

Probabilistic Model Checking

Marta Kwiatkowska Dave Parker

Oxford University Computing Laboratory

ESSLLI'10 Summer School, Copenhagen, August 2010

Course overview

• 5 lectures: Mon-Fri, 11am-12.30pm

- Introduction
- 1 Discrete time Markov chains
- 2 Markov decision processes
- 3 Continuous-time Markov chains
- 4 Probabilistic model checking in practice
- 5 Probabilistic timed automata
- Course materials available here:
 - <u>http://www.prismmodelchecker.org/lectures/esslli10/</u>
 - lecture slides, reference list

Probabilistic models

	Fully probabilistic	Nondeterministic
Discrete time	Discrete-time Markov chains (DTMCs)	Markov decision processes (MDPs) (probabilistic automata)
Continuous time	Continuous-time Markov chains (CTMCs)	CTMDPs/IMCs
		Probabilistic timed automata (PTAs)

Part 3

Continuous-time Markov chains

Time in DTMCs

- Time in a DTMC (or MDP) proceeds in discrete steps
- Two possible interpretations:
 - accurate model of (discrete) time units
 - $\cdot\,$ e.g. clock ticks in model of an embedded device
 - time-abstract
 - no information assumed about the time transitions take
- Continuous-time Markov chains (CTMCs)
 - dense model of time
 - transitions can occur at any (real-valued) time instant
 - modelled using exponential distributions
 - suits modelling of: performance/reliability (e.g. of computer networks, manufacturing systems, queueing networks), biological pathways, chemical reactions, ...

Overview (Part 3)

- Exponential distribution and its properties
- Continuous-time Markov chains (CTMCs)
 - definition, race conditions, examples
 - paths and probability spaces
- CSL: A temporal logic for CTMCs
- CSL model checking
 - uniformisation, steady-state probabilities
- Extensions: Costs & rewards

Continuous probability distributions

- Defined by:
 - cumulative distribution function

$$F(t) = Pr(X \le t) = \int_{-\infty}^{t} f(x) \, dx$$

- where f is the probability density function
- Pr(X=t) = 0 for all t

• Example: uniform distribution: U(a,b)

 $f(t) = \begin{cases} \frac{1}{b-a} & \text{if } a \leq t \leq b \\ 0 & \text{otherwise} \end{cases}$ $F(t) = \begin{cases} 0 & \text{if } t < a \\ \frac{t-a}{b-a} & \text{if } a \leq t < b \\ 1 & \text{if } t \geq b \end{cases}$

Exponential distribution

• A continuous random variable X is exponential with parameter $\lambda > 0$ if the density function is given by:

$$f(t) = \begin{cases} \lambda \cdot e^{-\lambda \cdot t} & \text{if } t > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\lambda =$$
 "rate"

• Cumulative distribution function (for $t \ge 0$):

$$F(t) = Pr(X \le t) = \int_0^t \lambda \cdot e^{-\lambda \cdot x} dx = \left[-e^{-\lambda \cdot x}\right]_0^t = 1 - e^{-\lambda \cdot t}$$

- Other properties:
 - negation: $Pr(X > t) = e^{-\lambda \cdot t}$
 - mean (expectation): $E[X] = \int_0^\infty x \cdot \lambda \cdot e^{-\lambda \cdot x} dx = \frac{1}{\lambda}$
 - variance: Var(X) = $1/\lambda^2$

Exponential distribution – Examples

- The more λ increases, the faster the c.d.f. approaches 1

Exponential distribution

Adequate for modelling many real-life phenomena

- failures
 - $\cdot\,$ e.g. time before machine component fails
- inter-arrival times
 - $\cdot\,$ e.g. time before next call arrives to a call centre
- biological systems
 - $\cdot\,$ e.g. times for reactions between proteins to occur
- Maximal entropy if just the mean is known
 - i.e. best approximation when only mean is known
- Can approximate general distributions arbitrarily closely
 - phase-type distributions

Exponential distribution - Properties

- Two useful properties of the exponential distribution:
- The exponential distribution is memoryless:
 - $Pr(X > t_1 + t_2 | X > t_1) = Pr(X > t_2)$
 - it is the only memoryless continuous distribution
 - the discrete-time equivalent is the geometric distribution
- The minimum of two independent exponential distributions is an exponential distribution (parameter is sum)
 - $X_1 \sim \text{Exponential}(\lambda_1), X_2 \sim \text{Exponential}(\lambda_2)$
 - $Y = min(X_1, X_2) \sim Exponential(\lambda_1 + \lambda_2)$
 - generalises to minimum of n distributions

Overview (Part 3)

- Exponential distribution and its properties
- Continuous-time Markov chains (CTMCs)
 - definition, race conditions, examples
 - paths and probability spaces
- CSL: A temporal logic for CTMCs
- CSL model checking
 - uniformisation, steady-state probabilities
- Extensions: Costs & rewards

Continuous-time Markov chains

- Continuous-time Markov chains (CTMCs)
 - labelled transition systems augmented with rates
 - continuous time delays, exponentially distributed
- Formally, a CTMC C is a tuple (S,s_{init},R,L) where:
 - S is a finite set of states ("state space")
 - $\boldsymbol{s}_{init} \in \boldsymbol{S}$ is the initial state
 - R : S \times S \rightarrow $\mathbb{R}_{\geq 0}$ is the transition rate matrix
 - $L:S \rightarrow 2^{AP}$ is a labelling with atomic propositions
- Transition rate matrix assigns rates to each pair of states
 - used as a parameter to the exponential distribution
 - transition between s and s' when R(s,s')>0
 - probability triggered before t time units: 1 $e^{-R(s,s') \cdot t}$

Simple CTMC example

- Modelling a queue of jobs
 - initially the queue is empty
 - jobs arrive with rate 3/2 (i.e. mean inter-arrival time is 2/3)
 - jobs are served with rate 3 (i.e. mean service time is 1/3)
 - maximum size of the queue is 3
 - state space: $S = \{s_i\}_{i=0..3}$ where s_i indicates i jobs in queue

Race conditions

- What happens when there exists multiple s' with **R**(s,s')>0?
 - race condition: first transition triggered determines next state
 - two questions:
 - 1. How long is spent in s before a transition occurs?
 - 2. Which transition is eventually taken?
 - 1. Time spent in a state before a transition
 - minimum of exponential distributions
 - exponential with parameter given by summation:

$$\mathsf{E}(\mathsf{s}) = \sum_{\mathsf{s}' \in \mathsf{S}} \mathsf{R}(\mathsf{s},\mathsf{s}')$$

- probability of leaving a state s within [0,t] is $1-e^{-E(s)\cdot t}$
- E(s) is the exit rate of state s
- s is called absorbing if E(s)=0 (no outgoing transitions)

Race conditions...

- 2. Which transition is taken from state s?
 - the choice is independent of the time at which it occurs
 - e.g. if $X_1 \sim \text{Exponential}(\lambda_1)$, $X_2 \sim \text{Exponential}(\lambda_2)$
 - then the probability that $X_1{<}X_2$ is $\lambda_1/(\lambda_1{+}\lambda_2)$
 - more generally, the probability is given by...
- The embedded DTMC: emb(C)=(S,s_{init}, P^{emb(C)}, L)
 - state space, initial state and labelling as the CTMC
 - for any s,s' \in S

$$P^{emb(C)}(s,s') = \begin{cases} R(s,s')/E(s) & \text{if } E(s) > 0 \\ 1 & \text{if } E(s) = 0 \text{ and } s = s' \\ 0 & \text{otherwise} \end{cases}$$

Probability that next state from s is s' given by **P**^{emb(C)}(s,s')

Two interpretations of a CTMC

- Consider a (non-absorbing) state $s \in S$ with multiple outgoing transitions, i.e. multiple $s' \in S$ with R(s,s')>0
 - 1. Race condition
 - each transition triggered after exponentially distributed delay
 - probability triggered before t time units: $1 e^{-R(s,s') \cdot t}$
 - first transition triggered determines the next state
- 2. Separate delay/transition
 - remain in s for delay exponentially distributed with rate E(s)
 - i.e. probability of taking an outgoing transition from s within [0,t] is given by $1 e^{-E(s) \cdot t}$
 - probability that next state is s' is given by $\mathbf{P}^{emb(C)}(s,s')$
 - · i.e. $R(s,s')/E(s) = R(s,s') / \Sigma_{s' \in S} R(s,s')$

Continuous-time Markov chains

Infinitesimal generator matrix

$$Q(s,s') = \begin{cases} R(s,s') & s \neq s' \\ -\sum_{s\neq s'} R(s,s') & otherwise \end{cases}$$

Alternative definition: a CTMC is:

- a family of random variables { X(t) $| t \in \mathbb{R}_{\geq 0}$ }
- X(t) are observations made at time instant t
- i.e. X(t) is the state of the system at time instant t
- which satisfies...
- Memoryless (Markov property) $P[X(t_k)=s_k | X(t_{k-1})=s_{k-1}, ..., X(t_0)=s_0] = P[X(t_k)=s_k | X(t_{k-1})=s_{k-1}]$

Simple CTMC example...

 $C = (S, s_{init}, R, L)$ $S = \{s_0, s_1, s_2, s_3\}$ $s_{init} = s_0$

AP = {empty, full} L(s₀)={empty}, L(s₁)=L(s₂)= \emptyset and L(s₃)={full}

Example 2

- 3 machines, each can fail independently
 - failure rate $\lambda,$ i.e. mean-time to failure (MTTF) = 1 / λ
 - modelled as exponential distributions
- One repair unit
 - repairs a single machine at rate μ (also exponential)
- State space:
 - $-S = \{s_i\}_{i=0..3}$ where s_i indicates i machines operational

Example 3

Chemical reaction system: two species A and B

L,

Two reactions:

$$A + B \xleftarrow{k_1}{k_2} AB A \xrightarrow{k_3}$$

- reversible reaction under which species A and B bind to form AB (forwards rate = $|A| \cdot |B| \cdot k_1$, backwards rate = $|AB| \cdot k_2$)
- degradation of A (rate $|A| \cdot k_3$)
- |X| denotes number of molecules of species X
- CTMC with state space
 - (|A|, |B|, |AB|)
 - initially (2,2,0)

Paths of a CTMC

- An infinite path ω is a sequence $s_0t_0s_1t_1s_2t_2...$ such that
 - $\ \textbf{R}(s_i,s_{i+1}) > 0 \ \text{and} \ t_i \in \mathbb{R}_{>0} \ \text{ for all } i \in \mathbb{N}$
 - amount of time spent in the jth state: time(ω ,j)=t_i
 - state occupied at time t: $\omega@t=s_j$

where j smallest index such that $\sum_{i \le j} t_i \ge t$

- A finite path is a sequence $s_0t_0s_1t_1s_2t_2...t_{k-1}s_k$ such that
 - $R(s_i,\!s_{i+1})>0$ and $t_i\in\mathbb{R}_{>0}~$ for all $i{<}k$
 - $-s_k$ is absorbing (R(s,s') = 0 for all s' \in S)
 - amount of time spent in the ith state only defined for $j \le k$: time(ω ,j)=t_i if j < k and time(ω ,j)= ∞ if j=k
 - state occupied at time t: if $t \le \sum_{i \le k} t_j$ then $\omega@t$ as above otherwise $t > \sum_{i \le k} t_j$ then $\omega@t = s_k$
- Path(s) denotes all infinite and finite paths starting in s

Recall: Probability spaces

- A σ -algebra (or σ -field) on Ω is a family Σ of subsets of Ω closed under complementation and countable union, i.e.:
 - if $A\in \Sigma,$ the complement $\Omega\setminus A$ is in Σ
 - if $A_i \in \Sigma$ for $i \in \mathbb{N},$ the union $\cup_i A_i$ is in Σ
 - the empty set \varnothing is in Σ
- Elements of $\boldsymbol{\Sigma}$ are called measurable sets or events
- Theorem: For any family F of subsets of Ω , there exists a unique smallest σ -algebra on Ω containing F
- Probability space (Ω , Σ , Pr)
 - Ω is the sample space
 - $\pmb{\Sigma}$ is the set of events: $\sigma\text{-algebra}$ on Ω
 - $Pr : \Sigma \rightarrow [0,1]$ is the probability measure:

 $Pr(\Omega) = 1$ and $Pr(\bigcup_i A_i) = \Sigma_i Pr(A_i)$ for countable disjoint A_i

Probability space

- Sample space: Path(s) (set of all paths from a state s)
- Events: sets of infinite paths
- Basic events: cylinders
 - cylinders = sets of paths with common finite prefix
 - include time intervals in cylinders
- Cylinder is a sequence s₀, I₀, s₁, I₁,..., I_{n-1}, s_n
 - $s_0, s_1, s_2, ..., s_n$ sequence of states where $R(s_i, s_{i+1}) > 0$ for i<n
 - $I_0, I_1, I_2, \dots, I_{n-1}$ sequence of of nonempty intervals of $\mathbb{R}_{\geq 0}$
- $Cyl(s_0, I_0, s_1, I_1, ..., I_{n-1}, s_n)$ set of (infinite and finite paths): - $\omega(i) = s_i$ for all $i \le n$ and time(ω, i) $\in I_i$ for all i < n

Probability space

- Define measure over cylinders by induction
- $Pr_s(Cyl(s))=1$

Probability space

- Probability space (Path(s), $\Sigma_{Path(s)}$, Pr_s) [BHHK03]
- Sample space Ω = Path(s) (infinite and finite paths)
- Event set $\Sigma_{Path(s)}$
 - least σ -algebra on Path(s) containing all cylinders sets Cyl(s₀,I₀,...,I_{n-1},s_n) where:
 - $s_0, ..., s_n$ ranges over all state sequences with $\mathbf{R}(s_i, s_{i+1}) > 0$ for all i
 - $I_0, ..., I_{n-1}$ ranges over all sequences of non-empty intervals in $\mathbb{R}_{\geq 0}$ (where intervals are bounded by rationals)
- Probability measure Pr_s
 - Pr_s extends uniquely from probability defined over cylinders

Probability space – Example

Probability of leaving the initial state s₀ and moving to state s₁ within the first 2 time units of operation?

- Cylinder Cyl(s₀,(0,2],s₁)
- $Pr_{s0}(Cyl(s_0, (0, 2], s_1))$

- $= \Pr_{s0}(Cyl(s_0)) \cdot \Pr^{emb(C)}(s_0, s_1) \cdot (e^{-E(s0) \cdot 0} e^{-E(s0) \cdot 2})$
- $= 1 \cdot 1 \cdot (e^{-3/2 \cdot 0} e^{-3/2 \cdot 2})$
- $= 1 e^{-3}$
- ≈ 0.95021

Transient and steady-state behaviour

Transient behaviour

- state of the model at a particular time instant
- $\underline{\pi}^{C}_{s,t}(s')$ is probability of, having started in state s, being in state s' at time t (in CTMC C)
- $\ \underline{\pi}^{c}_{s,t}(s') = Pr_{s} \{ \ \omega \in Path^{c}(s) \mid \omega @t = s' \ \}$

Steady-state behaviour

- state of the model in the long-run
- $\underline{\pi}^{C}_{s}(s')$ is probability of, having started in state s, being in state s' in the long run
- $\underline{\pi}^{C}{}_{s}(s') = \lim_{t \to \infty} \underline{\pi}^{C}{}_{s,t}(s')$
- intuitively: long-run percentage of time spent in each state

Overview (Part 3)

- Exponential distribution and its properties
- Continuous-time Markov chains (CTMCs)
 - definition, race conditions, examples
 - paths and probability spaces
- CSL: A temporal logic for CTMCs
- CSL model checking
 - uniformisation, steady-state probabilities
- Extensions: Costs & rewards

CSL

- Temporal logic for describing properties of CTMCs
 - CSL = Continuous Stochastic Logic [ASSB00,BHHK03]
 - extension of (non-probabilistic) temporal logic CTL
 - transient, steady-state and path-based properties
- Key additions:
 - probabilistic operator P (like PCTL)
 - steady state operator S
- Example: down $\rightarrow P_{>0.75}$ [\neg fail U^{\leq [1,2.5]} up]
 - when a shutdown occurs, the probability of a system recovery being completed between 1 and 2.5 hours without further failure is greater than 0.75
- Example: S_{<0.1}[insufficient_routers]
 - in the long run, the chance that an inadequate number of routers are operational is less than 0.1

CSL syntax

- where a is an atomic proposition, I interval of $\mathbb{R}_{\geq 0}$, $p \in [0,1]$, and $\sim \in \{<,>,\leq,\geq\}$
- unbounded until U is a special case: $\phi_1 U \phi_2 \equiv \phi_1 U^{[0,\infty)} \phi_2$
- Quantitative properties: $P_{=?}$ [ψ] and $S_{=?}$ [φ]
 - where P/S is the outermost operator

CSL semantics for CTMCs

- CSL formulae interpreted over states of a CTMC
 - $s \models \varphi$ denotes φ is "true in state s" or "satisfied in state s"
- Semantics of state formulae:
 - for a state s of the CTMC (S, s_{init}, R, L):

CSL semantics for CTMCs

- Prob(s, $\psi)$ is the probability, starting in state s, of satisfying the path formula ψ
 - $\operatorname{Prob}(s, \psi) = \operatorname{Pr}_s \{ \omega \in \operatorname{Path}_s \mid \omega \vDash \psi \}$

if $\omega(0)$ is absorbing,

CSL example - Workstation cluster

- Case study: Cluster of workstations [HHK00]
 - two sub-clusters (N workstations in each cluster)
 - star topology with a central switch
 - components can break down, single repair unit

- minimum QoS: at least ¾ of the workstations operational and connected via switches
- premium QoS: all workstations operational and connected via switches

CSL example - Workstation cluster

- S_{=?} [minimum]
 - the probability in the long run of having minimum QoS
- $P_{=?}$ [$F^{[t,t]}$ minimum]
 - the (transient) probability at time instant t of minimum QoS
- P_{<0.05} [F^[0,10] ¬minimum]
 - the probability that the QoS drops below minimum within 10 hours is less than 0.05
 - \neg minimum $\rightarrow P_{<0.1}$ [$F^{[0,2]} \neg$ minimum]
 - when facing insufficient QoS, the chance of facing the same problem after 2 hours is less than 0.1

CSL example - Workstation cluster

- minimum $\rightarrow P_{>0.8}$ [minimum U^[0,t] premium]
 - the probability of going from minimum to premium QoS within t hours without violating minimum QoS is at least 0.8
- $P_{=?}$ [\neg minimum U^{[t,\infty)} minimum]
 - the chance it takes more than t time units to recover from insufficient QoS
- $\neg r_switch_up \rightarrow P_{<0.1}$ [$\neg r_switch_up U \neg I_switch_up$]
 - if the right switch has failed, the probability of the left switch failing before it is repaired is less than 0.1
- $P_{=?} [F^{[2,\infty)} S_{>0.9} [minimum]]$
 - the probability of it taking more than 2 hours to get to a state from which the long-run probability of minimum QoS is >0.9
Overview (Part 3)

- Exponential distribution and its properties
- Continuous-time Markov chains (CTMCs)
 - definition, race conditions, examples
 - paths and probability spaces
- CSL: A temporal logic for CTMCs
- CSL model checking
 - uniformisation, steady-state probabilities
- Extensions: Costs & rewards

CSL model checking

- Model checking a CSL formula φ on a CTMC
 - basic algorithm proceeds by induction on parse tree of $\boldsymbol{\varphi}$
 - non-probabilistic operators (true, a, \neg , \land) identical to PCTL
- Main task: computing probabilities for P_{-p} [•] and S_{-p} [•]
- Untimed properties can be verified on the embedded DTMC
 - properties of the form: P_{-p} [X φ] or P_{-p} [φ_1 U φ_2]
 - use algorithms for checking PCTL against DTMCs
- Which leaves...
 - time-bounded until operator: $P_{-p} [\phi U \phi]$
 - steady-state operator: $S_{\sim p}$ [φ]

Model checking – Time-bounded until

- Compute Prob(s, $\phi_1 \cup \phi_2$) for all states where I is an arbitrary interval of the non-negative real numbers
 - Note:
 - Prob(s, $\phi_1 \cup \phi_2$) = Prob(s, $\phi_1 \cup \phi_2$) where cl(I) denotes the closure of the interval I
 - Prob(s, $\phi_1 U^{[0,\infty)} \phi_2$) = Prob^{emb(C)}(s, $\phi_1 U \phi_2$) where emb(C) is the embedded DTMC
- Therefore, 3 remaining cases to consider:
 - -I = [0,t] for some $t \in \mathbb{R}_{\geq 0}$ (described in this lecture)
 - − I = [t,t'] for some t≤t'∈ $\mathbb{R}_{\geq 0}$ or I = [t,∞) for some t∈ $\mathbb{R}_{\geq 0}$
- Two methods: 1. Integral equations; 2. Uniformisation

Time-bounded until (integral equations)

• Computing the probabilities reduces to determining the least solution of the following set of integral equations:

One possibility: solve these integrals numerically

- e.g. trapezoidal, Simpson and Romberg integration
- expensive, possible problems with numerical stability

Time-bounded until (uniformisation)

- Reduction to transient analysis...
 - on a modified CTMC C'
- Make all ϕ_2 states absorbing
 - in such a state $\phi_1 U^{[0,x]} \phi_2$ holds with probability 1

- Make all $\neg \phi_1 \land \neg \phi_2$ states absorbing
 - in such a state $\phi_1 U^{[0,x]} \phi_2$ holds with probability 0
- Formally: modified CTMC C' = $C[\phi_2][\neg \phi_1 \land \neg \phi_2]$
 - where for CTMC C=(S,s_{init},R,L), let C[θ]=(S,s_{init},R[θ],L) where R[θ](s,s')=R(s,s') if s \notin Sat(θ) and 0 otherwise

Time-bounded until (uniformisation)

 Problem then reduces to calculating transient probabilities in the modified CTMC C':

Prob(s,
$$\phi_1 U^{[0,t]} \phi_2$$
) = $\sum_{s' \in Sat(\phi_2)} \underbrace{\Sigma \underline{\pi}_{s,t}^{C'}(s')}_{s' \in Sat(\phi_2)}$ $\underbrace{\Sigma \underline{\pi}_{s,t}^{C'}(s')}_{transient probability in C': starting in state s, the probability of being in state s' at time t$

 $\underline{\text{Prob}}(\phi_1 \ \mathsf{U}^{[0,t]} \ \phi_2) = \Pi_t^{\mathsf{C}'} \cdot \ \phi_2$

- where ϕ_2 is a 0-1 vector characterising ϕ_2
- and $\Pi_t^{C'}$ is the matrix of all transient probabilities in C'

Computing transient probabilities

- Π_t matrix of transient probabilities - $\Pi_t(s,s') = \underline{\pi}_{s,t}(s')$
- Π_t solution of the differential equation: $\Pi_t' = \Pi_t \cdot Q$
 - **Q** infinitesimal generator matrix
- Can be expressed as a matrix exponential and therefore evaluated as a power series

$$\Pi_t = e^{Q \cdot t} = \sum_{i=0}^{\infty} (Q \cdot t)^i / i!$$

- computation potentially unstable
- probabilities instead computed using uniformisation

Uniformisation

- Uniformised DTMC unif(C) of CTMC C = (S,s_{init},R,L):
 - unif(C) = (S,s_{init},P^{unif(C)},L)
 - set of states, initial state and labelling the same as C
 - $\mathbf{P}^{unif(C)} = \mathbf{I} + \mathbf{Q}/q$
 - I is the $|S|{\times}|S|$ identity matrix
 - $\ q \geq max \left\{ \ E(s) \ | \ s \in S \ \right\}$ is the uniformisation rate
- Each time step (epoch) of uniformised DTMC corresponds to one exponentially distributed delay with rate q
 - if E(s)=q transitions the same as embedded DTMC (residence time has the same distribution as one epoch)
 - if E(s)<q add self loop with probability 1-E(s)/q (residence time longer than 1/q so one epoch may not be 'long enough')

Uniformisation – Example

• CTMC C:

- Uniformised DTMC unif(C)
 - let uniformisation rate $q = max_s \{ E(s) \} = 4.5$
 - $\mathbf{P}^{unif(C)} = \mathbf{I} + \mathbf{Q}/\mathbf{q}$

Uniformisation

 Using the uniformised DTMC the transient probabilities can be expressed by:

Uniformisation

$$\Pi_{t} = \sum_{i=0}^{\infty} \gamma_{q \cdot t, i} \cdot \left(P^{\text{unif}(C)} \right)^{i}$$

- (**P**^{unif(C)})ⁱ is probability of jumping between each pair of states in i steps
- $\gamma_{q,t,i}$ is the ith Poisson probability with parameter q t
 - the probability of i steps occurring in time t, given each has delay exponentially distributed with rate q
- Can truncate the (infinite) summation using the techniques of Fox and Glynn [FG88], which allow efficient computation of the Poisson probabilities

Time-bounded until (uniformisation)

• Recall that for model checking, we require:

 $\underline{\text{Prob}}(\phi_1 \ U^{[0,t]} \ \phi_2) = \Pi_t^{C'} \cdot \ \underline{\phi_2}$

• So, using uniformisation:

$$\underline{\text{Prob}}(\phi_1 \ U^{[0,t]} \ \phi_2) = \sum_{i=0}^{\infty} \left(\gamma_{q \cdot t,i} \cdot \left(\mathbf{P}^{\text{unif}(C')} \right)^i \cdot \underline{\phi_2} \right)$$

 This can be computed efficiently using matrix-vector multiplication (avoiding matrix powers):

$$\left(\begin{array}{c} \mathbf{P}^{\text{unif}(C')} \end{array} \right)^{0} \cdot \underline{\phi}_{2} = \underline{\phi}_{2}$$

$$\left(\begin{array}{c} \mathbf{P}^{\text{unif}(C')} \end{array} \right)^{i+1} \cdot \underline{\phi}_{2} = \mathbf{P}^{\text{unif}(C')} \cdot \left(\begin{array}{c} \left(\begin{array}{c} \mathbf{P}^{\text{unif}(C')} \end{array} \right)^{i} \cdot \underline{\phi}_{2} \end{array} \right)^{i}$$

Time-bounded until - Example

- $P_{>0.65}$ [$F^{[0,7.5]}$ full] $\equiv P_{>0.65}$ [true U^[0,7.5] full]
 - "probability of the queue becoming full within 7.5 time units"
- State s_3 satisfies full and no states satisfy $\neg true$
 - in C[full][¬true $\land \neg$ full] only state s₃ made absorbing

Time-bounded until - Example

Computing the summation of matrix-vector multiplications

$$\underline{\text{Prob}}(\phi_1 \ U^{[0,t]} \ \phi_2) = \sum_{i=0}^{\infty} \left(\gamma_{q \cdot t,i} \cdot \left(\ \mathbf{P}^{\text{unif}(C')} \right)^i \cdot \underline{\phi_2} \right)$$

- yields $\underline{Prob}($ $F^{[0,7.5]}\,full$) \approx [0.6482, 0.6823, 0.7811, 1]
- $P_{>0.65}$ [$F^{[0,7.5]}$ full] satisfied in states s_1 , s_2 and s_3

Model Checking – Steady-state

- A state s satisfies the formula $S_{\sim p}[\phi]$ if $\Sigma_{s' \models \phi} \underline{\pi}^{C}_{s}(s') \sim p$
 - $\underline{\pi}^{\text{C}}_{\text{s}}(\text{s'})$ is the probability, having started in state s, of being in state s' in the long run
 - thus model checking reduces to computing and then summing steady-state probabilities for the CTMC
- Steady-state probabilities: $\underline{\pi}^{C}_{s}(s') = \lim_{t \to \infty} \underline{\pi}^{C}_{s,t}(s')$
 - limit exists for all finite CTMCs
 - need to consider underlying graph structure of CTMC
 - i.e. its bottom strongly connected components (BSCCs)
 - irreducible CTMC (comprises one BSCC)
 - solution of one linear equation system
 - reducible CTMC (multiple BSCCs)
 - solve for each BSCC, combine results

Irreducible CTMCs

- For an irreducible CTMC:
 - the steady-state probabilities are independent of the starting state: denote the steady state probabilities by $\pi^{c}(s')$
- These probabilities can be computed as
 - the unique solution of the linear equation system:

$$\underline{\pi}^{C} \cdot Q = \underline{0}$$
 and $\sum_{s \in S} \underline{\pi}^{C}(s) = 1$

where **Q** is the infinitesimal generator matrix of C

• Solved by standard means:

- direct methods, such as Gaussian elimination
- iterative methods, such as Jacobi and Gauss-Seidel

Balance equations

Steady-state - Example

Model check S_{<0.1}[full] on CTMC:

- CTMC is irreducible (comprises a single BSCC)
 - steady state probabilities independent of starting state
- Solve: $\underline{\pi} \cdot \mathbf{Q} = 0$ and $\sum \underline{\pi}(s) = 1$

Steady-state - Example

Model check S_{<0.1}[full] on CTMC:

- Solve: $-3/2 \cdot \underline{\pi}(s_0) + 3 \cdot \underline{\pi}(s_1) = 0$ $3/2 \cdot \underline{\pi}(s_0) - 9/2 \cdot \underline{\pi}(s_1) + 3 \cdot \underline{\pi}(s_2) = 0$ $3/2 \cdot \underline{\pi}(s_1) - 9/2 \cdot \underline{\pi}(s_2) + 3 \cdot \underline{\pi}(s_3) = 0$ $3/2 \cdot \underline{\pi}(s_2) - 3 \cdot \underline{\pi}(s_3) = 0$ $\underline{\pi}(s_0) + \underline{\pi}(s_1) + \underline{\pi}(s_2) + \underline{\pi}(s_3) = 1$
 - solution: $\underline{\pi} = [8/15, 4/15, 2/15, 1/15]$
 - $\Sigma_{s' \models Sat(full)} \underline{\pi}(s') = 1/15 < 0.1$
 - so all states satisfy $S_{<0.1}$ [full]

Reducible CTMCs

- For a reducible CTMC:
 - the steady-state probabilities $\underline{\pi}^{C}(s')$ depend on start state s
- Find all BSCCs of CTMC, denoted bscc(C)
- Compute:
 - steady-state probabilities $\underline{\pi}^{\mathsf{T}}$ of sub-CTMC for each BSCC T
 - probability Prob^{emb(C)}(s, F T) of reaching each T from s
- Then:

$$\underline{\pi}_{s}^{C}(s') = \begin{cases} \operatorname{Prob}^{\operatorname{emb}(C)}(s, FT) \cdot \underline{\pi}^{T}(s') & \text{if } s' \in T \text{ for some } T \in \operatorname{bscc}(C) \\ 0 & \text{otherwise} \end{cases}$$

CSL model checking complexity

- For CSL model checking of a CTMC, complexity is:
 - linear in $|\Phi|$ and polynomial in |S|
 - linear in $q \cdot t_{max}$ (t_{max} is maximum finite bound in intervals)
- Unbounded until $(P_{-p}[\Phi_1 \cup U^{[0,\infty)} \oplus \Phi_2])$ and steady-state $(S_{-p}[\Phi])$
 - require solution of linear equation system of size |S|
 - can be solved with Gaussian elimination: cubic in |S|
 - precomputation algorithms (max |S| steps)
- Time-bounded until ($P_{-p}[\Phi_1 U^{\dagger} \Phi_2]$)
 - at most two iterative sequences of matrix-vector products
 - operation is quadratic in the size of the matrix, i.e. |S|
 - total number of iterations bounded by Fox and Glynn
 - the bound is linear in the size of $q \cdot t$ (q uniformisation rate)

Overview (Part 3)

- Exponential distribution and its properties
- Continuous-time Markov chains (CTMCs)
 - definition, race conditions, examples
 - paths and probability spaces
- CSL: A temporal logic for CTMCs
- CSL model checking
 - uniformisation, steady-state probabilities
- Extensions: Costs & rewards

Rewards (or costs)

- Like DTMCs, we can augment CTMCs with rewards
 - real-valued quantities assigned to states and/or transitions
 - can be interpreted in two ways: instantaneous/cumulative
 - properties considered here: expected value of rewards
 - formal property specifications in an extension of CSL
- For a CTMC (S,s_{init},R,L), a reward structure is a pair (ρ , ι)
 - $\underline{\rho} : S \rightarrow \mathbb{R}_{\geq 0}$ is a vector of state rewards
 - $-\iota: S \times S \rightarrow \mathbb{R}_{\geq 0}$ is a matrix of transition rewards
- For cumulative reward-based properties of CTMCs
 - state rewards interpreted as rate at which reward gained
 - if the CTMC remains in state s for $t \in \mathbb{R}_{>0}$ time units, a reward of $t \cdot \underline{\rho}(s)$ is acquired

Reward structures – Examples

 $p_{i} = 1 \text{ for } 1 < 3, \underline{p}(3_{3}) = 0 \text{ and } t(3_{i}, 3_{j}) = 0 \text{ v } 1, j$

Reward structures – Examples

• Example: "number of requests served"

$$\rho = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \text{and} \quad \iota = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

CSL and rewards

PRISM extends CSL to incorporate reward-based properties

 adds R operator like the one added to PCTL

- where r,t $\in \mathbb{R}_{\geq 0}$, ~ $\in \{<,>,\leq,\geq\}$
- R_{r} [] means "the expected value of satisfies r"

Types of reward formulae

- Instantaneous: R_{-r} [$I^{=t}$]
 - the expected value of the reward at time-instant t is \sim r
 - "the expected queue size after 6.7 seconds is at most 2"
- Cumulative: R_{r} [$C^{\leq t}$]
 - the expected reward cumulated up to time-instant t is ${\sim}r$
 - "the expected requests served within the first 4.5 seconds of operation is less than 10"
- Reachability: R_{r} [F ϕ]
 - the expected reward cumulated before reaching φ is ~r
 - "the expected requests served before the queue becomes full"
- Steady-state R_{~r} [S]
 - the long-run average expected reward is \sim r
 - "expected long-run queue size is at least 1.2"

Reward properties in PRISM

- Quantitative form:
 - e.g. $R_{=?}$ [$C^{\leq t}$]
 - what is the expected reward cumulated up to time-instant t?
- Add labels to R operator to distinguish between multiple reward structures defined on the same CTMC
 - e.g. $R_{\{num_req\}=?}$ [$C^{\leq 4.5}$]
 - "the expected number of requests served within the first 4.5 seconds of operation"
 - e.g. $R_{\text{\{pow\}}=?}$ [$C^{\leq 4.5}$]
 - "the expected power consumption within the first 4.5 seconds of operation"

Reward formula semantics

- Formal semantics of the four reward operators:
 - $s \models R_{r} [I^{=t}] \iff Exp(s, X_{I=t}) \sim r$
 - $s \models R_{r} [C^{\leq t}] \iff Exp(s, X_{C \leq t}) \sim r$
 - $s \models R_{r} [F \Phi] \iff Exp(s, X_{F\Phi}) \sim r$
 - $s \models R_{r} [S] \iff \lim_{t \to \infty} (1/t \cdot Exp)$
- $\lim_{t\to\infty} (1/t \cdot Exp(s, X_{C \le t})) \sim r$

- where:
 - Exp(s, X) denotes the expectation of the random variable X : Path(s) $\rightarrow \mathbb{R}_{\geq 0}$ with respect to the probability measure Pr_s

Reward formula semantics

Definition of random variables:

 $\begin{aligned} - \text{ path } \omega &= s_0 t_0 s_1 t_1 s_2 \dots & \text{ state of } \omega \text{ at time t} \\ X_{l=k}(\omega) &= \underline{\rho}(\omega @ t) & \text{ time spent in state } s_i \\ X_{l=k}(\omega) &= \sum_{i=0}^{j_t-1} (t_i \cdot \underline{\rho}(s_i) + \iota(s_i, s_{i+1})) + (t - \sum_{i=0}^{j_t-1} t_i) \cdot \underline{\rho}(s_{j_t}) \end{aligned}$

$$X_{F\varphi}(\omega) = \begin{cases} 0 & \text{if } s_0 \in Sat(\varphi) \\ \\ \infty & \text{if } s_i \notin Sat(\varphi) \text{ for all } i \ge 0 \\ \\ \sum_{i=0}^{k_{\varphi}-1} t_i \cdot \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise} \end{cases}$$

- where $j_t = \min\{ j \mid \sum_{i \le j} t_i \ge t \}$ and $k_{\varphi} = \min\{ i \mid s_i \vDash \varphi \}$

Model checking reward formulae

- Instantaneous: R_{r} [$I^{=t}$]
 - reduces to transient analysis (state of the CTMC at time t)
 - use uniformisation
- Cumulative: R_{r} [$C^{\leq t}$]
 - extends approach for time-bounded until
 - based on uniformisation
- Reachability: R_{r} [F ϕ]
 - can be computed on the embedded $\ensuremath{\mathsf{DTMC}}$
 - reduces to solving a system of linear equations
- Steady-state: R_{~r} [S]
 - similar to steady state formulae $S_{\sim r}$ [φ]
 - graph based analysis (compute BSCCs)
 - solve systems of linear equations (compute steady state probabilities of each BSCC)

Summary

Exponential distribution

- suitable for modelling failures, waiting times, reactions, ...
- nice mathematical properties
- Continuous-time Markov chains
 - transition delays modelled as exponential distributions
 - probability space over paths
- CSL: Continuous Stochastic Logic
 - extension of PCTL for properties of CTMCs
- CSL model checking
 - extension of PCTL model checking for DTMCs
 - uniformisation: efficient iterative method for transient prob.s
- Tomorrow: Probabilistic model checking in practice
 - PRISM, tool demo, counterexamples, bisimulation