Model Checking for Probabilistic Hybrid Systems

Marta Kwiatkowska, Ernst Moritz Hahn
Oxford University Computing Laboratory

Holger Hermanns, Arnd Hartmanns
Saarland University, Dependable Systems and Software

CPSWeek’13, Philadelphia, April 2013
Part 1b

MDP demos
Overview (Part 1b)

• Tools for MDPs

• Analysis of the simple communication protocol

• Case study: Bounded retransmission protocol (BRP)
Tools for MDPs

• **PRISM: Probabilistic symbolic model checker**
 – developed at Birmingham/Oxford University since 1999
 – modelling of CTMCs, DTMCs, **MDPs**, PTAs + costs & rewards
 – modelling language: guarded commands
 – property language: PCTL + extensions + costs/rewards

• **The Modest Toolset: mcpta frontend for PRISM**
 – supports stochastic and hybrid models beyond PTA
 – more in third part of talk
Overview (Part 1b)

- Tools for MDPs
- Analysis of the simple communication protocol
- Case study: Bounded retransmission protocol (BRP)
Simple MDP example

- Simple communication protocol
 - probability of success

\[P_{\text{min}} = \mathbb{P}(F(s = 3)) \]
\[P_{\text{max}} = \mathbb{P}(F(s = 3)) \]

module example

\[
s : [0..3] \text{ init } 0;
\]

\[
[\text{start}] \quad (s = 0) \rightarrow (s' = 1);
\]

\[
[\text{wait}] \quad (s = 1) \rightarrow \text{true};
\]

\[
[\text{send}] \quad (s = 1) \rightarrow 0.01 : (s' = 2) + 0.99 : (s' = 3);
\]

\[
[\text{restart}] \quad (s = 2) \rightarrow (s' = 0);
\]

\[
[\text{stop}] \quad (s = 3) \rightarrow \text{true};
\]

endmodule
Simple MDP example

- Simple communication protocol
 - expected number of restarts

\[\text{R}_{\text{min}} = \mathbb{E} \left[F (s = 3) \right] \]
\[\text{R}_{\text{max}} = \mathbb{E} \left[F (s = 3) \right] \]

module example

\[
\begin{align*}
\text{s} : [0..3] \text{ init } 0; \\
[\text{start}] \quad (s = 0) \rightarrow (s' = 1); \\
[\text{wait}] \quad (s = 1) \rightarrow \text{true}; \\
[\text{send}] \quad (s = 1) \rightarrow 0.01: (s' = 2) + 0.99: (s' = 3); \\
[\text{restart}] \quad (s = 2) \rightarrow (s' = 0); \\
[\text{stop}] \quad (s = 3) \rightarrow \text{true};
\end{align*}
\]
endmodule
Overview (Part 1b)

- Tools for MDPs
- Analysis of the simple communication protocol
- Case study: Bounded retransmission protocol (BRP)
Case Study: BRP

- **Bounded Retransmission Protocol**

 - transmit files in chunks (frames) over lossy channels
 - alternating bit protocol with \leq MAX retries per frame
 - studied extensively

Reachability Analysis of Probabilistic Systems by Successive Refinements

Pedro R. D'Argenio1, Bertrand Jeannet2, Henrik E. Jensen3, and Kim G. Larsen1

1 Faculty of Informatics, University of Twente
2 CNRS, LIAFA, Université Paris 7, France
3 Department of Computer Science, University of Aarhus, Denmark
Case Study: BRP

- **Sender**
 - upper bound MAX on number of retransmissions

Sender:

- $i := 1$
- $srep := \bot$
- $f_s := (i = 1)$
- $l_s := (i = N)$
- $b_s := ab$, $nrtr++$
- F
- $((nrtr < MAX) \land (i < N))$
- $i++$
- $srep := OK$
- $ab := \text{ff}$
- $srep := NOK$
- $srep := DK$
- $i = N$
- B
- $ab := \neg ab$
- $((nrtr = MAX) \land (i = N))$
- $success$
- $wait_ack$
- $retransmit$
- F
- $null$
- $SyncWait$
- $error$
Case Study: BRP

- **Receiver**
 - uses alternating bit to distinguish between new and old data
Case Study: BRP

- **Channels**
 - different message loss probability
 - timeouts modelled with explicit synchronisation
Case Study: BRP

- Properties
 - maximum (worst-case) probabilities for:
 - sender report failure in case of success (A)
 - sender reports success in case of failure (B)
 - sender does not report success (1)
 - sender reports uncertainty (2)
 - ...

⇒ DEMO