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Introduction

Probabilistic models and 
probabilistic model checking
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Model checking

Automated formal verification for finite-state models

Finite-state
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Temporal logic
specification

Result
System

Counter-
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System
require-
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¬EF fail

Model checker
e.g. SMV, Spin
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Probabilistic model checking

Automatic verification of systems with probabilistic behaviour

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
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System
require-
ments

P<0.1 [ F fail ]
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0.1

0.4

Probabilistic
model checker

e.g. PRISM
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Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• Examples: real-world protocols featuring randomisation:

− Randomised back-off schemes

• CSMA protocol, 802.11 Wireless LAN

− Random choice of waiting time

• IEEE1394 Firewire (root contention), Bluetooth (device discovery)

− Random choice over a set of possible addresses

• IPv4 Zeroconf dynamic configuration (link-local addressing)

− Randomised algorithms for anonymity, contract signing, …
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Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance

− to quantify rate of failures, express Quality of Service

• Examples:

− computer networks, embedded systems

− power management policies

− nano-scale circuitry: reliability through defect-tolerance
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Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance

− to quantify rate of failures, express Quality of Service

• To model biological processes

− reactions occurring between large numbers of molecules are 
naturally modelled in a stochastic fashion
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Verifying probabilistic systems

• We are not just interested in correctness

• We want to be able to quantify:

− security, privacy, trust, anonymity, fairness

− safety, reliability, performance, dependability

− resource usage, e.g. battery life

− and much more…

• Quantitative, as well as qualitative requirements: 

− how reliable is my car’s Bluetooth network?

− how efficient is my phone’s power management policy? 

− is my bank’s web-service secure?

− what is the expected long-run percentage of protein X?
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Probabilistic models

• Markov Decision Process (MDP)

− probabilistic and nondeterministic behaviour

− already allow to express relevant class of models

− semantic base for extended models below

• Probabilistic Timed Automata (PTA)

− extend MDPs with clocks to express timed behaviour

• Probabilistic Hybrid Automata (PHA)

− extend clocks of PTAs to more general continuous variables

− often described by differential equations
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Nondeterminism

• Some aspects of a system may not be probabilistic and 
should not be modelled probabilistically; for example:

• Concurrency - scheduling of parallel components

− e.g. randomised distributed algorithms - multiple 
probabilistic processes operating asynchronously

• Underspecification - unknown model parameters

− e.g. a probabilistic communication protocol designed for 
message propagation delays of between dmin and dmax

• Unknown environments

− e.g. probabilistic security protocols - unknown adversary
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Markov decision processes

• Formally, an MDP M is a tuple (S,sinit,StepsStepsStepsSteps,L) where: 

− S is a finite set of states (“state space”)

− sinit ∈ S is the initial state

− StepsStepsStepsSteps : S → 2Act×Dist(S) is the transition probability function

where Act is a set of actions and Dist(S) is the set of discrete 
probability distributions over the set S

− L : S → 2AP is a labelling with atomic propositions

• Notes:

− StepsStepsStepsSteps(s) is always non-empty,
i.e. no deadlocks

− the use of actions to label
distributions is optional

s1s0

s2

s3
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Simple MDP example

• Simple communication protocol

− after one step, process starts trying to send a message

− then, a nondeterministic choice between: (a) waiting a step 
because the channel is unready; (b) sending the message

− if the latter, with probability 0.99 send successfully and stop

− and with probability 0.01, message sending fails, restart

s1s0

s2

s3

0.01

0.99

1

1

1

1

{fail}

{succ}

{try}

start
send

stop

wait

restart
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Modelling MDPs

• Guarded Commands modelling language

− simple, textual, state-based language

− based on Reactive Modules [AH99]

− basic components: modules, variables and commands

• Modules:

− components of system being modelled

− a module represents a single MDP

module example

...

endmodule
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Modelling MDPs

• Guarded Commands modelling language

− simple, textual, state-based language

− based on Reactive Modules [AH99]

− basic components: modules, variables and commands

• Variables:

− finite-domain (bounded integer ranges or Booleans)

− local or global – anyone can read, only owner can modify

− variable valuation = state of the MDP

module example

s : [0..3] init 0;

...

endmodule
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Modelling MDPs

• Guarded Commands modelling language

− simple, textual, state-based language

− based on Reactive Modules [AH99]

− basic components: modules, variables and commands

• Commands:

− describe the transitions between the states

module example

s : [0..3] init 0;

...
[send] (s = 1) -> 0.01: (s' = 2) + 0.99: (s' = 3);
...

endmodule

[act] exp -> p
1
: asgn11 & asgn12 & ... + ... + p

n
: asgnn1 & ... ;

action guard probability update probability update
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Simple MDP example

s1s0

s2

s3

0.01

0.99

1

1

1

1

{fail}

{succ}

{try}

start
send

stop

wait

restart

module example

s : [0..3] init 0;

[start]   (s = 0) -> (s' = 1);
[wait]    (s = 1) -> true;
[send]    (s = 1) -> 0.01: (s' = 2) + 0.99: (s' = 3);
[restart] (s = 2) -> (s' = 0);
[stop]    (s = 3) -> true;

endmodule

• Simple communication
protocol
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Example - Parallel composition

1 1 1

s0 s0  t0 s0  t1 s0  t2

s1  t0

s2  t0

s1  t1

s2  t1

s1  t2

s2  t2

s1

s2

t0 t1 t2
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1

1

1

1 0.51 0.51
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1
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Asynchronous parallel
composition of two

3-state DTMCs

Action labels
omitted here
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Example - Parallel composition

Asynchronous parallel
composition of two

3-state DTMCs

1 1 1

s0 S0  t0

s1

s2

t0 t1 t2

0.5

1

1

1

1

1 0.51 0.51
1

0.5

1

0.5

1

0.5

0.5

0.5

0.5

1

0.5

0.5

0.5 0.5 0.5

0.51

0.5

1

S0  t1 S0  t2

S1  t0

S2  t0

S1 t1

S2  t1

S1  t2

S2  t2

module threestate

s : [0..2] init 0;

[] s = 0 -> (s' = 1);
[] s = 1 -> 0.5: (s' = s - 1)

+ 0.5: (s' = s + 1);
[] s > 1 -> true;

endmodule

module copy = threestate[s = t] endmodule

system
threestate || copy

endsystem

Default parallel composition
on matching action labels
– can be omitted
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Paths and probabilities

• A (finite or infinite) path through an MDP

− is a sequence of states and action/distribution pairs

− e.g. s0(a0,µ0)s1(a1,µ1)s2…

− such that (ai,µi) ∈ StepsStepsStepsSteps(si) and µi(si+1) > 0 for all i≥0

− represents an execution (i.e. one possible behaviour) of the 
system which the MDP is modelling

− note that a path resolves both types of choices: 
nondeterministic and probabilistic

• To consider the probability of some behaviour of the MDP

− first need to resolve the nondeterministic choices

− …which results in a Markov chain (DTMC)

− …for which we can define a probability measure over paths
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Overview (Part 1)

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards

• Case study: Firewire root contention
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Adversaries

• An adversary resolves nondeterministic choice in an MDP

− also known as “schedulers”, “strategies” or “policies”

• Formally:

− an adversary A of an MDP M is a function mapping every finite

path ω= s0(a1,µ1)s1...sn to an element of StepsStepsStepsSteps(sn)

• For each A can define a probability measure PrA
s over paths

− constructed through an infinite state Markov chain (DTMC)

− states of the DTMC are the finite paths of A starting in state s

− initial state is s (the path starting in s of length 0)

− PPPPA
s(ω,ω’)=µ(s) if ω’= ω(a, µ)s and A(ω)=(a,µ)

− PPPPA
s(ω,ω’)=0 otherwise
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Adversaries - Examples

• Consider the simple MDP below

− note that s1 is the only state for which |StepsStepsStepsSteps(s)| > 1

− i.e. s1 is the only state for which an adversary makes a choice

− let µb and µc denote the probability distributions associated 
with actions b and c in state s1

• Adversary A1

− picks action c the first time

− A1(s0s1)=(c,µc)

• Adversary A2

− picks action b the first time, then c

− A2(s0s1)=(b,µb),  A2(s0s1s1)=(c,µc),  A2(s0s1s0s1)=(c,µc)

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a
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Adversaries - Examples

• Fragment of DTMC for adversary A1

− A1 picks action c the first time

s1s0

s2

s3

0.5

0.50.7

1

1
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0.3

1a

b

c

a

a

s0s1s0

0.5
1

s0s1s2

s0s1s3

s0s1s2s2

s0s1s3s30.5

1
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Adversaries - Examples

• Fragment of DTMC for adversary A2

− A2 picks action b, then c

s1s0

s2

s3

0.5

0.50.7
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1
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{tails}

{init}

0.3
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b

c

a

a
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1
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Memoryless adversaries

• Memoryless adversaries always pick same choice in a state

− also known as: positional, Markov, simple

− formally, for adversary A:

− A(s0(a1,µ1)s1...sn) depends only on sn

− resulting DTMC can be mapped to a |S|-state DTMC

• From previous example:

− adversary A1 (picks c in s1) is memoryless, A2 is not
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Overview (Part 1)

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards

• Case study: Firewire root contention
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PCTL

• Temporal logic for describing properties of MDPs

− PCTL = Probabilistic Computation Tree Logic [HJ94]

− essentially the same as the logic pCTL of [ASB+95]

• Extension of (non-probabilistic) temporal logic CTL

− key addition is probabilistic operator P

− quantitative extension of CTL’s A and E operators

• Example

− send → P≥0.95 [ true U≤10 deliver ]

− “if a message is sent, then the probability of it being delivered 
within 10 steps is at least 0.95”
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PCTL syntax

• PCTL syntax:

− φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ ψ ] (state formulas)

− ψ  ::=  X φ    |    φ U≤k φ     |   φ U φ (path formulas)

− where a is an atomic proposition, used to identify states of 
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• A PCTL formula is always a state formula

− path formulas only occur inside the P operator

“until”

ψ is true with 
probability ~p

“bounded 
until”

“next”
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PCTL semantics for MDPs

• PCTL formulas interpreted over states of an MDP

− s ⊨ φ  denotes φ is “true in state s” or “satisfied in state s”

• Semantics of (non-probabilistic) state formulas:

− for a state s of the MDP (S,sinit,PPPP,L):

− s ⊨ a ⇔ a ∈ L(s)

− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and  s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊨ φ  is false

• Examples

− s3 ⊨ tails

− s2 ⊨ heads ∧ ¬init

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a
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PCTL semantics for MDPs

• Semantics of path formulas:

− for a path ω = s0s1s2… in the MDP:

− ω ⊨ X φ ⇔ s1 ⊨ φ

− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1

− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 such that ω ⊨ φ1 U≤k φ2

• Some examples of satisfying paths:

− X ¬init

− ¬tails U heads

s0 s1 s3 s3

{} {tails} {tails}{init}

s1 s1 s2 s2

{} {heads}{heads}

s0

{}
s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a{init}
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PCTL semantics for MDPs

• Semantics of the probabilistic operator P

− can only define probabilities for a specific adversary A

− s ⊨ P~p [ ψ ] means “the probability, from state s, that ψ is 
true for an outgoing path satisfies ~p for all adversaries A”

− formally  s ⊨ P~p [ ψ ]  ⇔  ProbA(s, ψ) ~ p for all adversaries A

− where ProbA(s, ψ) = PrA
s { ω ∈ PathA(s) | ω ⊨ ψ }

s

¬ψ

ψ ProbA(s, ψ) ~ p
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Minimum and maximum probabilities

• Letting:

− pmax(s, ψ) = supA ProbA(s, ψ)

− pmin(s, ψ) = infA ProbA(s, ψ)

• We have:

− if ~ ∈ {≥,>}, then s ⊨ P~p [ ψ ] ⇔ pmin(s, ψ) ~ p 

− if ~ ∈ {<,≤}, then s ⊨ P~p [ ψ ] ⇔ pmax(s, ψ) ~ p

• Model checking P~p[ ψ ] reduces to the computation over all 
adversaries of either:

− the minimum probability of ψ holding

− the maximum probability of ψ holding

• Crucial result for model checking PCTL on MDPs

− memoryless adversaries suffice, i.e. there are always 
memoryless adversaries Amin and Amax for which:

− ProbAmin(s, ψ) = pmin(s, ψ) and ProbAmax(s, ψ) = pmax(s, ψ) 
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Overview (Part 1)

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards

• Case study: Firewire root contention



34

PCTL model checking 

• Algorithm for PCTL model checking [BdA95]

− inputs:  MDP M=(S,sinit,StepsStepsStepsSteps,L),  PCTL formula φ

− output:  Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• What does it mean for an MDP D to satisfy a formula φ?

− sometimes, want to check that s ⊨ φ ∀ s ∈ S, i.e. Sat(φ) = S

− sometimes, just want to know if sinit ⊨ φ, i.e. if sinit ∈ Sat(φ)

• Sometimes, focus on quantitative results

− e.g. compute result of Pmax=? [ F error ]

− e.g. compute result of Pmax=? [ F≤k error ] for 0≤k≤100
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PCTL model checking for MDPs

• Basic algorithm proceeds by induction on parse tree of φ

− example: φ = (¬fail ∧ try) → P>0.95 [ ¬fail U succ ]

• For the non-probabilistic operators:

− Sat(true) = S

− Sat(a) = { s ∈ S | a ∈ L(s) }

− Sat(¬φ) = S \ Sat(φ)

− Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

• For the P~p [ ψ ] operator 

− need to compute the
probabilities Prob(s, ψ)
for all states s ∈ S

− focus here on “until”
case: ψ = φ1 U φ2

∧

¬

→

P>0.95 [ · U · ]

¬

fail fail

succtry
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Quantitative properties

• For PCTL properties with P as the outermost operator

− quantitative form (two types): Pmin=? [ ψ ] and Pmax=? [ ψ ]

− i.e. “what is the minimum/maximum probability (over all 
adversaries) that path formula ψ is true?”

− corresponds to an analysis of best-case or worst-case
behaviour of the system

− model checking is no harder since compute the values of 
pmin(s, ψ) or pmax(s, ψ) anyway 

− useful to spot patterns/trends

• Example: CSMA/CD protocol

− “min/max probability

that a message is sent

within the deadline”
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Some real PCTL examples

• Byzantine agreement protocol

− Pmin=? [ F (agreement ∧ rounds≤2) ]

− “what is the minimum probability that agreement is reached 
within two rounds?”

• CSMA/CD communication protocol

− Pmax=? [ F collisions=k ]

− “what is the maximum probability of k collisions?” 

• Self-stabilisation protocols 

− Pmin=? [ F≤t stable ]

− “what is the minimum probability of reaching a stable state 
within k steps?”
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PCTL until for MDPs

• Computation of probabilities pmin(s, φ1 U φ2) for all s ∈ S

• First identify all states where the probability is 1 or 0

− “precomputation” algorithms, yielding sets Syes, Sno

• Then compute (min) probabilities for remaining states (S?)

− either: solve linear programming problem

− or: approximate with an iterative solution method

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Example:

P≥p [ F a ]

≡

P≥p [ true U a ]
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PCTL until - Precomputation

• Identify all states where pmin(s, φ1 U φ2) is 1 or 0

− Syes = Sat(P≥1 [ φ1 U φ2 ]),  Sno = Sat(¬ P>0 [ φ1 U φ2 ])

• Two graph-based precomputation algorithms:

− algorithm Prob1A computes Syes

• for all adversaries the probability of satisfying φ1 U φ2 is 1

− algorithm Prob0E computes Sno

• there exists an adversary for which the probability is 0

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes = Sat(P≥1 [ F a ])

Sno = Sat(¬P>0 [ F a ])

Example:

P≥p [ F a ]
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Method 1 - Linear programming

• Probabilities pmin(s, φ1 U φ2) for remaining states in the set 
S? = S \ (Syes ∪ Sno) can be obtained as the unique solution 
of the following linear programming (LP) problem:

• Simple case of a more general problem known as the 
stochastic shortest path problem [BT91]

• This can be solved with standard techniques

− e.g. Simplex, ellipsoid method, branch-and-cut

)s()µ(a, all for and S s all for

)'s(µx)'s(µx

:sconstraint the to subject x maximize

?
S s'S s'

'ss

S s s

yes?

?

StepsStepsStepsSteps∈∈

+⋅≤ ∑∑
∑

∈∈

∈
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Example - PCTL until (LP)

Let xi = pmin(si, F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 0.25·x0 + 0.5

● x1 ≤ 0.1·x0 + 0.5·x1 + 0.4

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno
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Example - PCTL until (LP)

Let xi = pmin(si, F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0

x1

0
0

1

12/3
x0

x1

0
0

1

1

0.8

x0

x1

0
0

1

1

x0 ≤ x1

x0 ≤ 2/3 x1 ≤ 0.2·x0

+ 0.8
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Example - PCTL until (LP)

Let xi = pmin(si, F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0
0

1

1

0.8

2/3

max

Solution:

(x0, x1)

=

(2/3, 14/15)
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Example - PCTL until (LP)

Let xi = pmin(si, F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0
0

1

1

0.8

2/3

max

Two memoryless
adversaries

x1 ≤ 0.2·x0 + 0.8

x0 ≤ x1

x0 ≤ 2/3
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Method 2 – Value iteration

• For probabilities pmin(s, φ1 U φ2) it can be shown that:

− pmin(s, φ1 U φ2) = limn→∞ xs
(n) where:

• This forms the basis for an (approximate) iterative solution

− iterations terminated when solution converges sufficiently

  

xs

(n)

=

1 if s ∈ Syes

0 if s ∈ Sno

0 if s ∈ S? and n = 0

min(a,µ)∈Steps(s) µ(s' )⋅ xs'

(n−1)

s'∈S

∑
 

 
  

 

 
  if s ∈ S? and n > 0

 

 

 

 
 

 

 

 

 
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Example - PCTL until (value iteration)

Compute: pmin(si, F a)

Syes = {x2}, S
no ={x3}, S

? = {x0, x1}

[ x0
(n),x1

(n),x2
(n),x3

(n) ]

n=0: [ 0, 0, 1, 0 ]

n=1: [ min(0,0.25·0+0.5),

0.1·0+0.5·0+0.4, 1, 0 ]

= [ 0, 0.4, 1, 0 ]

n=2: [ min(0.4,0.25·0+0.5),

0.1·0+0.5·0.4+0.4, 1, 0 ]

= [ 0.4, 0.6, 1, 0 ]

n=3: …

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno
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Example - PCTL until (value iteration)

[ x0
(n),x1

(n),x2
(n),x3

(n) ]

n=0: [ 0.000000, 0.000000, 1, 0 ]

n=1: [ 0.000000, 0.400000, 1, 0 ]

n=2: [ 0.400000, 0.600000, 1, 0 ]

n=3: [ 0.600000, 0.740000, 1, 0 ]

n=4: [ 0.650000, 0.830000, 1, 0 ]

n=5: [ 0.662500, 0.880000, 1, 0 ]

n=6: [ 0.665625, 0.906250, 1, 0 ]

n=7: [ 0.666406, 0.919688, 1, 0 ]

n=8: [ 0.666602, 0.926484, 1, 0 ]

n=9: [ 0.666650, 0.929902, 1, 0 ]

…

n=20: [ 0.666667, 0.933332, 1, 0 ]

n=21: [ 0.666667, 0.933332, 1, 0 ]

≈ [ 2/3, 14/15, 1, 0 ]

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno
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Example - Value iteration + LP

[ x0
(n),x1

(n),x2
(n),x3

(n) ]

n=0: [ 0.000000, 0.000000, 1, 0 ]

n=1: [ 0.000000, 0.400000, 1, 0 ]

n=2: [ 0.400000, 0.600000, 1, 0 ]

n=3: [ 0.600000, 0.740000, 1, 0 ]

n=4: [ 0.650000, 0.830000, 1, 0 ]

n=5: [ 0.662500, 0.880000, 1, 0 ]

n=6: [ 0.665625, 0.906250, 1, 0 ]

n=7: [ 0.666406, 0.919688, 1, 0 ]

n=8: [ 0.666602, 0.926484, 1, 0 ]

n=9: [ 0.666650, 0.929902, 1, 0 ]

…

n=20: [ 0.666667, 0.933332, 1, 0 ]

n=21: [ 0.666667, 0.933332, 1, 0 ]

≈ [ 2/3, 14/15, 1, 0 ]

x0

x1

0
0

2/3

1
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PCTL model checking - Summary

• Computation of set Sat(Φ) for MDP M and PCTL formula Φ

− recursive descent of parse tree

− combination of graph algorithms, numerical computation

• Probabilistic operator P:

− X Φ : one matrix-vector multiplication, O(|S|2)

− Φ1 U≤k Φ2 : k matrix-vector multiplications, O(k|S|2)

− Φ1 U Φ2 : linear programming problem, polynomial in |S|
(assuming use of linear programming)

• Complexity: 

− linear in |Φ| and polynomial in |S|

− S is states in MDP, assume |Steps(s)| is constant
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Overview (Part 1)

• Markov decision processes (MDPs)

• Adversaries

• PCTL

• PCTL model checking

• Costs and rewards

• Case study: Firewire root contention
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Costs and rewards

• We augment DTMCs with rewards (or, conversely, costs)

− real-valued quantities assigned to states and/or transitions

− these can have a wide range of possible interpretations

• Some examples:

− elapsed time, power consumption, size of message queue, 
number of messages successfully delivered, net profit, …

• Costs? or rewards?

− mathematically, no distinction between rewards and costs

− when interpreted, we assume that it is desirable to minimise 
costs and to maximise rewards 

− we will consistently use the terminology “rewards” regardless
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Reward-based properties

• Properties of MDPs augmented with rewards

− allow a wide range of quantitative measures of the system

− basic notion: expected value of rewards

− formal property specifications will be in an extension of PCTL

• More precisely, we use two distinct classes of property…

• Instantaneous properties

− the expected value of the reward at some time point

• Cumulative properties

− the expected cumulated reward over some period
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PCTL and rewards

• Extend PCTL to incorporate reward-based properties

− add an R operator, which is similar to the existing P operator

− φ  ::=  …  |  P~p [ ψ ]  |  R~r [ I=k ]  |  R~r [ C≤k ]  |  R~r [ F φ ]

− where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• R~r [ · ] means “the expected value of · satisfies ~r”

“reachability”

expected 
reward is ~r

“cumulative”“instantaneous”
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Types of reward formulas

• Instantaneous: R~r [ I=k ]

− “the expected value of the state reward at time-step k is ~r”

− e.g. “the expected queue size after exactly 90 seconds”

• Cumulative: R~r [ C≤k ]

− “the expected reward cumulated up to time-step k is ~r”

− e.g. “the expected power consumption over one hour”

• Reachability: R~r [ F φ ]

− “the expected reward cumulated before reaching a state 
satisfying φ is ~r”

− e.g. “the expected time for the algorithm to terminate”
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Model checking MDP reward formulas

• Instantaneous: R~r [ I=k ]

− similar to the computation of bounded until probabilities

− solution of recursive equations

• Cumulative: R~r [ C≤k ]

− extension of bounded until computation

− solution of recursive equations

• Reachability: R~r [ F φ ]

− similar to the case for P operator and until

− graph-based precomputation (identify ∞-reward states)

− then linear programming problem (or value iteration)
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Summary

• Markov decision processes (MDPs)

− probabilistic as well as nondeterminisitic behaviours

− to model concurrency, underspecification, …

− easy to model using guarded commands

• Adversaries resolve nondeterminism in an MDP

− induce a probability space over paths

− consider minimum/maximum probabilities over all 
adversaries

• Property specifications

− probabilistic extensions of temporal logic, e.g. PCTL

− also: expected value of costs/rewards

− quantify over all adversaries

• Model checking algorithms

− covered two basic techniques for MDPs:
linear programming or value iteration


