (MTTF) = 1/ λ 
−  modelled as exponential distributions 

•  One repair unit 
−  repairs a single machine at rate µ (also exponential) 

•  State space: 
−  S = {si}i=0..3 where si indicates i machines operational 

s2 s3 

3λ 

1 

{inactive} {high} 

s1 s0 

2λ λ 

µ µ µ 

{low} {high} 
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Example 3 

•  Chemical reaction system: two species A and B 
•  Two reactions: 

−  reversible reaction under which 
species A and B bind to form AB  
(forwards rate = |A|·|B|·k1,  
backwards rate = |AB|·k2)  

−  degradation of A (rate |A|·k3) 
−  |X| denotes number of 

molecules of species X 
•  CTMC with state space 

−  (|A|,|B|,|AB|) 
−  initially (2,2,0) 

2,2,0 

4k1 

1,1,1 0,0,2 

1,2,0 0,1,1 

k1 

2k2 k2 

0,2,0 

2k3 

k3 

k3 2k1 

k2 

A 
k3 

A + B AB 
k1 

k2 
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Paths of a CTMC 

•  An infinite path ω is a sequence s0t0s1t1s2t2… such that  
−  R(si,si+1) > 0 and ti ∈ ℝ>0  for all i ∈ ℕ 
−  amount of time spent in the jth state: time(ω,j)=tj  
−  state occupied at time t: ω@t=sj  

 where j smallest index such that ∑i≤j tj ≥ t 
•  A finite path is a sequence s0t0s1t1s2t2…tk-1sk such that  

−  R(si,si+1) > 0 and ti ∈ ℝ>0  for all i<k 
−  sk is absorbing (R(s,s’) = 0 for all s’ ∈  S) 
−  amount of time spent in the ith state only defined for j≤k: 

 time(ω,j)=tj if j<k and time(ω,j)=∞ if j=k 
−  state occupied at time t: if t≤∑i≤k tj then ω@t as above 

otherwise t>∑i≤k tj then ω@t=sk 

•  Path(s) denotes all infinite and finite paths starting in s 
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Recall: Probability spaces 

•  A σ-algebra (or σ-field) on Ω is a family Σ of subsets of Ω 
closed under complementation and countable union, i.e.: 
−  if A ∈ Σ, the complement Ω ∖ A is in Σ 
−  if Ai ∈ Σ for i ∈ ℕ, the union ∪i Ai is in Σ 
−  the empty set ∅ is in Σ 

•  Elements of Σ are called measurable sets or events 
•  Theorem: For any family F of subsets of Ω, there exists a 

unique smallest σ-algebra on Ω containing F 
•  Probability space (Ω, Σ, Pr) 

−  Ω is the sample space 
−  Σ is the set of events: σ-algebra on Ω 
−  Pr : Σ → [0,1] is the probability measure: 

 Pr(Ω) = 1 and Pr(∪i Ai) = Σi Pr(Ai) for countable disjoint Ai 
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Probability space 

•  Sample space: Path(s) (set of all paths from a state s) 
•  Events: sets of infinite paths 
•  Basic events: cylinders 

−  cylinders = sets of paths with common finite prefix 
−  include time intervals in cylinders 

•  Cylinder is a sequence s0,I0,s1,I1,…,In-1,sn 
−  s0,s1,s2,…,sn sequence of states where R(si,si+1)>0 for i<n 
−  I0,I1,I2,…,In-1 sequence of of nonempty intervals of ℝ≥0 

•  Cyl(s0,I0,s1,I1,…,In-1,sn) set of (infinite and finite paths): 
− ω(i)=si for all i ≤ n and time(ω,i) ∈ Ii for all i < n 
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Probability space 

•  Define measure over cylinders by induction 

•  Prs(Cyl(s))=1 

•  Prs(Cyl(s,I,s1,I1,…,In-1,sn,I’,s’)) equals: 

probability transition 
from sn to s’ (defined 

using embedded DTMC) 
probability time spent in state sn 

is within the interval I’ 
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Probability space 

•  Probability space (Path(s), ΣPath(s), Prs)       [BHHK03]  

•  Sample space Ω = Path(s) (infinite and finite paths) 

•  Event set ΣPath(s) 
−  least σ-algebra on Path(s) containing all cylinders sets 

Cyl(s0,I0,…,In-1,sn) where: 
•  s0,…,sn ranges over all state sequences with R(si,si+1)>0 for all i 
•  I0,…,In-1 ranges over all sequences of non-empty intervals in ℝ≥0  

(where intervals are bounded by rationals) 

•  Probability measure Prs 
−  Prs extends uniquely from probability defined over cylinders 
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Probability space - Example 

•  Probability of leaving the initial state s0 and moving to state 
s1 within the first 2 time units of operation? 

•  Cylinder Cyl(s0,(0,2],s1) 

•  Prs0(Cyl(s0,(0,2],s1))  

= Prs0(Cyl(s0)) · Pemb(C)(s0,s1) · (e-E(s0)·0 - e-E(s0)·2) 
 = 1 · 1 · (e-3/2·0 – e-3/2·2) 
 = 1– e-3 

 ≈ 0.95021 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 
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Transient and steady-state behaviour 

•  Transient behaviour 
−  state of the model at a particular time instant 
−  πC

s,t(s’) is probability of, having started in state s, being in 
state s’ at time t (in CTMC C) 

−  πC
s,t

 (s’) = Prs{ ω ∈ PathC(s) | ω@t=s’ } 

•  Steady-state behaviour 
−  state of the model in the long-run 
−  πC

s(s’) is probability of, having started in state s, being in 
state s’ in the long run 

−  πC
s(s’) = limt→∞ πC

s,t(s’) 
−  intuitively: long-run percentage of time spent in each state 
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Overview (Part 3) 

•  Exponential distribution and its properties 

•  Continuous-time Markov chains (CTMCs) 
−  definition, race conditions, examples 
−  paths and probability spaces 

•  CSL: A temporal logic for CTMCs 

•  CSL model checking 
−  uniformisation, steady-state probabilities 

•  Extensions: Costs & rewards 
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CSL 

•  Temporal logic for describing properties of CTMCs 
−  CSL = Continuous Stochastic Logic [ASSB00,BHHK03] 
−  extension of (non-probabilistic) temporal logic CTL 
−  transient, steady-state and path-based properties 

•  Key additions:  
−  probabilistic operator P (like PCTL) 
−  steady state operator S 

•  Example: down → P>0.75 [ ¬fail U≤[1,2.5] up ]  
−  when a shutdown occurs, the probability of a system recovery 

being completed between 1 and 2.5 hours without further 
failure is greater than 0.75 

•  Example: S<0.1[ insufficient_routers ]  
−  in the long run, the chance that an inadequate number of 

routers are operational is less than 0.1 
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CSL syntax 

•  CSL syntax: 

−  φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] | S~p [φ]  (state formulae) 

−  ψ  ::= X φ    |    φ UI φ       (path formulae) 

−  where a is an atomic proposition, I interval of ℝ≥0, p ∈ [0,1],  
and ~ ∈ {<,>,≤,≥} 

−  unbounded until U is a special case: φ1 U φ2 ≡ φ1 U[0,∞) φ2 

•  Quantitative properties: P=? [ ψ ] and S=? [ φ ] 
−  where P/S is the outermost operator 

 ψ is true with 
probability ~p 

“time bounded 
until” 

“next” 
 in the “long 
run” φ is true 

with 
probability ~p 
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CSL semantics for CTMCs 

•  CSL formulae interpreted over states of a CTMC 
−  s ⊨ φ  denotes φ is “true in state s” or “satisfied in state s” 

•  Semantics of state formulae: 
−  for a state s of the CTMC (S,sinit,R,L): 

−  s ⊨ a    ⇔  a ∈ L(s) 
−  s ⊨ φ1 ∧ φ2   ⇔  s ⊨ φ1 and s ⊨ φ2 

−  s ⊨ ¬φ    ⇔  s ⊨ φ is false 
−  s ⊨ P~p [ψ]   ⇔  Prob(s, ψ) ~ p 
−  s ⊨ S~p [φ]   ⇔  ∑s’ ⊨ φ πs(s’) ~ p 

Probability of, starting in state s, being 
in state s’ in the long run 

Probability of, 
starting in state s, 
satisfying the path 

formula ψ 
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CSL semantics for CTMCs 

•  Prob(s, ψ) is the probability, starting in state s, of satisfying 
the path formula ψ 
−  Prob(s, ψ) = Prs {ω ∈ Paths | ω ⊨ ψ } 

•  Semantics of path formulae: 
−  for a path ω of the CTMC: 
− ω ⊨ X φ   ⇔   ω(1) is defined and ω(1) ⊨ φ 
− ω ⊨ φ1 UI φ2  ⇔  ∃t ∈ I. ( ω@t ⊨ φ2 ∧ ∀t’<t. ω@t’ ⊨ φ1) 

there exists a time instant in the interval I where φ2 
is true and φ1 is true at all preceding time instants 

if ω(0) is absorbing,  
ω(1) not defined 
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CSL example - Workstation cluster 

•  Case study: Cluster of workstations [HHK00] 
−  two sub-clusters (N workstations in each cluster) 
−  star topology with a central switch 
−  components can break down, single repair unit 

−  minimum QoS: at least ¾ of the workstations operational and 
connected via switches 

−  premium QoS: all workstations operational and connected via 
switches 

backbone 

left 
switch 

right 
switch 

left  
sub-cluster 

right  
sub-cluster 
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CSL example - Workstation cluster 

•  S=? [ minimum ] 
−  the probability in the long run of having minimum QoS 

•  P=? [ F[t,t] minimum ] 
−  the (transient) probability at time instant t of minimum QoS 

•  P<0.05 [ F[0,10] ¬minimum ]  
−  the probability that the QoS drops below minimum within 10 

hours is less than 0.05 

•  ¬minimum → P<0.1 [ F[0,2] ¬minimum ]  
−  when facing insufficient QoS, the chance of facing the same 

problem after 2 hours is less than 0.1 
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CSL example - Workstation cluster 

•  minimum → P>0.8 [ minimum U[0,t] premium ]  
−  the probability of going from minimum to premium QoS 

within t hours without violating minimum QoS is at least 0.8 

•  P=? [ ¬minimum U[t,∞) minimum ] 
−  the chance it takes more than t time units to recover from 

insufficient QoS 

•  ¬r_switch_up → P<0.1 [¬r_switch_up U ¬l_switch_up ] 
−  if the right switch has failed, the probability of the left switch 

failing before it is repaired is less than 0.1 

•  P=? [ F[2,∞) S>0.9[ minimum ] ] 
−  the probability of it taking more than 2 hours to get to a state 

from which the long-run probability of minimum QoS is >0.9 
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Overview (Part 3) 

•  Exponential distribution and its properties 

•  Continuous-time Markov chains (CTMCs) 
−  definition, race conditions, examples 
−  paths and probability spaces 

•  CSL: A temporal logic for CTMCs 

•  CSL model checking 
−  uniformisation, steady-state probabilities 

•  Extensions: Costs & rewards 
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CSL model checking 

•  Model checking a CSL formula φ on a CTMC 
−  basic algorithm proceeds by induction on parse tree of φ 
−  non-probabilistic operators (true, a, ¬, ∧) identical to PCTL 

•  Main task: computing probabilities for P~p [·] and S~p [·] 

•  Untimed properties can be verified on the embedded DTMC 
−  properties of the form: P~p [ X φ ] or P~p [ φ1 U φ2 ] 
−  use algorithms for checking PCTL against DTMCs 

•  Which leaves… 
−  time-bounded until operator: P~p [ φ UI φ ] 
−  steady-state operator: S~p [ φ ] 
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Model checking - Time-bounded until 

•  Compute Prob(s, φ1 UI φ2) for all states where I is an 
arbitrary interval of the non-negative real numbers 

•  Note: 
−  Prob(s, φ1 UI φ2) = Prob(s, φ1 Ucl(I) φ2)  

 where cl(I) denotes the closure of the interval I 
−  Prob(s, φ1 U[0,∞) φ2) = Probemb(C)(s, φ1 U φ2) 

 where emb(C) is the embedded DTMC 

•  Therefore, 3 remaining cases to consider: 
−  I = [0,t] for some t∈ℝ≥0 (described in this lecture) 
−  I = [t,t’] for some t≤t’∈ℝ≥0 or I = [t,∞) for some t∈ℝ≥0 

•  Two methods: 1. Integral equations; 2. Uniformisation 
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Time-bounded until (integral equations) 

•  Computing the probabilities reduces to determining the 
least solution of the following set of integral equations: 

•  Prob(s, φ1 U[0,t] φ2) equals  
−  1 if s ∈ Sat(φ2),  
−  0 if s ∈ Sat(¬φ1 ∧¬φ2)  
−  and otherwise equals 

•  One possibility: solve these integrals numerically 
−  e.g. trapezoidal, Simpson and Romberg integration 
−  expensive, possible problems with numerical stability 

  

€ 

Pemb(C)(s,s' )⋅ E(s)⋅ e−E(s)⋅x( )
s'∈S
∑ ⋅ Prob(s',φ1 U[0,t−x] φ2) dx

0

t
∫

probability of 
moving from s 
to s’ at time x 

probability, in state 
s’, of satisfying 
until before t-x 

time units elapse 
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Time-bounded until (uniformisation) 

•  Reduction to transient analysis… 
−  on a modified CTMC C’ 

•  Make all φ2 states absorbing 
−  in such a state φ1 U[0,x] φ2  

holds with probability 1 

•  Make all ¬φ1 ∧¬φ2 states absorbing 
−  in such a state φ1 U[0,x] φ2  

holds with probability 0 

•  Formally: modified CTMC C’ = C[φ2][¬φ1 ∧¬φ2] 
−  where for CTMC C=(S,sinit,R,L), let C[θ]=(S,sinit,R[θ],L) where 

 R[θ](s,s’)=R(s,s’) if s ∉ Sat(θ) and 0 otherwise 

Sat(φ2) 

Sat(φ1) S 
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Time-bounded until (uniformisation) 

•  Problem then reduces to calculating transient probabilities 
in the modified CTMC C’ : 

•  To compute for all states s: 

−  where      is a 0-1 vector characterising φ2  

−  and       is the matrix of all transient probabilities in C’ 

  

€ 

Prob(s,φ1 U[0,t] φ2) =  πs,t
C'

(s' )
s' ∈ Sat(φ2 )
∑

  

€ 

Prob(φ1 U[0,t] φ2) = Πt
C' ⋅ φ2

  

€ 

Πt
C'
  

€ 

φ2

πs,t
C’(s’): 

transient probability in C’:  
starting in state s,  

the probability of being 
in state s’ at time t 
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Computing transient probabilities 

•  Πt - matrix of transient probabilities  
−  Πt(s,s’)=πs,t(s’) 

•  Πt solution of the differential equation: Πt’ = Πt · Q 
−  Q infinitesimal generator matrix 

•  Can be expressed as a matrix exponential and therefore 
evaluated as a power series 

−  computation potentially unstable  
−  probabilities instead computed using uniformisation 
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Uniformisation 

•  Uniformised DTMC unif(C) of CTMC C =(S,sinit,R,L): 
−  unif(C) = (S,sinit,Punif(C),L) 
−  set of states, initial state and labelling the same as C 
−  Punif(C) = I + Q/q 
−  I is the |S|×|S| identity matrix 
−  q ≥ max { E(s) | s ∈ S } is the uniformisation rate 

•  Each time step (epoch) of uniformised DTMC corresponds 
to one exponentially distributed delay with rate q 
−  if E(s)=q transitions the same as embedded DTMC (residence 

time has the same distribution as one epoch) 
−  if E(s)<q add self loop with probability 1-E(s)/q (residence 

time longer than 1/q so one epoch may not be ‘long enough’) 
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Uniformisation - Example 

•  CTMC C: 

•  Uniformised DTMC unif(C) 
−  let uniformisation rate q = maxs { E(s) } = 4.5 
−  Punif(C) = I + Q/q 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 

  

€ 

Punif(C) =

2/3 1/3 0 0
2/3 0 1/3 0
0 2/3 0 1/3
0 0 2/3 1/3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

s1 s0 

1/3 

1 

{full} {empty} 

s2 s3 

1/3 1/3 

2/3 2/3 2/3 1/3 2/3 

  

€ 

R =

0 3/2 0 0
3 0 3/2 0
0 3 0 3/2
0 0 3 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
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Uniformisation 

ith Poisson probability with 
parameter q·t 

•  Using the uniformised DTMC the transient probabilities can 
be expressed by: 

Punif(C) stochastic (all entries in 
[0,1] & rows sum to 1), therefore 

computations with P more numerically 
stable than Q 
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Uniformisation 

•  (Punif(C))i is probability of jumping between each pair of 
states in i steps 

•  γq·t,i is the ith Poisson probability with parameter q·t 
−  the probability of i steps occurring in time t, given each has 

delay exponentially distributed with rate q 

•  Can truncate the (infinite) summation using the techniques 
of Fox and Glynn [FG88], which allow efficient computation 
of the Poisson probabilities 
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Time-bounded until (uniformisation) 

•  Recall that for model checking, we require: 

•  So, using uniformisation: 

•  This can be computed efficiently using matrix-vector 
multiplication (avoiding matrix powers): 

    

€ 

 Punif(C')( )
0
⋅ φ2 = φ2

    

€ 

 Punif(C')( )
i+1
⋅ φ2 = Punif(C') ⋅   Punif(C')( )

i
⋅ φ2 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

  

€ 

Prob(φ1 U[0,t] φ2) =  γq⋅t,i ⋅  Punif(C')( )
i
⋅ φ2 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ i=0

∞

∑

  

€ 

Prob(φ1 U[0,t] φ2) = Πt
C' ⋅ φ2
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Time-bounded until - Example 

•  P>0.65 [ F[0,7.5] full ]  ≡  P>0.65 [ true U[0,7.5] full ]  
−  “probability of the queue becoming full within 7.5 time units” 

•  State s3 satisfies full and no states satisfy ¬true 
−  in C[full][¬true ∧¬ full] only state s3 made absorbing 

  

€ 

2/3 1/3 0 0
2/3 0 1/3 0
0 2/3 0 1/3
0 0 0 1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

matrix of unif(C[full][¬true ∧¬full]) 
with uniformisation rate maxs∈SE(s)

=4.5 

s3 made absorbing 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 
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Time-bounded until - Example 

•  Computing the summation of matrix-vector multiplications 

−  yields Prob( F[0,7.5] full ) ≈ [ 0.6482, 0.6823, 0.7811, 1 ] 

•  P>0.65[ F[0,7.5] full ] satisfied in states s1, s2 and s3 

    

€ 

Prob(φ1 U[0,t] φ2) =  γq⋅t,i ⋅  Punif(C')( )
i
⋅ φ2 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ i=0

∞

∑

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 
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Model Checking – Steady-state 

•  A state s satisfies the formula S~p[φ] if ∑s’ ⊨ φ πC
s(s’) ~ p 

−  πC
s(s’) is the probability, having started in state s, of being in 

state s’ in the long run 
−  thus model checking reduces to computing and then summing 

steady-state probabilities for the CTMC 

•  Steady-state probabilities: πC
s(s’) = limt→∞ πC

s,t(s’) 
−  limit exists for all finite CTMCs 
−  need to consider underlying graph structure of CTMC  
−  i.e. its bottom strongly connected components (BSCCs) 
−  irreducible CTMC (comprises one BSCC) 

•  solution of one linear equation system 
−  reducible CTMC (multiple BSCCs) 

•  solve for each BSCC, combine results 
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Irreducible CTMCs 

•  For an irreducible CTMC: 
−  the steady-state probabilities are independent of the starting 

state: denote the steady state probabilities by πC(s’) 

•  These probabilities can be computed as 
−  the unique solution of the linear equation system: 

 where Q is the infinitesimal generator matrix of C 

•  Solved by standard means: 
−  direct methods, such as Gaussian elimination 
−  iterative methods, such as Jacobi and Gauss-Seidel 
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Balance equations 

For all s ∈ S: 
πC(s) · (-Σs’≠s R(s,s’)) + Σs’≠s πC(s’) · R(s’,s)  =  0 

⇔ 
πC(s) · Σs’≠s R(s,s’) =  Σs’≠s πC(s’) · R(s’,s) 

balance the rate of 
leaving and entering 

a state 
normalisation 

Equivalent to: πC·P = πC where P is matrix for embedded DTMC 
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Steady-state - Example 

•  Model check S<0.1[ full ] on CTMC: 

•  CTMC is irreducible (comprises a single BSCC) 
−  steady state probabilities independent of starting state 

•  Solve: π·Q=0 and ∑ π(s)=1 

    

€ 

Q =

−3/2 3/2 0 0
3 −9/2 3/2 0
0 3 −9/2 3/2
0 0 3 −3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 
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Steady-state - Example 

•  Model check S<0.1[ full ] on CTMC: 

•  Solve: 

−  solution: π = [ 8/15, 4/15, 2/15, 1/15 ] 
−  ∑s’ ⊨ Sat(full) π (s’) = 1/15 < 0.1 
−  so all states satisfy S<0.1[ full ] 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 
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Reducible CTMCs 

•  For a reducible CTMC: 
−  the steady-state probabilities πC(s’) depend on start state s 

•  Find all BSCCs of CTMC, denoted bscc(C)  

•  Compute: 
−  steady-state probabilities πT of sub-CTMC for each BSCC T 
−  probability Probemb(C)(s, F T) of reaching each T from s 

•  Then: 

  

€ 

πs
C
(s' ) = Probemb(C)(s, F T)⋅ π

T
(s' )

0

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

if s'∈ T for some T ∈bscc(C)
otherwise
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CSL model checking complexity 

•  For CSL model checking of a CTMC,  complexity is: 
−  linear in |Φ| and polynomial in |S|  
−  linear in q·tmax  (tmax is maximum finite bound in intervals) 

•  Unbounded until (P~p[Φ1 U[0,∞) Φ2]) and steady-state (S~p[Φ]) 
−  require solution of linear equation system of size |S| 
−  can be solved with Gaussian elimination: cubic in |S| 
−  precomputation algorithms (max |S| steps) 

•  Time-bounded until (P~p[Φ1 UI Φ2]) 
−  at most two iterative sequences of matrix-vector products 
−  operation is quadratic in the size of the matrix, i.e. |S| 
−  total number of iterations bounded by Fox and Glynn 
−  the bound is linear in the size of q·t (q uniformisation rate) 



57 

Overview (Part 3) 

•  Exponential distribution and its properties 

•  Continuous-time Markov chains (CTMCs) 
−  definition, race conditions, examples 
−  paths and probability spaces 

•  CSL: A temporal logic for CTMCs 

•  CSL model checking 
−  uniformisation, steady-state probabilities 

•  Extensions: Costs & rewards 
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Rewards (or costs) 

•  Like DTMCs, we can augment CTMCs with rewards 
−  real-valued quantities assigned to states and/or transitions 
−  can be interpreted in two ways: instantaneous/cumulative 
−  properties considered here: expected value of rewards 
−  formal property specifications in an extension of CSL 

•  For a CTMC (S,sinit,R,L), a reward structure is a pair (ρ,ι) 
−  ρ : S → ℝ≥0 is a vector of state rewards 
−  ι : S × S → ℝ≥0 is a matrix of transition rewards 

•  For cumulative reward-based properties of CTMCs 
−  state rewards interpreted as rate at which reward gained 
−  if the CTMC remains in state s for t∈ℝ>0 time units, a reward 

of t·ρ(s) is acquired 
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Reward structures - Examples 

•  Example: “size of message queue” 
−  ρ(si)=i and ι(si,sj)=0 ∀i,j 

•  Example: “time for which queue is not full” 
−  ρ(si)=1 for i<3, ρ(s3)=0 and ι(si,sj)=0 ∀i,j 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 
instantaneous 

cumulative 
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Reward structures - Examples 

•  Example: “number of requests served” 

s1 s0 

3/2 

1 

{full} {empty} 

s2 s3 

3/2 3/2 

3 3 3 
cumulative 
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CSL and rewards 

•  PRISM extends CSL to incorporate reward-based properties 
−  adds R operator like the one added to PCTL 

−  φ  ::=  …  |  R~r [ I=t ]  |  R~r [ C≤t ] |  R~r [ F φ ] |  R~r [ S ] 

−  where r,t ∈ ℝ≥0, ~ ∈ {<,>,≤,≥} 

•  R~r [ · ] means “the expected value of · satisfies ~r” 

“reachability” 

 expected reward is ~r 

“cumulative” “instantaneous” “steady-state” 
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Types of reward formulae 

•  Instantaneous: R~r [ I=t ] 
−  the expected value of the reward at time-instant t is ~r 
−  “the expected queue size after 6.7 seconds is at most 2” 

•  Cumulative: R~r [ C≤t ] 
−  the expected reward cumulated up to time-instant t is ~r 
−  “the expected requests served within the first 4.5 seconds of 

operation is less than 10” 
•  Reachability: R~r [ F φ ] 

−  the expected reward cumulated before reaching φ is ~r 
−  “the expected requests served before the queue becomes full” 

•  Steady-state R~r [ S ] 
−  the long-run average expected reward is ~r 
−  “expected long-run queue size is at least 1.2” 
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Reward properties in PRISM 

•  Quantitative form: 
−  e.g. R=? [ C≤t ] 
−  what is the expected reward cumulated up to time-instant t? 

•  Add labels to R operator to distinguish between multiple 
reward structures defined on the same CTMC 
−  e.g. R{num_req}=? [ C≤4.5 ] 
−  “the expected number of requests served within the first 4.5 

seconds of operation” 
−  e.g. R{pow}=? [ C≤4.5 ] 
−  “the expected power consumption within the first 4.5 seconds 

of operation” 
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Reward formula semantics 

•  Formal semantics of the four reward operators: 

−  s ⊨ R~r [ I=t ]   ⇔   Exp(s, XI=t) ~ r 
−  s ⊨ R~r [ C≤t ]   ⇔    Exp(s, XC≤t) ~ r 
−  s ⊨ R~r [ F Φ ]   ⇔    Exp(s, XFΦ) ~ r 
−  s ⊨ R~r [ S ]    ⇔    limt→∞( 1/t · Exp(s, XC≤t) ) ~ r 

•  where: 
−  Exp(s, X) denotes the expectation of the random variable 

 X : Path(s) → ℝ≥0 with respect to the probability measure Prs 
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Reward formula semantics 

•  Definition of random variables: 
−  path ω= s0t0s1t1s2… 

−  where jt=min{ j | ∑i≤j ti ≥ t } and kφ = min{ i | si ⊨ φ }   

state of ω at time t 

time spent in state si 

time spent in 
state sjt before 

t time units 
have elapsed 
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Model checking reward formulae 

•  Instantaneous: R~r [ I=t ] 
−  reduces to transient analysis (state of the CTMC at time t) 
−  use uniformisation 

•  Cumulative: R~r [ C≤t ] 
−  extends approach for time-bounded until 
−  based on uniformisation 

•  Reachability: R~r [ F φ ]  
−  can be computed on the embedded DTMC 
−  reduces to solving a system of linear equations 

•  Steady-state: R~r [ S ] 
−  similar to steady state formulae S~r [ φ ]  
−  graph based analysis (compute BSCCs) 
−  solve systems of linear equations (compute steady state 

probabilities of each BSCC) 
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Summary 

•  Exponential distribution 
−  suitable for modelling failures, waiting times, reactions, … 
−  nice mathematical properties 

•  Continuous-time Markov chains 
−  transition delays modelled as exponential distributions 
−  probability space over paths 

•  CSL: Continuous Stochastic Logic 
−  extension of PCTL for properties of CTMCs 

•  CSL model checking 
−  extension of PCTL model checking for DTMCs 
−  uniformisation: efficient iterative method for transient prob.s 

•  Tomorrow: Probabilistic model checking in practice 
−  PRISM, tool demo, counterexamples, bisimulation 


