Probabilistic Model Checking

Marta Kwiatkowska
Dave Parker

Oxford University Computing Laboratory

ESSLLI’10 Summer School, Copenhagen, August 2010
Course overview

• 5 lectures: Mon–Fri, 11am–12.30pm
 – Introduction
 – 1 – Discrete time Markov chains
 – 2 – Markov decision processes
 – 3 – Continuous–time Markov chains
 – 4 – Probabilistic model checking in practice
 – 5 – Probabilistic timed automata

• Course materials available here:
 – http://www.prismmodelchecker.org/lectures/esslli10/
 – lecture slides, reference list
<table>
<thead>
<tr>
<th>Time Type</th>
<th>Fully probabilistic</th>
<th>Nondeterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete time</td>
<td>Discrete-time Markov chains (DTMCs)</td>
<td>Markov decision processes (MDPs) (probabilistic automata)</td>
</tr>
<tr>
<td>Continuous time</td>
<td>Continuous-time Markov chains (CTMCs)</td>
<td>CTMDPs/IMCs</td>
</tr>
</tbody>
</table>

*Probabilistic timed automata (*PTAs*)*
Part 3

Continuous-time Markov chains
Time in DTMCs

- Time in a DTMC (or MDP) proceeds in discrete steps

- Two possible interpretations:
 - accurate model of (discrete) time units
 - e.g. clock ticks in model of an embedded device
 - time-abstract
 - no information assumed about the time transitions take

- Continuous-time Markov chains (CTMCs)
 - dense model of time
 - transitions can occur at any (real-valued) time instant
 - modelled using exponential distributions
 - suits modelling of: performance/reliability (e.g. of computer networks, manufacturing systems, queueing networks), biological pathways, chemical reactions, ...
Overview (Part 3)

- Exponential distribution and its properties

- Continuous-time Markov chains (CTMCs)
 - definition, race conditions, examples
 - paths and probability spaces

- CSL: A temporal logic for CTMCs

- CSL model checking
 - uniformisation, steady-state probabilities

- Extensions: Costs & rewards
Continuous probability distributions

- **Defined by:**
 - cumulative distribution function
 \[
 F(t) = \Pr(X \leq t) = \int_{-\infty}^{t} f(x) \, dx
 \]
 - where \(f \) is the probability density function
 - \(\Pr(X=t) = 0 \) for all \(t \)

- **Example: uniform distribution: U(a,b)**
 \[
 f(t) = \begin{cases}
 \frac{1}{b-a} & \text{if } a \leq t \leq b \\
 0 & \text{otherwise}
 \end{cases}
 \]
 \[
 F(t) = \begin{cases}
 0 & \text{if } t < a \\
 \frac{t-a}{b-a} & \text{if } a \leq t < b \\
 1 & \text{if } t \geq b
 \end{cases}
 \]
Exponential distribution

• A continuous random variable X is exponential with parameter $\lambda > 0$ if the density function is given by:

$$f(t) = \begin{cases} \lambda \cdot e^{-\lambda \cdot t} & \text{if } t > 0 \\ 0 & \text{otherwise} \end{cases}$$

$\lambda = \text{“rate”}$

• Cumulative distribution function (for $t \geq 0$):

$$F(t) = \Pr(X \leq t) = \int_0^t \lambda \cdot e^{-\lambda \cdot x} dx = [-e^{-\lambda \cdot x}]_0^t = 1 - e^{-\lambda \cdot t}$$

• Other properties:
 - negation: \(\Pr(X > t) = e^{-\lambda \cdot t} \)
 - mean (expectation): \(E[X] = \int_0^{\infty} x \cdot \lambda \cdot e^{-\lambda \cdot x} dx = \frac{1}{\lambda} \)
 - variance: \(\text{Var}(X) = \frac{1}{\lambda^2} \)
Exponential distribution – Examples

- The more λ increases, the faster the c.d.f. approaches 1
Exponential distribution

- Adequate for modelling many real-life phenomena
 - failures
 - e.g. time before machine component fails
 - inter-arrival times
 - e.g. time before next call arrives to a call centre
 - biological systems
 - e.g. times for reactions between proteins to occur

- Maximal entropy if just the mean is known
 - i.e. best approximation when only mean is known

- Can approximate general distributions arbitrarily closely
 - phase-type distributions
Exponential distribution – Properties

• Two useful properties of the exponential distribution:

 • The exponential distribution is **memoryless**:
 - \(\Pr(X > t_1 + t_2 \mid X > t_1) = \Pr(X > t_2) \)
 - it is the only memoryless continuous distribution
 - the discrete–time equivalent is the geometric distribution

• The **minimum** of two independent exponential distributions is an exponential distribution (parameter is sum)
 - \(X_1 \sim \text{Exponential}(\lambda_1), \ X_2 \sim \text{Exponential}(\lambda_2) \)
 - \(Y = \min(X_1,X_2) \sim \text{Exponential}(\lambda_1 + \lambda_2) \)
 - generalises to minimum of \(n \) distributions
Overview (Part 3)

- Exponential distribution and its properties

- **Continuous–time Markov chains (CTMCs)**
 - definition, race conditions, examples
 - paths and probability spaces

- CSL: A temporal logic for CTMCs

- CSL model checking
 - uniformisation, steady–state probabilities

- Extensions: Costs & rewards
Continuous-time Markov chains

- **Continuous-time Markov chains (CTMCs)**
 - labelled transition systems augmented with rates
 - continuous time delays, exponentially distributed

- **Formally, a CTMC C is a tuple (S,s_{init},R,L) where:**
 - S is a finite set of states (“state space”)
 - s_{init} ∈ S is the initial state
 - R : S × S → ℝ_{≥0} is the transition rate matrix
 - L : S → 2^{AP} is a labelling with atomic propositions

- **Transition rate matrix assigns rates to each pair of states**
 - used as a parameter to the exponential distribution
 - transition between s and s’ when R(s,s’)>0
 - probability triggered before t time units: 1 – e^{-R(s,s’)·t}
Simple CTMC example

- Modelling a queue of jobs
 - initially the queue is empty
 - jobs arrive with rate $3/2$ (i.e. mean inter-arrival time is $2/3$)
 - jobs are served with rate 3 (i.e. mean service time is $1/3$)
 - maximum size of the queue is 3
 - state space: $S = \{s_i\}_{i=0..3}$ where s_i indicates i jobs in queue
Race conditions

• What happens when there exists multiple s’ with $R(s, s') > 0$?
 – **race condition**: first transition triggered determines next state
 – two questions:
 – 1. How long is spent in s before a transition occurs?
 – 2. Which transition is eventually taken?

• **1. Time spent in a state before a transition**
 – **minimum** of exponential distributions
 – exponential with parameter given by summation:
 \[E(s) = \sum_{s' \in S} R(s, s') \]
 – probability of leaving a state s within $[0, t]$ is $1 - e^{-E(s) \cdot t}$
 – $E(s)$ is the **exit rate** of state s
 – s is called **absorbing** if $E(s) = 0$ (no outgoing transitions)
Race conditions...

2. Which transition is taken from state s?
 - the choice is independent of the time at which it occurs
 - e.g. if $X_1 \sim \text{Exponential}(\lambda_1)$, $X_2 \sim \text{Exponential}(\lambda_2)$
 - then the probability that $X_1 < X_2$ is $\frac{\lambda_1}{\lambda_1 + \lambda_2}$
 - more generally, the probability is given by...

- The embedded DTMC: $\text{emb}(C) = (S, s_{\text{init}}, P^{\text{emb}(C)}, L)$
 - state space, initial state and labelling as the CTMC
 - for any $s, s' \in S$
 \[
 P^{\text{emb}(C)}(s, s') = \begin{cases}
 \frac{R(s, s')}{E(s)} & \text{if } E(s) > 0 \\
 1 & \text{if } E(s) = 0 \text{ and } s = s' \\
 0 & \text{otherwise}
 \end{cases}
 \]

- Probability that next state from s is s' given by $P^{\text{emb}(C)}(s, s')$
Two interpretations of a CTMC

• Consider a (non-absorbing) state $s \in S$ with multiple outgoing transitions, i.e. multiple $s' \in S$ with $R(s,s') > 0$

• **1. Race condition**
 – each transition triggered after exponentially distributed delay
 • probability triggered before t time units: $1 - e^{-R(s,s') \cdot t}$
 – first transition triggered determines the next state

• **2. Separate delay/transition**
 – remain in s for delay exponentially distributed with rate $E(s)$
 • i.e. probability of taking an outgoing transition from s within $[0,t]$ is given by $1 - e^{-E(s) \cdot t}$
 – probability that next state is s' is given by $P_{\text{emb}(C)}(s,s')$
 • i.e. $R(s,s')/E(s) = R(s,s') / \Sigma_{s' \in S} R(s,s')$
Continuous-time Markov chains

- **Infinitesimal generator matrix**

\[
Q(s, s') = \left\{ \begin{array}{ll}
R(s, s') & s \neq s' \\
- \sum_{s \neq s'} R(s, s') & \text{otherwise}
\end{array} \right.
\]

- **Alternative definition: a CTMC is:**
 - a family of random variables \(\{ X(t) \mid t \in \mathbb{R}_{\geq 0} \} \)
 - \(X(t) \) are observations made at time instant \(t \)
 - i.e. \(X(t) \) is the state of the system at time instant \(t \)
 - which satisfies...

- **Memoryless (Markov property)**

\[
P[X(t_k) = s_k \mid X(t_{k-1}) = s_{k-1}, \ldots, X(t_0) = s_0] = P[X(t_k) = s_k \mid X(t_{k-1}) = s_{k-1}]
\]
Simple CTMC example...

$C = (S, s_{\text{init}}, R, L)$

$S = \{s_0, s_1, s_2, s_3\}$

$s_{\text{init}} = s_0$

$AP = \{\text{empty}, \text{full}\}$

$L(s_0) = \{\text{empty}\}, L(s_1) = L(s_2) = \emptyset$ and $L(s_3) = \{\text{full}\}$

\[
R = \begin{bmatrix}
0 & 3/2 & 0 & 0 \\
3 & 0 & 3/2 & 0 \\
0 & 3 & 0 & 3/2 \\
0 & 0 & 3 & 0
\end{bmatrix}
\]

$P^{\text{emb}(C)} = \begin{bmatrix}
0 & 1 & 0 & 0 \\
2/3 & 0 & 1/3 & 0 \\
0 & 2/3 & 0 & 1/3 \\
0 & 0 & 1 & 0
\end{bmatrix}$

$Q = \begin{bmatrix}
-3/2 & 3/2 & 0 & 0 \\
3 & -9/2 & 3/2 & 0 \\
0 & 3 & -9/2 & 3/2 \\
0 & 0 & 3 & -3
\end{bmatrix}$

- transition rate matrix
- embedded DTMC
- infinitesimal generator matrix
Example 2

- 3 machines, each can fail independently
 - failure rate λ, i.e. mean-time to failure (MTTF) = $1 / \lambda$
 - modelled as exponential distributions
- One repair unit
 - repairs a single machine at rate μ (also exponential)
- State space:
 - $S = \{s_i\}_{i=0..3}$ where s_i indicates i machines operational
Example 3

• Chemical reaction system: two species A and B

• Two reactions:

\[
\begin{align*}
\text{A} + \text{B} & \xrightleftharpoons[k_2]{k_1} \text{AB} \\
\text{A} & \xrightarrow{k_3} \\
\end{align*}
\]

– reversible reaction under which species A and B bind to form AB (forwards rate = \(|A| \cdot |B| \cdot k_1\), backwards rate = \(|AB| \cdot k_2\))
– degradation of A (rate \(|A| \cdot k_3\))
– \(|X|\) denotes number of molecules of species \(X\)

• CTMC with state space

– \((|A|, |B|, |AB|)\)
– initially (2,2,0)
Paths of a CTMC

- **An infinite path** ω is a sequence $s_0 t_0 s_1 t_1 s_2 t_2 \ldots$ such that
 - $R(s_i, s_{i+1}) > 0$ and $t_i \in \mathbb{R}_{>0}$ for all $i \in \mathbb{N}$
 - amount of time spent in the jth state: $\text{time}(\omega, j) = t_j$
 - state occupied at time t: $\omega @ t = s_j$
 where j smallest index such that $\sum_{i \leq j} t_j \geq t$

- **A finite path** is a sequence $s_0 t_0 s_1 t_1 s_2 t_2 \ldots t_{k-1} s_k$ such that
 - $R(s_i, s_{i+1}) > 0$ and $t_i \in \mathbb{R}_{>0}$ for all $i < k$
 - s_k is absorbing ($R(s, s') = 0$ for all $s' \in S$)
 - amount of time spent in the ith state only defined for $j \leq k$:
 - $\text{time}(\omega, j) = t_j$ if $j < k$ and $\text{time}(\omega, j) = \infty$ if $j = k$
 - state occupied at time t: if $t \leq \sum_{i \leq k} t_j$ then $\omega @ t$ as above
 otherwise $t > \sum_{i \leq k} t_j$ then $\omega @ t = s_k$

- **Path(s)** denotes all infinite and finite paths starting in s
Recall: Probability spaces

- A σ-algebra (or σ-field) on Ω is a family Σ of subsets of Ω closed under complementation and countable union, i.e.:
 - if $A \in \Sigma$, the complement $\Omega \setminus A$ is in Σ
 - if $A_i \in \Sigma$ for $i \in \mathbb{N}$, the union $\bigcup_i A_i$ is in Σ
 - the empty set \emptyset is in Σ
- Elements of Σ are called measurable sets or events
- Theorem: For any family F of subsets of Ω, there exists a unique smallest σ-algebra on Ω containing F
- Probability space (Ω, Σ, \Pr)
 - Ω is the sample space
 - Σ is the set of events: σ-algebra on Ω
 - $\Pr : \Sigma \rightarrow [0,1]$ is the probability measure:
 $\Pr(\Omega) = 1$ and $\Pr(\bigcup_i A_i) = \sum_i \Pr(A_i)$ for countable disjoint A_i
Probability space

• **Sample space:** Path(s) (set of all paths from a state s)

• **Events:** sets of infinite paths

• **Basic events:** cylinders
 - cylinders = sets of paths with common finite prefix
 - include **time intervals** in cylinders

• **Cylinder** is a sequence $s_0,l_0,s_1,l_1,...,l_{n-1},s_n$
 - $s_0,s_1,s_2,...,s_n$ sequence of states where $R(s_i,s_{i+1}) > 0$ for $i < n$
 - $l_0,l_1,l_2,...,l_{n-1}$ sequence of nonempty intervals of $\mathbb{R}_{\geq 0}$

• **Cyl(s_0,l_0,s_1,l_1,...,l_{n-1},s_n)** set of (infinite and finite paths):
 - $\omega(i)=s_i$ for all $i \leq n$ and $\text{time}(\omega,i) \in l_i$ for all $i < n$
Probability space

- Define measure over cylinders by induction

- $\Pr_s(Cyl(s)) = 1$

- $\Pr_s(Cyl(s, l, s_1, l_1, \ldots, l_{n-1}, s_n, l', s'))$ equals:

 $\Pr_s(Cyl(s, l, s_1, l_1, \ldots, l_{n-1}, s_n)) \cdot P_{emb(C)}^{s_n}(s_n, s') \cdot \left(e^{-E(s_n) \cdot \text{inf} l'} - e^{-E(s_n) \cdot \text{sup} l'}\right)$

- Probability transition from s_n to s' (defined using embedded DTMC)

- Probability time spent in state s_n is within the interval l'
Probability space

- **Probability space** \((\text{Path}(s), \Sigma_{\text{Path}(s)}, \text{Pr}_s)\) \[\text{BHHK03}\]

- **Sample space** \(\Omega = \text{Path}(s)\) (infinite and finite paths)

- **Event set** \(\Sigma_{\text{Path}(s)}\)
 - least \(\sigma\)-algebra on \(\text{Path}(s)\) containing all cylinders sets \(\text{Cyl}(s_0, I_0, \ldots, I_{n-1}, s_n)\) where:
 - \(s_0, \ldots, s_n\) ranges over all state sequences with \(R(s_i, s_{i+1}) > 0\) for all \(i\)
 - \(I_0, \ldots, I_{n-1}\) ranges over all sequences of non-empty intervals in \(\mathbb{R}_{\geq 0}\)
 (where intervals are bounded by rationals)

- **Probability measure** \(\text{Pr}_s\)
 - \(\text{Pr}_s\) extends uniquely from probability defined over cylinders
Probability space – Example

• Probability of leaving the initial state s_0 and moving to state s_1 within the first 2 time units of operation?

• Cylinder $\text{Cyl}(s_0,(0,2],s_1)$

• $\Pr_{s_0}(\text{Cyl}(s_0,(0,2],s_1))$

\[
= \Pr_{s_0}(\text{Cyl}(s_0)) \cdot P_{\text{emb}(C)}(s_0,s_1) \cdot (e^{-E(s_0) \cdot 0} - e^{-E(s_0) \cdot 2})
= 1 \cdot 1 \cdot (e^{-3/2 \cdot 0} - e^{-3/2 \cdot 2})
= 1 - e^{-3}
\approx 0.95021
\]
Transient and steady-state behaviour

- **Transient behaviour**
 - state of the model at a particular *time instant*
 - $\pi_{s,t}^C(s')$ is probability of, having started in state s, being in state s' at time t (in CTMC C)
 - $\pi_{s,t}^C(s') = \Pr_s\{\omega \in \text{Path}^C(s) | \omega @t = s' \}$

- **Steady-state behaviour**
 - state of the model in the *long-run*
 - $\pi_s^C(s')$ is probability of, having started in state s, being in state s' in the long run
 - $\pi_s^C(s') = \lim_{t \to \infty} \pi_{s,t}^C(s')$
 - intuitively: long-run percentage of time spent in each state
Overview (Part 3)

• Exponential distribution and its properties

• Continuous–time Markov chains (CTMCs)
 – definition, race conditions, examples
 – paths and probability spaces

• CSL: A temporal logic for CTMCs

• CSL model checking
 – uniformisation, steady–state probabilities

• Extensions: Costs & rewards
CSL

- Temporal logic for describing properties of CTMCs
 - CSL = Continuous Stochastic Logic [ASSB00,BHHK03]
 - extension of (non–probabilistic) temporal logic CTL
 - transient, steady–state and path–based properties

- Key additions:
 - probabilistic operator P (like PCTL)
 - steady state operator S

- Example: $\text{down} \rightarrow P_{>0.75} [\neg \text{fail} U_{[1,2.5]} \text{ up }]$
 - when a shutdown occurs, the probability of a system recovery being completed between 1 and 2.5 hours without further failure is greater than 0.75

- Example: $S_{<0.1} [\text{insufficient_routers}]$
 - in the long run, the chance that an inadequate number of routers are operational is less than 0.1
CSL syntax

- **CSL syntax:**

 \[\phi ::= \text{true} \mid a \mid \phi \land \phi \mid \neg \phi \mid P_{\sim p} [\psi] \mid S_{\sim p} [\phi] \quad \text{(state formulae)} \]

 \[\psi ::= X \phi \mid \phi \ U \ I \ \phi \quad \text{(path formulae)} \]

- where \(a \) is an atomic proposition, \(I \) interval of \(\mathbb{R}_{\geq 0} \), \(p \in [0,1] \), and \(\sim \in \{<,>,\leq,\geq\} \)

- unbounded until \(U \) is a special case: \(\phi_1 U \phi_2 \equiv \phi_1 U^{[0,\infty)} \phi_2 \)

- **Quantitative properties:** \(P_{\sim \approx} [\psi] \) and \(S_{\sim \approx} [\phi] \)

 - where \(P/S \) is the outermost operator
CSL semantics for CTMCs

- CSL formulae interpreted over states of a CTMC
 - $s \vDash \phi$ denotes ϕ is “true in state s” or “satisfied in state s”

- Semantics of state formulae:
 - for a state s of the CTMC $(S, s_{\text{init}}, R, L)$:
 - $s \vDash a \iff a \in L(s)$
 - $s \vDash \phi_1 \land \phi_2 \iff s \vDash \phi_1$ and $s \vDash \phi_2$
 - $s \vDash \neg \phi \iff s \vDash \phi$ is false
 - $s \vDash P_{\sim p} [\psi] \iff \text{Prob}(s, \psi) \sim p$
 - $s \vDash S_{\sim p} [\phi] \iff \sum_{s'} s' \vDash_{s} \pi_{s}(s') \sim p$

Probability of, starting in state s, being in state s' in the long run

Probability of, starting in state s, satisfying the path formula ψ
CSL semantics for CTMCs

- **Prob(s, ψ)** is the probability, starting in state s, of satisfying the path formula ψ
 - \(\text{Prob}(s, \psi) = \Pr_s \{ \omega \in \text{Path}_s \mid \omega \models \psi \} \)

- **Semantics of path formulae:**
 - for a path \(\omega \) of the CTMC:
 - \(\omega \models X \phi \iff \omega(1) \) is defined and \(\omega(1) \models \phi \)
 - \(\omega \models \phi_1 \cup^I \phi_2 \iff \exists t \in I. (\omega@t \models \phi_2 \land \forall t'<t. \omega@t' \models \phi_1) \)

 - if \(\omega(0) \) is absorbing, \(\omega(1) \) not defined

 there exists a time instant in the interval I where \(\phi_2 \) is true and \(\phi_1 \) is true at all preceding time instants
Case study: Cluster of workstations [HHK00]

- two sub-clusters (N workstations in each cluster)
- star topology with a central switch
- components can break down, single repair unit

- **minimum QoS**: at least $\frac{3}{4}$ of the workstations operational and connected via switches
- **premium QoS**: all workstations operational and connected via switches
CSL example – Workstation cluster

- $S = ? [\text{ minimum }]$
 - the probability in the long run of having minimum QoS

- $P = ? [F_{[t,t]} \text{ minimum }]$
 - the (transient) probability at time instant t of minimum QoS

- $P < 0.05 [F_{[0,10]} \neg \text{minimum}]$
 - the probability that the QoS drops below minimum within 10 hours is less than 0.05

- $\neg \text{minimum} \rightarrow P < 0.1 [F_{[0,2]} \neg \text{minimum}]$
 - when facing insufficient QoS, the chance of facing the same problem after 2 hours is less than 0.1
• **minimum → P >0.8 [minimum U^{[0,t]} premium]**

 – the probability of going from minimum to premium QoS within t hours without violating minimum QoS is at least 0.8

• **P =? [¬minimum U^{[t,∞)} minimum]**

 – the chance it takes more than t time units to recover from insufficient QoS

• **¬r_switch_up → P <0.1 [¬r_switch_up U ¬l_switch_up]**

 – if the right switch has failed, the probability of the left switch failing before it is repaired is less than 0.1

• **P =? [F^{[2,∞)} S >0.9[minimum]]**

 – the probability of it taking more than 2 hours to get to a state from which the long-run probability of minimum QoS is >0.9
Overview (Part 3)

- Exponential distribution and its properties

- Continuous-time Markov chains (CTMCs)
 - definition, race conditions, examples
 - paths and probability spaces

- CSL: A temporal logic for CTMCs

- **CSL model checking**
 - uniformisation, steady-state probabilities

- Extensions: Costs & rewards
CSL model checking

- Model checking a CSL formula ϕ on a CTMC
 - basic algorithm proceeds by induction on parse tree of ϕ
 - non-probabilistic operators (true, a, \neg, \land) identical to PCTL

- Main task: computing probabilities for $P_{\neg_p}[\cdot]$ and $S_{\neg_p}[\cdot]$

- Untimed properties can be verified on the embedded DTMC
 - properties of the form: $P_{\neg_p}[X\phi]$ or $P_{\neg_p}[\phi_1 U \phi_2]$
 - use algorithms for checking PCTL against DTMCs

- Which leaves...
 - time-bounded until operator: $P_{\neg_p}[\phi U^I \phi]$
 - steady-state operator: $S_{\neg_p}[\phi]$
Model checking – Time–bounded until

• Compute $\text{Prob}(s, \phi_1 U^I \phi_2)$ for all states where I is an arbitrary interval of the non-negative real numbers

• Note:
 – $\text{Prob}(s, \phi_1 U^I \phi_2) = \text{Prob}(s, \phi_1 U^{\text{cl}(I)} \phi_2)$
 where $\text{cl}(I)$ denotes the closure of the interval I
 – $\text{Prob}(s, \phi_1 U^{[0,\infty)} \phi_2) = \text{Prob}^{\text{emb}(C)}(s, \phi_1 U \phi_2)$
 where $\text{emb}(C)$ is the embedded DTMC

• Therefore, 3 remaining cases to consider:
 – $I = [0,t]$ for some $t \in \mathbb{R}_{\geq 0}$ (described in this lecture)
 – $I = [t,t']$ for some $t \leq t' \in \mathbb{R}_{\geq 0}$ or $I = [t,\infty)$ for some $t \in \mathbb{R}_{\geq 0}$

• Two methods: 1. Integral equations; 2. Uniformisation
Time-bounded until (integral equations)

- Computing the probabilities reduces to determining the least solution of the following set of integral equations:

- \(\text{Prob}(s, \phi_1 U^{[0,t]} \phi_2) \) equals
 - 1 if \(s \in \text{Sat}(\phi_2) \),
 - 0 if \(s \in \text{Sat}(\neg \phi_1 \land \neg \phi_2) \)
 - and otherwise equals

\[
\int_0^t \sum_{s' \in S} \left(P_{\text{emb}(C)}(s,s') \cdot E(s) \cdot e^{-E(s) \cdot x} \right) \cdot \text{Prob}(s',\phi_1 U^{[0,t-x]} \phi_2) \, dx
\]

- One possibility: solve these integrals numerically
 - e.g. trapezoidal, Simpson and Romberg integration
 - expensive, possible problems with numerical stability
Time-bounded until (uniformisation)

• **Reduction to transient analysis…**
 – on a modified CTMC C'

• **Make all ϕ_2 states absorbing**
 – in such a state $\phi_1 \cup [0,x] \phi_2$
 holds with **probability 1**

• **Make all $\neg \phi_1 \land \neg \phi_2$ states absorbing**
 – in such a state $\phi_1 \cup [0,x] \phi_2$
 holds with **probability 0**

• **Formally:** modified CTMC $C' = C[\phi_2][\neg \phi_1 \land \neg \phi_2]$
 – where for CTMC $C=(S,s_{init},R,L)$, let $C[\theta]=(S,s_{init},R[\theta],L)$ where
 $R[\theta](s,s')=R(s,s')$ if $s \notin \text{Sat}(\theta)$ and 0 otherwise
• Problem then reduces to calculating **transient probabilities** in the modified CTMC C':

$$\text{Prob}(s, \phi_1 \cup^{[0,t]} \phi_2) = \sum_{s' \in \text{Sat}(\phi_2)} \pi_{s,t}^{C'}(s')$$

- where ϕ_2 is a 0–1 vector characterising ϕ_2

- and $\Pi_t^{C'}$ is the matrix of all transient probabilities in C'

• To compute for all states s:

$$\text{Prob}(\phi_1 \cup^{[0,t]} \phi_2) = \Pi_t^{C'} \cdot \phi_2$$
Computing transient probabilities

- Π_t – matrix of transient probabilities
 - $\Pi_t(s,s') = \pi_{s,t}(s')$

- Π_t solution of the differential equation: $\Pi_t' = \Pi_t \cdot Q$
 - Q infinitesimal generator matrix

- Can be expressed as a matrix exponential and therefore evaluated as a power series:
 $$\Pi_t = e^{Q \cdot t} = \sum_{i=0}^{\infty} \frac{(Q \cdot t)^i}{i!}$$
 - computation potentially unstable
 - probabilities instead computed using uniformisation
Uniformisation

- Uniformised DTMC $\text{unif}(C)$ of CTMC $C = (S, s_{\text{init}}, R, L)$:
 - $\text{unif}(C) = (S, s_{\text{init}}, P^{\text{unif}(C)}, L)$
 - set of states, initial state and labelling the same as C
 - $P^{\text{unif}(C)} = I + Q/q$
 - I is the $|S| \times |S|$ identity matrix
 - $q \geq \max \{ E(s) \mid s \in S \}$ is the uniformisation rate

- Each time step (epoch) of uniformised DTMC corresponds to one exponentially distributed delay with rate q
 - if $E(s) = q$ transitions the same as embedded DTMC (residence time has the same distribution as one epoch)
 - if $E(s) < q$ add self loop with probability $1 - E(s)/q$ (residence time longer than $1/q$ so one epoch may not be ‘long enough’)
Uniformisation – Example

- **CTMC C:**

 \[\begin{array}{cccc}
 s_0 & s_1 & s_2 & s_3 \\
 {\text{empty}} & 3/2 & 3/2 & 3/2 \\
 3 & 3 & 3 & \{\text{full}\}
 \end{array}\]

- **Uniformised DTMC unif(C)**
 - let uniformisation rate \(q = \max_s \{ E(s) \} = 4.5 \)

 \[\begin{align*}
 P_{\text{unif(C)}} &= I + Q/q \\
 R &= \begin{bmatrix}
 0 & 3/2 & 0 & 0 \\
 3 & 0 & 3/2 & 0 \\
 0 & 3 & 0 & 3/2 \\
 0 & 0 & 3 & 0
 \end{bmatrix}
 \]

 \[\begin{align*}
 P_{\text{unif}(C)} &= \begin{bmatrix}
 2/3 & 1/3 & 0 & 0 \\
 2/3 & 0 & 1/3 & 0 \\
 0 & 2/3 & 0 & 1/3 \\
 0 & 0 & 2/3 & 1/3
 \end{bmatrix}
 \]
Uniformisation

- Using the uniformised DTMC the transient probabilities can be expressed by:

\[\Pi_t = e^{Q \cdot t} = e^{q \cdot (P^\text{unif}(C) - I) \cdot t} = e^{(q \cdot t) \cdot P^\text{unif}(C)} \cdot e^{-q \cdot t} \]

\[= e^{-q \cdot t} \cdot \left(\sum_{i=0}^{\infty} \frac{(q \cdot t)^i}{i!} \cdot \left(P^\text{unif}(C) \right)^i \right) \]

\[= \sum_{i=0}^{\infty} \left(e^{-q \cdot t} \cdot \frac{(q \cdot t)^i}{i!} \right) \left(P^\text{unif}(C) \right)^i \]

\[= \sum_{i=0}^{\infty} \gamma_{q \cdot t, i} \cdot \left(P^\text{unif}(C) \right)^i \]

\[P^\text{unif}(C) \text{ stochastic (all entries in [0,1] & rows sum to 1), therefore computations with } P \text{ more numerically stable than } Q \]

ith Poisson probability with parameter \(q \cdot t \)
Uniformisation

\[\Pi_t = \sum_{i=0}^{\infty} \gamma_{q \cdot t, i} \cdot (P_{\text{unif}(C)})^i \]

- \((P_{\text{unif}(C)})^i\) is probability of jumping between each pair of states in \(i\) steps

- \(\gamma_{q \cdot t, i}\) is the \(i\)th Poisson probability with parameter \(q \cdot t\)
 - the probability of \(i\) steps occurring in time \(t\), given each has delay exponentially distributed with rate \(q\)

- Can truncate the (infinite) summation using the techniques of Fox and Glynn [FG88], which allow efficient computation of the Poisson probabilities
Recall that for model checking, we require:

\[
\text{Prob}(\phi_1 U^{[0,t]} \phi_2) = \prod_t \cdot \phi_2
\]

So, using uniformisation:

\[
\text{Prob}(\phi_1 U^{[0,t]} \phi_2) = \sum_{i=0}^{\infty} \gamma_{q\cdot t, i} \cdot \left(P_{\text{unif}(C')}^i \right) \cdot \phi_2
\]

This can be computed efficiently using matrix–vector multiplication (avoiding matrix powers):

\[
\left(P_{\text{unif}(C')}^0 \right) \cdot \phi_2 = \phi_2
\]
\[
\left(P_{\text{unif}(C')}^{i+1} \right) \cdot \phi_2 = P_{\text{unif}(C')} \cdot \left(\left(P_{\text{unif}(C')}^i \right) \cdot \phi_2 \right)
\]
Time-bounded until – Example

• $P_{>0.65} [F^{[0,7.5]} \text{ full }] \equiv P_{>0.65} [\text{ true } U^{[0,7.5]} \text{ full }]$
 – “probability of the queue becoming full within 7.5 time units”

• State s_3 satisfies full and no states satisfy $\neg \text{true}$
 – in $C[\text{full}][\neg \text{true} \land \neg \text{full}]$ only state s_3 made absorbing

\[
\begin{bmatrix}
2/3 & 1/3 & 0 & 0 \\
2/3 & 0 & 1/3 & 0 \\
0 & 2/3 & 0 & 1/3 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

matrix of $\text{unif}(C[\text{full}][\neg \text{true} \land \neg \text{full}])$
with uniformisation rate $\max_{s \in S} E(s) = 4.5$

s_3 made absorbing
Time-bounded until – Example

- Computing the summation of matrix-vector multiplications

\[
\text{Prob}(\phi_1 \cup_{[0,t]} \phi_2) = \sum_{i=0}^{\infty} \left(\gamma_{q \cdot t, i} \cdot \left(P^{\text{unif}(C')} \right)^i \cdot \phi_2 \right)
\]

- yields \(\text{Prob}(F^{[0,7.5]} \text{ full }) \approx [0.6482, 0.6823, 0.7811, 1] \)

- \(P_{>0.65}[F^{[0,7.5]} \text{ full }] \) satisfied in states \(s_1, s_2 \) and \(s_3 \)
A state s satisfies the formula $S \sim_p \phi$ if $\sum_{s'} = \phi \pi^C_s(s') \sim p$

- $\pi^C_s(s')$ is the probability, having started in state s, of being in state s' in the long run
- thus model checking reduces to computing and then summing steady-state probabilities for the CTMC

Steady-state probabilities: $\pi^C_s(s') = \lim_{t \to \infty} \pi^C_{s,t}(s')$

- limit exists for all finite CTMCs
- need to consider underlying graph structure of CTMC
- i.e. its bottom strongly connected components (BSCCs)
- irreducible CTMC (comprises one BSCC)
 - solution of one linear equation system
- reducible CTMC (multiple BSCCs)
 - solve for each BSCC, combine results
Irreducible CTMCs

• For an irreducible CTMC:
 – the steady-state probabilities are independent of the starting state: denote the steady state probabilities by $\pi^C(s')$

• These probabilities can be computed as
 – the unique solution of the linear equation system:

 $$\pi^C \cdot Q = \mathbf{0} \quad \text{and} \quad \sum_{s \in S} \pi^C(s) = 1$$

 where Q is the infinitesimal generator matrix of C

• Solved by standard means:
 – direct methods, such as Gaussian elimination
 – iterative methods, such as Jacobi and Gauss–Seidel
Balance equations

For all \(s \in S \):

\[
\pi^C(s) \cdot (\sum_{s' \neq s} R(s,s')) + \sum_{s' \neq s} \pi^C(s') \cdot R(s',s) = 0
\]

\[\Leftrightarrow\]

\[
\pi^C(s) \cdot \sum_{s' \neq s} R(s,s') = \sum_{s' \neq s} \pi^C(s') \cdot R(s',s)
\]

Equivalent to: \(\pi^C \cdot P = \pi^C \) where \(P \) is matrix for embedded DTMC

balance the rate of leaving and entering a state

normalisation
• Model check $S_{<0.1}$ [full] on CTMC:

- CTMC is irreducible (comprises a single BSCC)
 - steady state probabilities independent of starting state

• Solve: $\pi \cdot Q = 0$ and $\sum \pi(s) = 1$
Steady-state – Example

- **Model check** $S_{<0.1}[$ full $]$ on CTMC:

- **Solve:**

 - $-3/2 \cdot \pi(s_0) + 3 \cdot \pi(s_1) = 0$
 - $3/2 \cdot \pi(s_0) - 9/2 \cdot \pi(s_1) + 3 \cdot \pi(s_2) = 0$
 - $3/2 \cdot \pi(s_1) - 9/2 \cdot \pi(s_2) + 3 \cdot \pi(s_3) = 0$
 - $3/2 \cdot \pi(s_2) - 3 \cdot \pi(s_3) = 0$

 - solution: $\pi = [8/15, 4/15, 2/15, 1/15]$

- $\Sigma_{s' \models \text{Sat(full)}} \pi(s') = 1/15 < 0.1$

- so all states satisfy $S_{<0.1}[$ full $]$
Reducible CTMCs

- For a reducible CTMC:
 - the steady-state probabilities $\pi^C(s')$ depend on start state s

- Find all BSCCs of CTMC, denoted bscc(C)

- Compute:
 - steady-state probabilities π^T of sub-CTMC for each BSCC T
 - probability $\text{Prob}^{\text{emb}(C)}(s, F T)$ of reaching each T from s

- Then:
 $$\pi^C_s(s') = \begin{cases}
\text{Prob}^{\text{emb}(C)}(s, F T) \cdot \pi^T(s') & \text{if } s' \in T \text{ for some } T \in \text{bscc}(C) \\
0 & \text{otherwise}
\end{cases}$$
CSL model checking complexity

• For CSL model checking of a CTMC, complexity is:
 – linear in $|\Phi|$ and polynomial in $|S|$
 – linear in $q \cdot t_{\text{max}}$ (t_{max} is maximum finite bound in intervals)

• Unbounded until $(P_{\sim p}[\Phi_1 \cup [0,\infty) \Phi_2])$ and steady-state $(S_{\sim p}[\Phi])$
 – require solution of linear equation system of size $|S|$
 – can be solved with Gaussian elimination: cubic in $|S|$
 – precomputation algorithms (max $|S|$ steps)

• Time–bounded until $(P_{\sim p}[\Phi_1 \cup I \Phi_2])$
 – at most two iterative sequences of matrix–vector products
 – operation is quadratic in the size of the matrix, i.e. $|S|$
 – total number of iterations bounded by Fox and Glynn
 – the bound is linear in the size of $q \cdot t$ (q uniformisation rate)
Overview (Part 3)

• Exponential distribution and its properties

• Continuous-time Markov chains (CTMCs)
 – definition, race conditions, examples
 – paths and probability spaces

• CSL: A temporal logic for CTMCs

• CSL model checking
 – uniformisation, steady-state probabilities

• Extensions: Costs & rewards
Rewards (or costs)

- Like DTMCs, we can augment CTMCs with rewards
 - real-valued quantities assigned to states and/or transitions
 - can be interpreted in two ways: instantaneous/cumulative
 - properties considered here: expected value of rewards
 - formal property specifications in an extension of CSL

- For a CTMC \((S,s_{\text{init}},R,L)\), a reward structure is a pair \((\rho,\iota)\)
 - \(\rho : S \to \mathbb{R}_{\geq 0}\) is a vector of state rewards
 - \(\iota : S \times S \to \mathbb{R}_{\geq 0}\) is a matrix of transition rewards

- For cumulative reward–based properties of CTMCs
 - state rewards interpreted as rate at which reward gained
 - if the CTMC remains in state \(s\) for \(t \in \mathbb{R}_{>0}\) time units, a reward of \(t \cdot \rho(s)\) is acquired
• Example: “size of message queue”
 - $\rho(s_i) = i$ and $\iota(s_i,s_j) = 0 \ \forall \ i,j$

• Example: “time for which queue is not full”
 - $\rho(s_i) = 1$ for $i < 3$, $\rho(s_3) = 0$ and $\iota(s_i,s_j) = 0 \ \forall \ i,j$
Reward structures – Examples

- Example: “number of requests served”

\[\rho = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \text{and} \quad \xi = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \]
CSL and rewards

- **PRISM extends CSL to incorporate reward-based properties**
 - adds R operator like the one added to PCTL

\[
\phi ::= \ldots \mid R_{\sim r} [I^=t] \mid R_{\sim r} [C^{\leq t}] \mid R_{\sim r} [F \phi] \mid R_{\sim r} [S]
\]

- expected reward is \(\sim r \)
 - “instantaneous”
 - “cumulative”
 - “reachability”
 - “steady-state”

- where \(r, t \in \mathbb{R}_{\geq 0}, \sim \in \{<,>,\leq,\geq\} \)

- \(R_{\sim r} [\cdot] \) means “the expected value of \(\cdot \) satisfies \(\sim r \)”
Types of reward formulae

• **Instantaneous**: $R_{\sim r} [I=t]$
 – the expected value of the reward at time-instant t is $\sim r$
 – “the expected queue size after 6.7 seconds is at most 2”

• **Cumulative**: $R_{\sim r} [C \leq t]$
 – the expected reward cumulated up to time-instant t is $\sim r$
 – “the expected requests served within the first 4.5 seconds of operation is less than 10”

• **Reachability**: $R_{\sim r} [F \phi]$
 – the expected reward cumulated before reaching ϕ is $\sim r$
 – “the expected requests served before the queue becomes full”

• **Steady-state** $R_{\sim r} [S]$
 – the long-run average expected reward is $\sim r$
 – “expected long-run queue size is at least 1.2”
Reward properties in PRISM

• **Quantitative form:**
 - e.g. $R = ? \left[C \leq t \right]$
 - what is the expected reward cumulated up to time-instant t?

• **Add labels to R operator to distinguish between multiple reward structures defined on the same CTMC**
 - e.g. $R_{\text{num}_\text{req} = ?} \left[C \leq 4.5 \right]$
 - “the expected number of requests served within the first 4.5 seconds of operation”
 - e.g. $R_{\text{pow} = ?} \left[C \leq 4.5 \right]$
 - “the expected power consumption within the first 4.5 seconds of operation”
Reward formula semantics

- **Formal semantics of the four reward operators:**

 - $s \models R_{=r}[I=t] \iff \text{Exp}(s, X_{I=t}) \sim r$
 - $s \models R_{\leq r}[C\leq t] \iff \text{Exp}(s, X_{C\leq t}) \sim r$
 - $s \models R_{\geq r}[F \Phi] \iff \text{Exp}(s, X_{F \Phi}) \sim r$
 - $s \models R_{\sim r}[S] \iff \lim_{t \to \infty} \left(\frac{1}{t} \cdot \text{Exp}(s, X_{C\leq t}) \right) \sim r$

- **where:**
 - $\text{Exp}(s, X)$ denotes the **expectation** of the random variable $X : \text{Path}(s) \to \mathbb{R}_{\geq 0}$ with respect to the **probability measure** Pr_s
Reward formula semantics

- Definition of random variables:

 - path $\omega = s_0 t_0 s_1 t_1 s_2 \ldots$
 - $\text{state of } \omega \text{ at time } t$

 - $X_{t=k}(\omega) = \rho(\omega @ t)$
 - $\text{time spent in state } s_i$

 - $X_{C_{st}}(\omega) = \sum_{i=0}^{j_t-1} \left(t_i \cdot \rho(s_i) + \mu(s_i, s_{i+1}) \right) + \left(t - \sum_{i=0}^{j_t-1} t_i \right) \cdot \rho(s_{j_t})$
 - $\text{time spent in state } s_{j_t} \text{ before } t \text{ time units have elapsed}$

 - $X_{F_\phi}(\omega) = \begin{cases}
 0 & \text{if } s_0 \in \text{Sat}(\phi) \\
 \infty & \text{if } s_i \notin \text{Sat}(\phi) \text{ for all } i \geq 0 \\
 \left(\sum_{i=0}^{k_\phi-1} t_i \cdot \rho(s_i) + \mu(s_i, s_{i+1}) \right) & \text{otherwise}
 \end{cases}$

 - where $j_t = \min \{ j \mid \sum_{i \leq j} t_i \geq t \}$ and $k_\phi = \min \{ i \mid s_i \models \phi \}$
Model checking reward formulae

- **Instantaneous**: $R_{\sim r} [I = t]$
 - reduces to transient analysis (state of the CTMC at time t)
 - use uniformisation

- **Cumulative**: $R_{\sim r} [C \leq t]$
 - extends approach for time-bounded until
 - based on uniformisation

- **Reachability**: $R_{\sim r} [F \phi]$
 - can be computed on the embedded DTMC
 - reduces to solving a system of linear equations

- **Steady-state**: $R_{\sim r} [S]$
 - similar to steady state formulae $S_{\sim r} [\phi]$
 - graph based analysis (compute BSCCs)
 - solve systems of linear equations (compute steady state probabilities of each BSCC)
Summary

• Exponential distribution
 – suitable for modelling failures, waiting times, reactions, ...
 – nice mathematical properties

• Continuous–time Markov chains
 – transition delays modelled as exponential distributions
 – probability space over paths

• CSL: Continuous Stochastic Logic
 – extension of PCTL for properties of CTMCs

• CSL model checking
 – extension of PCTL model checking for DTMCs
 – uniformisation: efficient iterative method for transient prob.s

• Tomorrow: Probabilistic model checking in practice
 – PRISM, tool demo, counterexamples, bisimulation