
Model Checking Model Checking Model Checking Model Checking forforforfor
Probabilistic Probabilistic Probabilistic Probabilistic Hybrid SystemsHybrid SystemsHybrid SystemsHybrid Systems

Marta Kwiatkowska, Ernst Moritz Hahn
Oxford University Computing Laboratory

Holger Hermanns, Arnd Hartmanns
Saarland University, Dependable Systems and Software

CPSWeek’13, Philadelphia, April 2013

Introduction

Probabilistic models and
probabilistic model checking

3

Model checking

Automated formal verification for finite-state models

Finite-state
model

Temporal logic
specification

Result
System

Counter-
example

System
require-
ments

¬EF fail

Model checker
e.g. SMV, Spin

4

Probabilistic model checking

Automatic verification of systems with probabilistic behaviour

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.1 [F fail]

0.5

0.1

0.4

Probabilistic
model checker

e.g. PRISM

5

Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• Examples: real-world protocols featuring randomisation:

− Randomised back-off schemes

• CSMA protocol, 802.11 Wireless LAN

− Random choice of waiting time

• IEEE1394 Firewire (root contention), Bluetooth (device discovery)

− Random choice over a set of possible addresses

• IPv4 Zeroconf dynamic configuration (link-local addressing)

− Randomised algorithms for anonymity, contract signing, …

6

Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance

− to quantify rate of failures, express Quality of Service

• Examples:

− computer networks, embedded systems

− power management policies

− nano-scale circuitry: reliability through defect-tolerance

7

Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance

− to quantify rate of failures, express Quality of Service

• To model biological processes

− reactions occurring between large numbers of molecules are
naturally modelled in a stochastic fashion

8

Verifying probabilistic systems

• We are not just interested in correctness

• We want to be able to quantify:

− security, privacy, trust, anonymity, fairness

− safety, reliability, performance, dependability

− resource usage, e.g. battery life

− and much more…

• Quantitative, as well as qualitative requirements:

− how reliable is my car’s Bluetooth network?

− how efficient is my phone’s power management policy?

− is my bank’s web-service secure?

− what is the expected long-run percentage of protein X?

9

Probabilistic models

• Markov Decision Process (MDP)

− probabilistic and nondeterministic behaviour

− already allow to express relevant class of models

− semantic base for extended models below

• Probabilistic Timed Automata (PTA)

− extend MDPs with clocks to express timed behaviour

• Probabilistic Hybrid Automata (PHA)

− extend clocks of PTAs to more general continuous variables

− often described by differential equations

10

Nondeterminism

• Some aspects of a system may not be probabilistic and
should not be modelled probabilistically; for example:

• Concurrency - scheduling of parallel components

− e.g. randomised distributed algorithms - multiple
probabilistic processes operating asynchronously

• Underspecification - unknown model parameters

− e.g. a probabilistic communication protocol designed for
message propagation delays of between dmin and dmax

• Unknown environments

− e.g. probabilistic security protocols - unknown adversary

11

Markov decision processes

• Formally, an MDP M is a tuple (S,sinit,StepsStepsStepsSteps,L) where:

− S is a finite set of states (“state space”)

− sinit ∈ S is the initial state

− StepsStepsStepsSteps : S → 2Act×Dist(S) is the transition probability function

where Act is a set of actions and Dist(S) is the set of discrete
probability distributions over the set S

− L : S → 2AP is a labelling with atomic propositions

• Notes:

− StepsStepsStepsSteps(s) is always non-empty,
i.e. no deadlocks

− the use of actions to label
distributions is optional

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

12

Simple MDP example

• Simple communication protocol

− after one step, process starts trying to send a message

− then, a nondeterministic choice between: (a) waiting a step
because the channel is unready; (b) sending the message

− if the latter, with probability 0.99 send successfully and stop

− and with probability 0.01, message sending fails, restart

s1s0

s2

s3

0.01

0.99

1

1

1

1

{fail}

{succ}

{try}

start
send

stop

wait

restart

13

Modelling MDPs

• Guarded Commands modelling language

− simple, textual, state-based language

− based on Reactive Modules [AH99]

− basic components: modules, variables and commands

• Modules:

− components of system being modelled

− a module represents a single MDP

module example

...

endmodule

14

Modelling MDPs

• Guarded Commands modelling language

− simple, textual, state-based language

− based on Reactive Modules [AH99]

− basic components: modules, variables and commands

• Variables:

− finite-domain (bounded integer ranges or Booleans)

− local or global – anyone can read, only owner can modify

− variable valuation = state of the MDP

module example

s : [0..3] init 0;

...

endmodule

15

Modelling MDPs

• Guarded Commands modelling language

− simple, textual, state-based language

− based on Reactive Modules [AH99]

− basic components: modules, variables and commands

• Commands:

− describe the transitions between the states

module example

s : [0..3] init 0;

...
[send] (s = 1) -> 0.01: (s' = 2) + 0.99: (s' = 3);
...

endmodule

[act] exp -> p
1
: asgn11 & asgn12 & ... + ... + p

n
: asgnn1 & ... ;

action guard probability update probability update

16

Simple MDP example

s1s0

s2

s3

0.01

0.99

1

1

1

1

{fail}

{succ}

{try}

start
send

stop

wait

restart

module example

s : [0..3] init 0;

[start] (s = 0) -> (s' = 1);
[wait] (s = 1) -> true;
[send] (s = 1) -> 0.01: (s' = 2) + 0.99: (s' = 3);
[restart] (s = 2) -> (s' = 0);
[stop] (s = 3) -> true;

endmodule

• Simple communication
protocol

17

Example - Parallel composition

1 1 1

s0 s0 t0 s0 t1 s0 t2

s1 t0

s2 t0

s1 t1

s2 t1

s1 t2

s2 t2

s1

s2

t0 t1 t2

0.5

1

1

1

1

1 0.51 0.51
1

0.5

1

0.5

1

0.5

0.5

0.5

0.5

1

0.5
0.5

0.5 0.5 0.5

0.51

0.5

1

Asynchronous parallel
composition of two

3-state DTMCs

Action labels
omitted here

18

Example - Parallel composition

Asynchronous parallel
composition of two

3-state DTMCs

1 1 1

s0 S0 t0

s1

s2

t0 t1 t2

0.5

1

1

1

1

1 0.51 0.51
1

0.5

1

0.5

1

0.5

0.5

0.5

0.5

1

0.5

0.5

0.5 0.5 0.5

0.51

0.5

1

S0 t1 S0 t2

S1 t0

S2 t0

S1 t1

S2 t1

S1 t2

S2 t2

module threestate

s : [0..2] init 0;

[] s = 0 -> (s' = 1);
[] s = 1 -> 0.5: (s' = s - 1)

+ 0.5: (s' = s + 1);
[] s > 1 -> true;

endmodule

module copy = threestate[s = t] endmodule

system
threestate || copy

endsystem

Default parallel composition
on matching action labels
– can be omitted

19

Paths and probabilities

• A (finite or infinite) path through an MDP

− is a sequence of states and action/distribution pairs

− e.g. s0(a0,µ0)s1(a1,µ1)s2…

− such that (ai,µi) ∈ StepsStepsStepsSteps(si) and µi(si+1) > 0 for all i≥0

− represents an execution (i.e. one possible behaviour) of the
system which the MDP is modelling

− note that a path resolves both types of choices:
nondeterministic and probabilistic

• To consider the probability of some behaviour of the MDP

− first need to resolve the nondeterministic choices

− …which results in a Markov chain (DTMC)

− …for which we can define a probability measure over paths

20

Overview (Part 1)

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards

• Case study: Firewire root contention

21

Adversaries

• An adversary resolves nondeterministic choice in an MDP

− also known as “schedulers”, “strategies” or “policies”

• Formally:

− an adversary A of an MDP M is a function mapping every finite

path ω= s0(a1,µ1)s1...sn to an element of StepsStepsStepsSteps(sn)

• For each A can define a probability measure PrA
s over paths

− constructed through an infinite state Markov chain (DTMC)

− states of the DTMC are the finite paths of A starting in state s

− initial state is s (the path starting in s of length 0)

− PPPPA
s(ω,ω’)=µ(s) if ω’= ω(a, µ)s and A(ω)=(a,µ)

− PPPPA
s(ω,ω’)=0 otherwise

22

Adversaries - Examples

• Consider the simple MDP below

− note that s1 is the only state for which |StepsStepsStepsSteps(s)| > 1

− i.e. s1 is the only state for which an adversary makes a choice

− let µb and µc denote the probability distributions associated
with actions b and c in state s1

• Adversary A1

− picks action c the first time

− A1(s0s1)=(c,µc)

• Adversary A2

− picks action b the first time, then c

− A2(s0s1)=(b,µb), A2(s0s1s1)=(c,µc), A2(s0s1s0s1)=(c,µc)

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

23

Adversaries - Examples

• Fragment of DTMC for adversary A1

− A1 picks action c the first time

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

s0s1s0

0.5
1

s0s1s2

s0s1s3

s0s1s2s2

s0s1s3s30.5

1

1

24

Adversaries - Examples

• Fragment of DTMC for adversary A2

− A2 picks action b, then c

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

s0

0.5

1

s0s1s0s1s2

s0s1s0s1s30.5
s0s1

0.7
s0s1s0

s0s1s1

0.3

1
s0s1s0s1

0.5 s0s1s1s2

s0s1s1s30.5

1

1

s0s1s1s2s2

s0s1s1s3s3

25

Memoryless adversaries

• Memoryless adversaries always pick same choice in a state

− also known as: positional, Markov, simple

− formally, for adversary A:

− A(s0(a1,µ1)s1...sn) depends only on sn

− resulting DTMC can be mapped to a |S|-state DTMC

• From previous example:

− adversary A1 (picks c in s1) is memoryless, A2 is not

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a
s1s0

s2

s3

0.5

0.5

1

1

{heads}

{tails}

{init} 1a

c

a

a

26

Overview (Part 1)

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards

• Case study: Firewire root contention

27

PCTL

• Temporal logic for describing properties of MDPs

− PCTL = Probabilistic Computation Tree Logic [HJ94]

− essentially the same as the logic pCTL of [ASB+95]

• Extension of (non-probabilistic) temporal logic CTL

− key addition is probabilistic operator P

− quantitative extension of CTL’s A and E operators

• Example

− send → P≥0.95 [true U≤10 deliver]

− “if a message is sent, then the probability of it being delivered
within 10 steps is at least 0.95”

28

PCTL syntax

• PCTL syntax:

− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state formulas)

− ψ ::= X φ | φ U≤k φ | φ U φ (path formulas)

− where a is an atomic proposition, used to identify states of
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• A PCTL formula is always a state formula

− path formulas only occur inside the P operator

“until”

ψ is true with
probability ~p

“bounded
until”

“next”

29

PCTL semantics for MDPs

• PCTL formulas interpreted over states of an MDP

− s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”

• Semantics of (non-probabilistic) state formulas:

− for a state s of the MDP (S,sinit,PPPP,L):

− s ⊨ a ⇔ a ∈ L(s)

− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊨ φ is false

• Examples

− s3 ⊨ tails

− s2 ⊨ heads ∧ ¬init

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

30

PCTL semantics for MDPs

• Semantics of path formulas:

− for a path ω = s0s1s2… in the MDP:

− ω ⊨ X φ ⇔ s1 ⊨ φ

− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1

− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 such that ω ⊨ φ1 U≤k φ2

• Some examples of satisfying paths:

− X ¬init

− ¬tails U heads

s0 s1 s3 s3

{} {tails} {tails}{init}

s1 s1 s2 s2

{} {heads}{heads}

s0

{}
s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a{init}

31

PCTL semantics for MDPs

• Semantics of the probabilistic operator P

− can only define probabilities for a specific adversary A

− s ⊨ P~p [ψ] means “the probability, from state s, that ψ is
true for an outgoing path satisfies ~p for all adversaries A”

− formally s ⊨ P~p [ψ] ⇔ ProbA(s, ψ) ~ p for all adversaries A

− where ProbA(s, ψ) = PrA
s { ω ∈ PathA(s) | ω ⊨ ψ }

s

¬ψ

ψ ProbA(s, ψ) ~ p

32

Minimum and maximum probabilities

• Letting:

− pmax(s, ψ) = supA ProbA(s, ψ)

− pmin(s, ψ) = infA ProbA(s, ψ)

• We have:

− if ~ ∈ {≥,>}, then s ⊨ P~p [ψ] ⇔ pmin(s, ψ) ~ p

− if ~ ∈ {<,≤}, then s ⊨ P~p [ψ] ⇔ pmax(s, ψ) ~ p

• Model checking P~p[ψ] reduces to the computation over all
adversaries of either:

− the minimum probability of ψ holding

− the maximum probability of ψ holding

• Crucial result for model checking PCTL on MDPs

− memoryless adversaries suffice, i.e. there are always
memoryless adversaries Amin and Amax for which:

− ProbAmin(s, ψ) = pmin(s, ψ) and ProbAmax(s, ψ) = pmax(s, ψ)

33

Overview (Part 1)

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards

• Case study: Firewire root contention

34

PCTL model checking

• Algorithm for PCTL model checking [BdA95]

− inputs: MDP M=(S,sinit,StepsStepsStepsSteps,L), PCTL formula φ

− output: Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• What does it mean for an MDP D to satisfy a formula φ?

− sometimes, want to check that s ⊨ φ ∀ s ∈ S, i.e. Sat(φ) = S

− sometimes, just want to know if sinit ⊨ φ, i.e. if sinit ∈ Sat(φ)

• Sometimes, focus on quantitative results

− e.g. compute result of Pmax=? [F error]

− e.g. compute result of Pmax=? [F≤k error] for 0≤k≤100

35

PCTL model checking for MDPs

• Basic algorithm proceeds by induction on parse tree of φ

− example: φ = (¬fail ∧ try) → P>0.95 [¬fail U succ]

• For the non-probabilistic operators:

− Sat(true) = S

− Sat(a) = { s ∈ S | a ∈ L(s) }

− Sat(¬φ) = S \ Sat(φ)

− Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

• For the P~p [ψ] operator

− need to compute the
probabilities Prob(s, ψ)
for all states s ∈ S

− focus here on “until”
case: ψ = φ1 U φ2

∧

¬

→

P>0.95 [· U ·]

¬

fail fail

succtry

36

Quantitative properties

• For PCTL properties with P as the outermost operator

− quantitative form (two types): Pmin=? [ψ] and Pmax=? [ψ]

− i.e. “what is the minimum/maximum probability (over all
adversaries) that path formula ψ is true?”

− corresponds to an analysis of best-case or worst-case
behaviour of the system

− model checking is no harder since compute the values of
pmin(s, ψ) or pmax(s, ψ) anyway

− useful to spot patterns/trends

• Example: CSMA/CD protocol

− “min/max probability

that a message is sent

within the deadline”

37

Some real PCTL examples

• Byzantine agreement protocol

− Pmin=? [F (agreement ∧ rounds≤2)]

− “what is the minimum probability that agreement is reached
within two rounds?”

• CSMA/CD communication protocol

− Pmax=? [F collisions=k]

− “what is the maximum probability of k collisions?”

• Self-stabilisation protocols

− Pmin=? [F≤t stable]

− “what is the minimum probability of reaching a stable state
within k steps?”

38

PCTL until for MDPs

• Computation of probabilities pmin(s, φ1 U φ2) for all s ∈ S

• First identify all states where the probability is 1 or 0

− “precomputation” algorithms, yielding sets Syes, Sno

• Then compute (min) probabilities for remaining states (S?)

− either: solve linear programming problem

− or: approximate with an iterative solution method

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Example:

P≥p [F a]

≡

P≥p [true U a]

39

PCTL until - Precomputation

• Identify all states where pmin(s, φ1 U φ2) is 1 or 0

− Syes = Sat(P≥1 [φ1 U φ2]), Sno = Sat(¬ P>0 [φ1 U φ2])

• Two graph-based precomputation algorithms:

− algorithm Prob1A computes Syes

• for all adversaries the probability of satisfying φ1 U φ2 is 1

− algorithm Prob0E computes Sno

• there exists an adversary for which the probability is 0

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes = Sat(P≥1 [F a])

Sno = Sat(¬P>0 [F a])

Example:

P≥p [F a]

40

Method 1 - Linear programming

• Probabilities pmin(s, φ1 U φ2) for remaining states in the set
S? = S \ (Syes ∪ Sno) can be obtained as the unique solution
of the following linear programming (LP) problem:

• Simple case of a more general problem known as the
stochastic shortest path problem [BT91]

• This can be solved with standard techniques

− e.g. Simplex, ellipsoid method, branch-and-cut

)s()µ(a, all for and S s all for

)'s(µx)'s(µx

:sconstraint the to subject x maximize

?
S s'S s'

'ss

S s s

yes?

?

StepsStepsStepsSteps∈∈

+⋅≤ ∑∑
∑

∈∈

∈

41

Example - PCTL until (LP)

Let xi = pmin(si, F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 0.25·x0 + 0.5

● x1 ≤ 0.1·x0 + 0.5·x1 + 0.4

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

42

Example - PCTL until (LP)

Let xi = pmin(si, F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0

x1

0
0

1

12/3
x0

x1

0
0

1

1

0.8

x0

x1

0
0

1

1

x0 ≤ x1

x0 ≤ 2/3 x1 ≤ 0.2·x0

+ 0.8

43

Example - PCTL until (LP)

Let xi = pmin(si, F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0
0

1

1

0.8

2/3

max

Solution:

(x0, x1)

=

(2/3, 14/15)

44

Example - PCTL until (LP)

Let xi = pmin(si, F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0
0

1

1

0.8

2/3

max

Two memoryless
adversaries

x1 ≤ 0.2·x0 + 0.8

x0 ≤ x1

x0 ≤ 2/3

45

Method 2 – Value iteration

• For probabilities pmin(s, φ1 U φ2) it can be shown that:

− pmin(s, φ1 U φ2) = limn→∞ xs
(n) where:

• This forms the basis for an (approximate) iterative solution

− iterations terminated when solution converges sufficiently

xs

(n)

=

1 if s ∈ Syes

0 if s ∈ Sno

0 if s ∈ S? and n = 0

min(a,µ)∈Steps(s) µ(s')⋅ xs'

(n−1)

s'∈S

∑



 




  if s ∈ S? and n > 0


















46

Example - PCTL until (value iteration)

Compute: pmin(si, F a)

Syes = {x2}, S
no ={x3}, S

? = {x0, x1}

[x0
(n),x1

(n),x2
(n),x3

(n)]

n=0: [0, 0, 1, 0]

n=1: [min(0,0.25·0+0.5),

0.1·0+0.5·0+0.4, 1, 0]

= [0, 0.4, 1, 0]

n=2: [min(0.4,0.25·0+0.5),

0.1·0+0.5·0.4+0.4, 1, 0]

= [0.4, 0.6, 1, 0]

n=3: …

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

47

Example - PCTL until (value iteration)

[x0
(n),x1

(n),x2
(n),x3

(n)]

n=0: [0.000000, 0.000000, 1, 0]

n=1: [0.000000, 0.400000, 1, 0]

n=2: [0.400000, 0.600000, 1, 0]

n=3: [0.600000, 0.740000, 1, 0]

n=4: [0.650000, 0.830000, 1, 0]

n=5: [0.662500, 0.880000, 1, 0]

n=6: [0.665625, 0.906250, 1, 0]

n=7: [0.666406, 0.919688, 1, 0]

n=8: [0.666602, 0.926484, 1, 0]

n=9: [0.666650, 0.929902, 1, 0]

…

n=20: [0.666667, 0.933332, 1, 0]

n=21: [0.666667, 0.933332, 1, 0]

≈ [2/3, 14/15, 1, 0]

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

48

Example - Value iteration + LP

[x0
(n),x1

(n),x2
(n),x3

(n)]

n=0: [0.000000, 0.000000, 1, 0]

n=1: [0.000000, 0.400000, 1, 0]

n=2: [0.400000, 0.600000, 1, 0]

n=3: [0.600000, 0.740000, 1, 0]

n=4: [0.650000, 0.830000, 1, 0]

n=5: [0.662500, 0.880000, 1, 0]

n=6: [0.665625, 0.906250, 1, 0]

n=7: [0.666406, 0.919688, 1, 0]

n=8: [0.666602, 0.926484, 1, 0]

n=9: [0.666650, 0.929902, 1, 0]

…

n=20: [0.666667, 0.933332, 1, 0]

n=21: [0.666667, 0.933332, 1, 0]

≈ [2/3, 14/15, 1, 0]

x0

x1

0
0

2/3

1

49

PCTL model checking - Summary

• Computation of set Sat(Φ) for MDP M and PCTL formula Φ

− recursive descent of parse tree

− combination of graph algorithms, numerical computation

• Probabilistic operator P:

− X Φ : one matrix-vector multiplication, O(|S|2)

− Φ1 U≤k Φ2 : k matrix-vector multiplications, O(k|S|2)

− Φ1 U Φ2 : linear programming problem, polynomial in |S|
(assuming use of linear programming)

• Complexity:

− linear in |Φ| and polynomial in |S|

− S is states in MDP, assume |Steps(s)| is constant

50

Overview (Part 1)

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards

• Case study: Firewire root contention

51

Costs and rewards

• We augment DTMCs with rewards (or, conversely, costs)

− real-valued quantities assigned to states and/or transitions

− these can have a wide range of possible interpretations

• Some examples:

− elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, …

• Costs? or rewards?

− mathematically, no distinction between rewards and costs

− when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards

− we will consistently use the terminology “rewards” regardless

52

Reward-based properties

• Properties of MDPs augmented with rewards

− allow a wide range of quantitative measures of the system

− basic notion: expected value of rewards

− formal property specifications will be in an extension of PCTL

• More precisely, we use two distinct classes of property…

• Instantaneous properties

− the expected value of the reward at some time point

• Cumulative properties

− the expected cumulated reward over some period

53

PCTL and rewards

• Extend PCTL to incorporate reward-based properties

− add an R operator, which is similar to the existing P operator

− φ ::= … | P~p [ψ] | R~r [I=k] | R~r [C≤k] | R~r [F φ]

− where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• R~r [·] means “the expected value of · satisfies ~r”

“reachability”

expected
reward is ~r

“cumulative”“instantaneous”

54

Types of reward formulas

• Instantaneous: R~r [I=k]

− “the expected value of the state reward at time-step k is ~r”

− e.g. “the expected queue size after exactly 90 seconds”

• Cumulative: R~r [C≤k]

− “the expected reward cumulated up to time-step k is ~r”

− e.g. “the expected power consumption over one hour”

• Reachability: R~r [F φ]

− “the expected reward cumulated before reaching a state
satisfying φ is ~r”

− e.g. “the expected time for the algorithm to terminate”

55

Model checking MDP reward formulas

• Instantaneous: R~r [I=k]

− similar to the computation of bounded until probabilities

− solution of recursive equations

• Cumulative: R~r [C≤k]

− extension of bounded until computation

− solution of recursive equations

• Reachability: R~r [F φ]

− similar to the case for P operator and until

− graph-based precomputation (identify ∞-reward states)

− then linear programming problem (or value iteration)

56

Summary

• Markov decision processes (MDPs)

− probabilistic as well as nondeterminisitic behaviours

− to model concurrency, underspecification, …

− easy to model using guarded commands

• Adversaries resolve nondeterminism in an MDP

− induce a probability space over paths

− consider minimum/maximum probabilities over all
adversaries

• Property specifications

− probabilistic extensions of temporal logic, e.g. PCTL

− also: expected value of costs/rewards

− quantify over all adversaries

• Model checking algorithms

− covered two basic techniques for MDPs:
linear programming or value iteration

