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Course overview

5 lectures: Mon-Fri, TTam-12.30pm

— Introduction

— 1 - Discrete time Markov chains

— 2 - Markov decision processes

— 3 - Continuous-time Markov chains

— 4 - Probabilistic model checking in practice
— 5 - Probabilistic timed automata

Course materials available here:
— http://www.prismmodelchecker.org/lectures/esslli1 0/

— lecture slides, reference list



Probabilistic models

Fully probabilistic

Nondeterministic

Discrete-time

Markov decision

Ditqcrete Markov chains processes (MDPs)
Ime (DTMCs) (probabilistic automata)
_ _ CTMDPs/IMCs
Continuous Continuous-time
time Markov chains

(CTMCs)

Probabilistic timed
automata (PTAS)




Part 3

Continuous-time Markov chains




Time in DTMCs

Time in a DTMC (or MDP) proceeds in discrete steps

Two possible interpretations:
— accurate model of (discrete) time units
. e.g. clock ticks in model of an embedded device
— time-abstract
. no information assumed about the time transitions take

Continuous-time Markov chains (CTMCs)
— dense model of time
— transitions can occur at any (real-valued) time instant
— modelled using exponential distributions

— suits modelling of: performance/reliability (e.g. of computer
networks, manufacturing systems, queueing networks),
biological pathways, chemical reactions, ...



Overview (Part 3)

- Exponential distribution and its properties

- Continuous-time Markov chains (CTMCs)
— definition, race conditions, examples
— paths and probability spaces

» CSL: A temporal logic for CTMCs

- CSL model checking
— uniformisation, steady-state probabilities

- Extensions: Costs & rewards



Continuous probability distributions

- Defined by:
— cumulative distribution function

F(t) =Pr(X <t) = f f(x) dx

Il

— where f is the probability density function
— Pr(X=t) = O for all t

- Example: uniform distribution: U(a,b)

(¥, ifastsb
i) _{ 0 otherwise

(0 ift<a
F(t) =Jws/ ifast<b :
ift=b




Exponential distribution

- A continuous random variable X is exponential with
parameter A>0 if the density function is given by:

~ )\ . e_)\.t |f t > O ........... _“”
fv = { 0 otherwise . >‘_ ..... —

- Cumulative distribution function (for t>0):

F(t) =Pr(X < 1) =f(:>\ ce™Mdx = [-e™] =1-e™

- Other properties:

~ negation: Pr(X>t)=e™ |
— mean (expectation): E[X] =j; X-AN-eMdx = X
— variance: Var(X) = 1/A?



Exponential distribution - Examples

.4}
1
' re—— —
0.5 2 A=5
— =1
—)=05
0 1 2 3 4 0 1 2 3 4

- The more A increases, the faster the c.d.f. approaches 1



Exponential distribution

- Adequate for modelling many real-life phenomena

— failures
. e.g. time before machine component fails

— inter-arrival times
. e.g. time before next call arrives to a call centre

— biological systems
. e.g. times for reactions between proteins to occur

- Maximal entropy if just the mean is known
— i.e. best approximation when only mean is known

- Can approximate general distributions arbitrarily closely
— phase-type distributions



Exponential distribution - Properties

- Two useful properties of the exponential distribution:

- The exponential distribution is memoryless:
— Pr( X>t,+t, | X>t; ) = Pr( X>t,)
— it is the only memoryless continuous distribution
— the discrete-time equivalent is the geometric distribution

- The minimum of two independent exponential distributions
is an exponential distribution (parameter is sum)

— X; ~ Exponential(A,), X, ~ Exponential(A,)
— Y = min(X,,X,) ~ Exponential(A;+A,)
— generalises to minimum of n distributions
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Overview (Part 3)

- Exponential distribution and its properties

- Continuous-time Markov chains (CTMCs)
— definition, race conditions, examples
— paths and probability spaces

» CSL: A temporal logic for CTMCs

- CSL model checking
— uniformisation, steady-state probabilities

- Extensions: Costs & rewards
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Continuous-time Markov chains

- Continuous-time Markov chains (CTMCs)

— labelled transition systems augmented with rates
— continuous time delays, exponentially distributed

Formally, a CTMC C is a tuple (5,s;,,R,L) where:
— Sis a finite set of states (“state space”)
— S € Sis the initial state
— R:S XS - R,,is the transition rate matrix
— L:S — 2APis a labelling with atomic propositions

- Transition rate matrix assigns rates to each pair of states
— used as a parameter to the exponential distribution
— transition between s and s’ when R(s,s’)>0

— probability triggered before t time units: 1 - e RG:s)t
12



Simple CTMC example

Modelling a queue of jobs
— initially the queue is empty
— jobs arrive with rate 3/2 (i.e. mean inter-arrival time is 2/3)
— jobs are served with rate 3 (i.e. mean service time is 1/3)

— maximum size of the queue is 3
— state space: S = {s;},_, 3 Where s, indicates i jobs in queue

{empty} 3/2 3/2 3/2 ffully

13



Race conditions

- What happens when there exists multiple s’ with R(s,s’)>07?
— race condition: first transition triggered determines next state

— two questions:
— 1. How long is spent in s before a transition occurs?
— 2. Which transition is eventually taken?

1. Time spent in a state before a transition
— minimum of exponential distributions
— exponential with parameter given by summation:

E(s) = Y R(s,8")

— probability of leaving a state s within [0,t] is 1-e E®)t
— E(s) is the exit rate of state s

— s is called absorbing if E(s)=0 (no outgoing transitions)
14



Race conditions...

.+ 2. Which transition is taken from state s?
— the choice is independent of the time at which it occurs
— e.g. if X; ~ Exponential(A,), X, ~ Exponential(\,)
— then the probability that X; <X, is A;/(A;+X,)
— more generally, the probability is given by...

- The embedded DTMC: emb(C)=(S,s,;;,Pe™*©,L)
— state space, initial state and labelling as the CTMC
— for any s,s’eS

R(s,s')/E(s) if E(s)>0
pemP©(s s') = ] if E(s) =0ands=s¢'
0 otherwise

- Probability that next state from s is s’ given by Pemb©)(s s’)
15



Two interpretations of a CTMC

- Consider a (non-absorbing) state s € S with multiple
outgoing transitions, i.e. multiple s’ € S with R(s,s’)>0

1. Race condition
— each transition triggered after exponentially distributed delay
. probability triggered before t time units: 1 - e R:s)t
— first transition triggered determines the next state

2. Separate delay/transition

— remain in s for delay exponentially distributed with rate E(s)

. i.e. probability of taking an outgoing transition from s within [0,t]
is given by 1-e-Es):t

— probability that next state is s’ is given by Pemb(©(s,s’)
. i.e. R(s,s’)/E(s) = R(s,s’) / Z,cs R(s,S’)

16



Continuous-time Markov chains

- Infinitesimal generator matrix

: R(s,s") 3
Q(s,s') = { ‘25¢5-R(5’5') S(')thserwise

. Alternative definition: a CTMC is:
— a family of random variables { X(t) [ t € R_, }
— X(t) are observations made at time instant t
— i.e. X(t) is the state of the system at time instant t
— which satisfies...

- Memoryless (Markov property)
P[X(tk):Sk | X(tk—]):Sk—]’ ""X(tO):SO] = P[X(tk):Sk | X(tk—1):Sk—1]

17



Simple CTMC example...

C = ( S, Sinit’ R, L) {emptY} 3/2 3/2 3/2 {fU”}

. (s0)  (s) (s2)  (sp
3 3 3

AP = {empty, full}

L(sg)={empty}, L(s,)=L(s,)=9 and L(s;)={full}

0 3/2 O 0 ] 0 ] 0 0 -3/2 3/2 0 0 ]
R= 3 O 3/2 O Pemb(C)= 2/3 O ]/3 0 Q= 3 _9/2 3/2 0

0O 3 0O 3/2 0 2/3 0 1/3 0 3 -9/2 3/2

O O 3 0 0 0 3 -3

- : o 0 1 0 - :

. transition éembedded . infinitesimal

. rate matrix . DTMC . generator matrix

rsssssssssssssssssssnsanannnnnnnnnnnnnnnd SaasmssssmsEssEsEsEEsEsEssEEEEEEEEEEEEn e EssEEsEEssEEEEEsEEEsEEsEEEsEEsEEEAEEsEEesEEsEEEaREnEd



Example 2

3 machines, each can fail independently
— failure rate A, i.e. mean-time to failure (MTTF) =1/ A
— modelled as exponential distributions
One repair unit
— repairs a single machine at rate u (also exponential)
State space:
— S ={s;}_o. 3 Where s, indicates i machines operational

{high} 3N {high} 2\ {low} N finactive}

19



Example 3

- Chemical reaction system: two species A and B

- Two reactions: )

A+ B «—— AB
k

— reversible reaction under which
species A and B bind to form AB
(forwards rate = |A|-|B]-k;,
backwards rate = |AB|-k,)

— degradation of A (rate |A|-kj3)

— |X] denotes number of
molecules of species X

- CTMC with state space
— (|Al,[B],|AB])
— initially (2,2,0)

20



Paths of a CTMC

- An infinite path w is a sequence s,t,s;t;5,t,... such that
— R(s;,s,7) >0and t, e R, forallie N
— amount of time spent in the jth state: time(w,j)=t;
— state occupied at time t: w@t=s,
where j smallest index such that 2, t; > t
- A finite path is a sequence s,t,s;t;S,t,...t,_;S, such that
— R(s;,5.1) > 0and t, € R, foralli<k
— s, is absorbing (R(s,s’) = 0 for all s’ € S)
— amount of time spent in the ith state only defined for j<k:
time(w,j)=t; if j<k and time(w,j)=o0 if j=k

— state occupied at time t: if t<3,_, t; then w@t as above
otherwise t>2,_, t; then w@t=s,

Path(s) denotes all infinite and finite paths starting in s
21



Recall: Probability spaces

- A o-algebra (or o-field) on Q is a family Z of subsets of Q
closed under complementation and countable union, i.e.:

— if A € %, the complement Q \ Aisin X
— if A, € £fori € N, the union U, A, is in X
— the empty set @ is in X

- Elements of X are called measurable sets or events

- Theorem: For any family F of subsets of Q, there exists a
unique smallest o-algebra on Q containing F

Probability space (Q, Z, Pr)
— Q is the sample space
— 2 is the set of events: og-algebra on Q
— Pr: 2 — [0,1]is the probability measure:
Pr(Q) = 1 and Pr(u; A) = Z; Pr(A,) for countable disjoint A,

22



Probability space

- Sample space: Path(s) (set of all paths from a state s)

Events: sets of infinite paths

Basic events: cylinders
— cylinders = sets of paths with common finite prefix
— include time intervals in cylinders

- Cylinder is a sequence sg,l5,S1,l1,---51,_1,5,

— S0,51,52,---,S, Sequence of states where R(s;,s;.;)>0 fori<n
— lg,l4,15,-.,1,; sequence of of nonempty intervals of R_,

« Cyl(sg,lg,S15l15--514-1,S,) set of (infinite and finite paths):
— w(i)=s; forall i < nand time(w,i) €|, foralli <n

23



Probability space

- Define measure over cylinders by induction

- Pr (Cyl(s))=1

-« Pr(Cyl(s,l,s4,1;,...,1,_1,S,,1",8")) equals:
Pr.(Cyl(s,|,s,, 1, ..

5.)) PO, 5') - (grEe T _ gt )

’n]’ n

probability transition

: from s, to s’ (defined ity i -
; . probability time spent in state s,
. using embedded DTMC) © is within the interval I

24



Probability space

Probability space (Path(s), Zp,ins), Prs) [BHHKO3]
Sample space Q = Path(s) (infinite and finite paths)

Event set 25,0

— least o-algebra on Path(s) containing all cylinders sets
Cyl(sg,lg,---,1,-1,S,) Where:
- Sgy---,S, Fanges over all state sequences with R(s;,s;,;)>0 for all i

« lg,.--,1,_; ranges over all sequences of non-empty intervals in R_,
(where intervals are bounded by rationals)

Probability measure Pr,
— Pr, extends uniquely from probability defined over cylinders

25



Probability space - Example

- Probability of leaving the initial state s, and moving to state
s, within the first 2 time units of operation?

3/2 3/2

{empty} thull
. CyIinder CYI(S();(O’Z]!S]) @‘6 @‘

* PrSO(Cy|(501(O!2]1S] ))

— PrsO(Cyl(SO)) . Pemb(C)(SO’S]) . (e—E(SO)O - e—E(SO)'Z)
= 1.1 (e3/20_ @-3/2:2)

=1-e3
~ 0.95021

26



Transient and steady-state behaviour

- Transient behaviour
— state of the model at a particular time instant

— 1% (s’) is probability of, having started in state s, being in
state s’ at time t (in CTMC Q)

— 1% (s’) = Prd w € Path®(s) | w@t=s’ }

.- Steady-state behaviour
— state of the model in the long-run
— 1. (s’) is probability of, having started in state s, being in
state s’ in the long run
— ¢ (s’) = lim_ 1€ (s”)
— intuitively: long-run percentage of time spent in each state

27



Overview (Part 3)

Exponential distribution and its properties

- Continuous-time Markov chains (CTMCs)
— definition, race conditions, examples

— paths and probability spaces

» CSL: A temporal logic for CTMCs

- CSL model checking
— uniformisation, steady-state probabilities

Extensions: Costs & rewards

28



CSL

- Temporal logic for describing properties of CTMCs
— CSL = Continuous Stochastic Logic [ASSBO0,BHHKO03]
— extension of (non-probabilistic) temporal logic CTL
— transient, steady-state and path-based properties

Key additions:

— probabilistic operator P (like PCTL)
— steady state operator S
Example: down — P_, s [ —fail U=[.2>1 up ]

— when a shutdown occurs, the probability of a system recovery

being completed between 1 and 2.5 hours without further
failure is greater than 0.75

Example: S_, [ insufficient_routers ]

— in the long run, the chance that an inadequate number of
routers are operational is less than 0.1

29



CSL syntax

- CSL syntax: P is true with

_—_probability ~p _

—¢bu=truelaldAad|-d|P WS, [P] (state formulae)

- =Xd | UG \(path formulae)
T , ........ I ntheulong .........
..... - | o bt e

with

— where a is an atomic proposition, | interval of R_,, p € [0,1],
and ~ € {<,>,<,>}

— unbounded until U is a special case: ¢, U ¢, = ¢, Ul0:® ¢,

- Quantitative properties: P_,[w]and S_, [ ¢ ]
— where P/S is the outermost operator 30



CSL semantics for CTMCs

- CSL formulae interpreted over states of a CTMC

— s = ¢ denotes ¢ is “true in state s” or “satisfied in state s”
- Semantics of state formulae:

— for a state s of the CTMC (S,s;,;,R,L):

~ska o aelL(s) S T
S E® AP < skEd;andskE ¢, . starting in state s,
- sk ¢ S skEIs faM satisfying the path
~sEP,Wl & Prob(s, p)~p L TG
- SES, (9] & T, T(S) ~p

------------------------------------------------------------------------------------------------------------------------

Probablllty of, startlng in state s, belng
in state s’ in the long run

31



- Semantics of path formulae:

CSL semantics for CTMCs

- Prob(s, @) is the probability, starting in state s, of satisfying
the path formula @
_ Probis, y) = Pr. {w < Path, | w = } |fuu(0)|sabsorb|ng
. w(1) not defined

— for a path w of the CTMC:
—wEXd < w(1) is defined and w(1) = ¢
~wE ¢, U o, e dtel.(watE b, A VE'<t. w@t’ = )

. there exists a time instant in the interval | where ¢,
. is true and ¢, is true at all preceding time instants :

T mm R R AR R R AR RN R R R AR R RN RN R N R R R R N R R N R RN N R R RN N R R R N R R RN AR RN AR EEEE AR EEEAEAENEEEEEEEEEAEEEEEEEEEEEAEEEEEEEEEEEEEEEEEEEEEEEEEER
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CSL example - Workstation cluster

- Case study: Cluster of workstations [HHKOO]
— two sub-clusters (N workstations in each cluster)

— star topology with a central switch
— components can break down, single repair unit

left backbone right

sub-cluster sub-cluster

left right
switch switch

— minimum QoS: at least 34 of the workstations operational and
connected via switches

— premium QoS: all workstations operational and connected via
switches

33



CSL example - Workstation cluster

- S_,[ minimum ]
— the probability in the long run of having minimum QoS

P_, [ FltY minimum ]
— the (transient) probability at time instant t of minimum QoS

P_oos [ FI%10 —=minimum ]

— the probability that the QoS drops below minimum within 10
hours is less than 0.05

—minimum — P_g [ FI%2] =minimum ]

— when facing insufficient QoS, the chance of facing the same
problem after 2 hours is less than 0.1

34



CSL example - Workstation cluster

minimum — P_, ¢ [ minimum U4 premium ]

— the probability of going from minimum to premium QoS
within t hours without violating minimum QoS is at least 0.8

P_,[ - minimum Ut minimum ]

— the chance it takes more than t time units to recover from
insufficient QoS

—r_switch_up — P_y; [-r_switch_up U —I_switch_up ]

— if the right switch has failed, the probability of the left switch
failing before it is repaired is less than 0.1

P_, [ FI2®) S_, o[ minimum ] ]

— the probability of it taking more than 2 hours to get to a state

from which the long-run probability of minimum QoS is >O.935



Overview (Part 3)

- Exponential distribution and its properties

- Continuous-time Markov chains (CTMCs)
— definition, race conditions, examples

— paths and probability spaces

» CSL: A temporal logic for CTMCs

- CSL model checking
— uniformisation, steady-state probabilities

- Extensions: Costs & rewards
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CSL model checking

- Model checking a CSL formula ¢ on a CTMC
— basic algorithm proceeds by induction on parse tree of ¢
— non-probabilistic operators (true, a, —, A) identical to PCTL

- Main task: computing probabilities for P_, [-] and S_; [-]

- Untimed properties can be verified on the embedded DTMC
— properties of the form: P_ [ X JorP_, [, U P, ]
— use algorithms for checking PCTL against DTMCs

- Which leaves...

— time-bounded until operator: P_,[$ U' ¢ ]
— steady-state operator: S_, [ ¢ ]

37



Model checking - Time-bounded until

- Compute Prob(s, ¢, U' d,) for all states where | is an
arbitrary interval of the non-negative real numbers

- Note:
— Prob(s, ¢, U' ¢,) = Prob(s, ¢, U9D ¢,)
where cl(l) denotes the closure of the interval |
— Prob(s, ¢, U0:®) ¢,) = Probemb©(s, ¢, U b,)
where emb(C) is the embedded DTMC

- Therefore, 3 remaining cases to consider:
— | = [0,t] for some teR_, (described in this lecture)
— | = [t,t'] for some t<t’eR_, or | = [t,c0) for some teR_,,

- Two methods: 1. Integral equations; 2. Uniformisation

38



Time-bounded until (integral equations)

- Computing the probabilities reduces to determining the
least solution of the following set of integral equations:

PI’Ob(S, cl)l ylo.d d)z) equals T — . i probability, in state
— 1 if s € Sat(¢,), i probability of : i s’ of satisfying
. . moving froms : {  until before t-x
- 0if s € Sat(=dy A~dy) . tos’attimeXx :  time units elapse

. and OtherW|Se equals / --------------------------------- /

f;E(Pemb(O(s,s') E(s) e‘E(S)'X)- Prob(s',¢, U ¢,) dx
s'ES

- One possibility: solve these integrals numerically
— e.g. trapezoidal, Simpson and Romberg integration
— expensive, possible problems with numerical stability

39



Time-bounded until (uniformisation)

- Reduction to transient analysis...

— on a modified CTMC C’ %
AR\

- Make all ¢, states absorbing

— in such a state ¢, Ul0X ¢,
holds with probability 1

- Make all =, A=, states absorbing

— in such a state ¢, U0 ¢,
holds with probability O

- Formally: modified CTMC C’ = C[},][~d; A—],]
— where for CTMC C=(5,s;,i,R,L), let C[0]=(S,s,,,;;,R[O],L) where

R[O](s,s’)=R(s,s’) if s ¢ Sat(B) and O otherwise
40



Time-bounded until (uniformisation)

- Problem then reduces to calculating transient probabilities
in the modified CTMC C’ :

Prob(s,p, UV ¢,) = Egi(s') m, C(s"):

. i transient probability in C’;
s' € Sat(¢p,) : i i
i \ starting in state s,

the probability of being

. To compute for all states s: e Ee e S TR

Prob(¢, U*Y ¢,) =TI - ¢,

— where ¢, is a 0-1 vector characterising ¢,

— and Hfl is the matrix of all transient probabilities in C’

41



Computing transient probabilities

- TT, - matrix of transient probabilities
— TI(s,s")=T1 (s')

- TT, solution of the differential equation: TT” =TI, - Q
— Q infinitesimal generator matrix

- Can be expressed as a matrix exponential and therefore
evaluated as a power series

M =e® =Y (Q-v/il

— computation potentially unstable
— probabilities instead computed using uniformisation

42



Uniformisation

- Uniformised DTMC unif(C) of CTMC C =(5,s;,,R,L):

— unif(C) = (5,8, Punif@,L)

— set of states, initial state and labelling the same as C
— Ppunif(Q) — | + Q/CI

— | is the |S|X]|S| identity matrix

— g =max{E(s)| s eS}isthe uniformisation rate

- Each time step (epoch) of uniformised DTMC corresponds
to one exponentially distributed delay with rate g

— if E(s)=q transitions the same as embedded DTMC (residence
time has the same distribution as one epoch)

— if E(s)<qg add self loop with probability 1-E(s)/q (residence
time longer than 1/q so one epoch may not be ‘long enough’)

43



Uniformisation — Example

- CTMC C:
} 312 312 {full}

{empty 2
@te @te '

- Uniformised DTMC unif(C)

O O W O

— let uniformisation rate q = max, { E(s) } = 4.5

{empty} 1/3 /3 tfull}

@‘9 @‘e. punif© _
2/3 2/3 1/3

2/3

2/3
0

0

3/2
0
3
0

1/3
0
2/3
0

0 0
3/2 0
0 3/2
3 0

0 0]
1/3 0
0 1/3
2/3 1/3

44




Uniformisation

Using the uniformised DTMC the transient probabilities can
be expressed by:

I

_ th eq(Punlf(C) ~1)t _ e(q t)- Punlf(C) . —C|°t

_ e (Eu 0(T Punlf(C)) )
_ 2i=0 (e—qt (_ ) (Punlf(C))
_ E:o Yoo (Punif(C))

t

Punif(©) stochastic (all entries in
_ _ i [0,1] & rows sum to 1), therefore
. ith Poisson probability with computatlons with P more numerlcally
' parameter q-t stable than Q




Uniformisation

M, = E:O Youi (Punif(C) )i

- (PunitQ)i js probability of jumping between each pair of
states in i steps

" Yq.t; IS the ith Poisson probability with parameter g-t

— the probability of i steps occurring in time t, given each has
delay exponentially distributed with rate q

- Can truncate the (infinite) summation using the techniques
of Fox and Glynn [FG88], which allow efficient computation
of the Poisson probabilities

46



Time-bounded until (uniformisation)

- Recall that for model checking, we require:
Prob(¢, U ¢,) =TI - ¢,

+ So, using uniformisation:

M)(q)] U[O,t] (I)Z) _ E:O( You' ( Punif(C'))i. qﬁ )

- This can be computed efficiently using matrix-vector
multiplication (avoiding matrix powers):

( Punif(C'))o. 0, = b,
( Punif(C'))iH. b, = Punif(C').( ( Punif(C'))i. o, )

47




Time-bounded until - Example

P.ooes [ FIO731full ] = P_gec [ true U731 full ]
— “probability of the queue becoming full within 7.5 time units”
- State s; satisfies full and no states satisfy —true
— in C[full][-true A= full] only state s; made absorbing

-2/3 1/3 0 O ' . matrix of unif(C[full][-true A—full])
<« With uniformisation rate max,csE(s)
2/3 0 13 0| + ten

----------------------------------------------------------------------------------------------------------------------

o 2/3 0 1/3
0 O O 1

48



Time-bounded until - Example

- Computing the summation of matrix-vector multiplications

Prob(¢, U ¢,) = E( tau [ P7) - ¢ )
— vyields Prob( FI%7->Ifull ) ~ [ 0.6482, 0.6823, 0.7811, 1]

+ Pl FIO71 full ] satisfied in states s, s, and s;

3/2 3/2 3/2

{empty} {full}
coBoBe
3 3 3

49



Model Checking - Steady-state

- A state s satisfies the formula S_j[$] if =, , ¢ (s’) ~ p

— 1 (s’) is the probability, having started in state s, of being in
state s’ in the long run

— thus model checking reduces to computing and then summing
steady-state probabilities for the CTMC

- Steady-state probabilities: Tt¢(s’) = lim_ , 1 (s’)
— limit exists for all finite CTMCs
— need to consider underlying graph structure of CTMC

— i.e. its bottom strongly connected components (BSCCs)
— irreducible CTMC (comprises one BSCC)

. solution of one linear equation system
— reducible CTMC (multiple BSCCs)

. solve for each BSCC, combine results

50



Irreducible CTMCs

For an irreducible CTMC:

— the steady-state probabilities are independent of the starting
state: denote the steady state probabilities by 11¢(s’)

- These probabilities can be computed as

— the unique solution of the linear equation system:
C C
m-Q=0 and )y 10 (s)=1

where Q is the infinitesimal generator matrix of C

- Solved by standard means:

— direct methods, such as Gaussian elimination
— iterative methods, such as Jacobi and Gauss-Seidel

51



Balance equations

. balance the rate of !
: leaving and entering :
: a state

me(s) - (-5, R(s,s")) + 2, TE(S) - R(s’,s) = O
=

T(s) - 2. R(s,s") = 2., TTE(S’) - R(s’,5)

/

Equivalent to: t¢-P = i€ where P is matrix for embedded DTMC
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Steady-state - Example

- Model check S_g [ full ] on CTMC:
3/2 3/2 3/2 3/2 3/2 0 0

{empty} {full}
SOOI O
| o 3 -9/2 3/2
3 3

3 0 0 3 -3

« CTMC is irreducible (comprises a single BSCC)
— steady state probabilities independent of starting state

- Solve: t-Q=0 and X 11(s)=1
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Steady-state - Example

- Model check S_g [ full ] on CTMC:

=3 3/2 3/2 3/2

3 3 3
+ Solve: -3/2:m(s) + 3-m(s)) -0
3/2-m(sy) - 9/2-m(s) + 3-7(s,) =0
3/2:-m(s) - 9/2:m(s,) + 3:-m(s;) = 0
3/2-m(s,) - 3-m(s;) = 0
ms,) + Ts) o+ M) o+ mis) =

— solution: Tt =[8/15,4/15,2/15,1/15]
= 2 ¢ saquny () = 1/15 < 0.1

— so all states satisfy S_g [ full ]
54




Reducible CTMCs

- For a reducible CTMC:
— the steady-state probabilities T1(s’) depend on start state s

- Find all BSCCs of CTMC, denoted bscc(C)

- Compute:
— steady-state probabilities 17 of sub-CTMC for each BSCC T

— probability Probemb©(s, F T) of reaching each T from s

- Then:
€ Probs™©(s. FT)- n (s') if S'ET for some T ebscc(C)
n (S) = ’ - _
B 0 otherwise
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CSL model checking complexity

For CSL model checking of a CTMC, complexity is:
— linear in |®| and polynomial in |S]
— linear in q-t,,, (t,a IS mMaximum finite bound in intervals)

Unbounded until (P_,[®; U%*) ®,]) and steady-state (S.,[®])
— require solution of linear equation system of size |S|
— can be solved with Gaussian elimination: cubic in |S|
— precomputation algorithms (max |S| steps)

- Time-bounded until (P_,[®; U' ®,])
— at most two iterative sequences of matrix-vector products
— operation is quadratic in the size of the matrix, i.e. |S|
— total number of iterations bounded by Fox and Glynn

— the bound is linear in the size of g-t (q uniformisation rate)
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Overview (Part 3)

Exponential distribution and its properties

Continuous-time Markov chains (CTMCs)
— definition, race conditions, examples
— paths and probability spaces

CSL: A temporal logic for CTMCs

CSL model checking
— uniformisation, steady-state probabilities

Extensions: Costs & rewards
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Rewards (or costs)

Like DTMCs, we can augment CTMCs with rewards
— real-valued quantities assigned to states and/or transitions
— can be interpreted in two ways: instantaneous/cumulative
— properties considered here: expected value of rewards
— formal property specifications in an extension of CSL

For a CTMC (§,s;,i;R,L), a reward structure is a pair (p,l)
— p:S — R_,is avector of state rewards
—1:S XS - R,,is amatrix of transition rewards

For cumulative reward-based properties of CTMCs
— state rewards interpreted as rate at which reward gained

— if the CTMC remains in state s for teR_, time units, a reward
of t-p(s) is acquired
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Reward structures — Examples

instantaneous

/ cumulative

- Example: “time for which queue is not full”
— p(s)=1 for i<3, p(s3)=0 and u(s;,s;)=0 Vi,j

- Example: “size of message queue”
— p(s)=i and (s;,s)=0 Vi,j
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Reward structures — Examples

- Example: “number of requests served”
(O] O O O O]

1 (0] (0)
and =

O 0)
O ) 1 O O
O 0)
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CSL and rewards

- PRISM extends CSL to incorporate reward-based properties
— adds R operator like the one added to PCTL

expected reward is ~r

/ ==

- ¢ R T RETC]T T Ry [TFG ] RIS

é“instantaneous” “cumulative” “reachability” “steady-state”

— wherert € R, ~ € {<,>,<,>}

- R_, [ - ] means “the expected value of - satisfies ~r”
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Types of reward formulae

Instantaneous: R_, [ I7t]

— the expected value of the reward at time-instant t is ~r

— “the expected queue size after 6.7 seconds is at most 2”
Cumulative: R_ [ C=t]

— the expected reward cumulated up to time-instant t is ~r

— “the expected requests served within the first 4.5 seconds of
operation is less than 10”

Reachability: R_, [ F ¢ ]

— the expected reward cumulated before reaching ¢ is ~r

— “the expected requests served before the queue becomes full”
Steady-state R_. [ S ]

— the long-run average expected reward is ~r

— “expected long-run queue size is at least 1.2”
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Reward properties in PRISM

- Quantitative form:

_ eg. R:? [ CSt ]
— what is the expected reward cumulated up to time-instant t?

- Add labels to R operator to distinguish between multiple
reward structures defined on the same CTMC
— €.4. R{num_req}=? [ C=4- ]

— “the expected number of requests served within the first 4.5
seconds of operation”

- eg R{pow}=? [ CS4'5 ]

— “the expected power consumption within the first 4.5 seconds
of operation”
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Reward formula semantics

Formal semantics of the four reward operators:

—sER_[I7Y] = Exp(s, X,_p) ~ r

—skER_ [Cst] = Exp(s, Xcop) ~ ¥

—sER.[S] = lim,_ (1/t - Exp(s, Xco) ) ~r
- where:

— Exp(s, X) denotes the expectation of the random variable
X : Path(s) — R_, with respect to the probability measure Pr,
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Reward formula semantics

Definition of random variables:

— path w=setS 452, stateof wattimet : : timespentin |
---------------------------------------------------------------- g State SJt before g

:  ttime units

A ———— have e|apsed

X (w) = plw@t)

X (W) = jz] (ti -p(s) + L(Si’Si+l))+ (t - jzjti) p(s;,)

0 if s, €Sat(d)

X (W) =4 © if s, Sat(p) foralli=0

E :(j)_]ti -p(s) +1(s,,s,,) otherwise

— where j=min{j | 2ty >t}land ky, = min{i|s, = ¢}
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Model checking reward formulae

Instantaneous: R_, [ I7t]
— reduces to transient analysis (state of the CTMC at time t)
— use uniformisation
- Cumulative: R_. [ C=t]
— extends approach for time-bounded until
— based on uniformisation
Reachability: R_, [ F ¢ ]
— canh be computed on the embedded DTMC
— reduces to solving a system of linear equations
- Steady-state: R_ [ S]
— similar to steady state formulae S_, [ ¢ ]
— graph based analysis (compute BSCCs)

— solve systems of linear equations (compute steady state
probabilities of each BSCC)
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Summary

Exponential distribution
— suitable for modelling failures, waiting times, reactions, ...
— nice mathematical properties
Continuous-time Markov chains
— transition delays modelled as exponential distributions
— probability space over paths
CSL: Continuous Stochastic Logic
— extension of PCTL for properties of CTMCs
CSL model checking
— extension of PCTL model checking for DTMCs
— uniformisation: efficient iterative method for transient prob.s

- Tomorrow: Probabilistic model checking in practice

— PRISM, tool demo, counterexamples, bisimulation
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