Probabilistic Model Checking

Marta Kwiatkowska
Gethin Norman
Dave Parker

University of Oxford

Part 10 - Implementation of
Probabilistic Model Checking

Overview

Implementation of probabilistic model checking
— overview, key operations, symbolic vs. explicit

Binary decision diagrams (BDDs)
— introduction, operations, sets, transition relations, ...

Multi-terminal BDDs (MTBDDs)

— introduction, operations, vectors, matrices, performance, ...

Implementation overview

Overview of the probabilistic model checking process
— two distinct phases: model construction, model checking
— three different models, two different logics, various methods
— but... all these processes have much in common

High-level
model

PRISM
language
description

DTMC, MDP
or CTMC

Model

construction |

Crroperty >—

Model
checking

PCTL or CSL
formula

Model construction

Model construction
. Translatlon 2 eachab|I|ty
High-level : from . i building set !
model i high-level _> of reachable
. language | states .| DTMC, MDP
PRlSM - or CTMC
language
description matrix graph-based
manipulation algorithm

Model checking

Model checking

L
or CTMC i Basicset ii Solution of linear i
. operations | : equation systems

: Precomputation § e ,
. algorithms i i Solution of linear

f‘.::j i optimisation problems
Property)—%| i Bottom strongly ; ;| (iterative methods) |

. connected i
PCTL or CSL i component i Uniformisation-based
formula i computation i iterative methods

--

Two distinct classes of techniques:
graph-based algorithms
iterative numerical computation

Underlying operations

Key objects/operations for probabilistic model checking

Graph-based algorithms
— underlying transition relation of DTMC/MDP/CTMC
— manipulation of transition relation and state sets

lterative numerical computation
— transition matrix of DTMC/MDP/CTMC, real-valued vectors
— manipulation of real-valued matrices and vectors
— in particular: matrix-vector multiplication

State-space explosion

Models of real-life systems are typically huge
— familiar problem for verification/model checking techniques

State-space explosion problem

— linear increase in size of system can result in an exponential
increase in the size of the model

— e.g. n parallel components of size m, can give up to m" states

Need efficient ways of storing models, sets of states, etc.
— and efficient ways of constructing, manipulating them

Here, we will focus on symbolic approaches

Symbolic data structures

Distinguish between explicit and symbolic storage
Symbolic data structures
— usually based on binary decision diagrams (BDDs) or variants
— avoid explicit enumeration of data by exploiting regularity
— potentially very compact storage (but not always)
Sets of states:
— explicit: bit vectors, symbolic: BDDs
Real-valued vectors:
— explicit: arrays of reals (in practice, doubles/floats)
— symbolic: multi-terminal BDDs (MTBDDs)
Real-valued matrices:
— explicit: sparse matrices
— symbolic: MTBDDs

Overview

- Implementation of probabilistic model checking
— overview, key operations, symbolic vs. explicit

- Binary decision diagrams (BDDs)
— introduction, operations, sets, transition relations, ...

- Multi-terminal BDDs (MTBDDs)

— introduction, operations, vectors, matrices, performance, ...

Representations of Boolean formulas

Propositional formula: f = (x; vV x,) A X;3

Truth | . .
uth table Binary decision tree

X
X

N
X

w

—|=|=|—=|0o|o|o|o
—|=|o|o|=|—=|o|o
—|lo|=|o|=|o|—=|o
—|o|=|o|=|co|o|o|—

10

Binary decision trees

- Graphical representation of Boolean functions
— f(xq,...,x,) : {0,1}» = {0,1}
Binary tree with two types of nodes
Non-terminal nodes
— labelled with a Boolean variable x;
— two children: 1 (“then”, solid line) and 0 (“else”, dotted line)
- Terminal nodes (or “leaf” nodes)

— labelled withOoOr1.. ... | ®\
. To read the value of f(x. .. x) ="

read the value of f(x,...,x,))
— start at root (top) node
— take “then” edge if x,=1 6% 6%
— take “else” edge if x,=0 AR RRRERRE

— result given by leaf node

11

Binary decision diagrams

Binary decision diagrams (BDDs) [Bry86]
— based on binary decison trees, but reduced and ordered
— sometimes called reduced ordered BDDs (ROBDDs)
— actually directed acyclic graphs (DAGs), not trees
— compact, canonical representation for Boolean functions

- Variable ordering

— a BDD assumes a fixed total ordering
over its set of Boolean variables

— along any path through the BDD,
variables appear at most once each
and always in the correct order

12

BDD reduction rule 1

Rule 1: Merge identical terminal nodes

Example:

0(]0

13

BDD reduction rule 2

Rule 2: Merge isomorphic nodes, redirect incoming nodes

14

BDD reduction rule 3

- Rule 3: Remove redundant nodes (with identical children)

15

Canonicity

- BDDs are a canonical representation for Boolean functions

— two Boolean functions are equivalent if and only if the BDDs
which represent them are isomorphic

— uniqueness relies on: reduced BDDs, fixed variable ordered

o
.
K
.
o
.
o
.

»
o
o
Q
o
g
Q
o
Q D
Q D
Q Q
Q Q
o D
o D
) N

Of]1

«
D
D
D
0
D
I

0|1

g
o
-
o
Q
o
D
0
D
D
0
D

- Important implications for implementation efficiency
— can be tested in linear (or even constant) time

BDD variable ordering

BDD size can be very sensitive to the variable ordering
— example: f = (X;AY;) V (X,AY,) V (X3AY3)

X7 <Y1 <Xz<Y2< X3<VY3 X <X<X3<Y1< Y2<Y3

2n+2 nodes 2"+t1 nodes

17

BDDs - Some notation

Boolean functions
— for a BDD A, the function represented by A is denoted f,

Restriction
— for a BDD A, Boolean variable x in A, and Boolean value b

— Al,_, denotes the BDD representing the function f, restricted
to the case where x=b

— extends easily to multiple variables

- Alxl=b1,x2:b2 = (Alx12p1) I x2-b2

Shannon’s Law: recursive expansion of BDDs
— let x be the top-most Boolean variable in a BDD A

Ix=1

18

Manipulating BDDs

Need efficient ways to manipulate Boolean functions
— while they are represented as BDDs
— i.e. algorithms which are applied directly to the BDDs

Basic operations on Boolean functions:
— negation (—), conjunction (A), disjunction (V), etc.
— can all be applied directly to BDDs

Key operation on BDDs: Apply(op, A, B)

— where A and B are BDDs and op is a binary operator over
Boolean values, e.g. A, Vv, etc.

— Apply(op, A, B) returns the BDD representing function f, op f;
— often just use infix notation, e.g. Apply(A, A, B) = A A B

19

The Apply operation

- Apply(op, A, B): recursive depth-first traversal of A and B
— let x be the top—-most variable in the two BDDs
— reusing Shannon’s Law: we have the following as a basis:

— fyopfy=—-xA (fNX:0 op fB|x=O) V X A (fA|X:] op fBIx:1)

20

Apply - Example

Example: Apply(v, A, B)

Argument BDDs, with node labels: Recursive calls to Apply:
A v B
AUB]
A,.B,
Ag,B; A6’BS

AB, A.B, A,B,

A.B; As,B,

21

Apply - Example

Example: Apply(v, A, B)
— recursive call structure implicitly defines resulting BDD

A] !B1
A,,B,

i Ag,By Ag,Bs

A,B, A.B, A,,B,

A4.’B3 As,By4

22

Apply - Example

Example: Apply(v, A, B)
— but the resulting BDD needs to be reduced

— in fact, we can do this as part of the recursive Apply
operation, implementing reduction rules bottom-up

A1,B,
A,,B,

Ae,B, Ag,Bs

A5B, AcB, A,B,

AN

A4.’B3 As,B,4

23

More on BDD operations

Complexity for the Apply operator
— C = Apply(op, A, B)
— |C| = size of BDD C = number of nodes = O(|A|-|B]|)
— since at most one recursive call for each pair of nodes
— for a good implementation, time complexity is also |A|-|B|

Quantification (3, V) over Boolean variables
— can be computed in terms of restriction
— for Boolean variable x and BDD A: Ix.A = A|,_, V Al,_;
— extends easily to multi-variable quantification
— 3%, %5,..,X)A = 3X,.(3X,.(...(I%,.A)))

24

Implementation of BDDs

Store all BDDs currently in use as one multi-rooted BDD
— no duplicate BDD subtrees, even across multiple BDDs
— every time a new node is created, check for existence first
— sometimes called the “unique table”
— implemented as set of hash tables, one per Boolean variable
— need: node referencing/dereferencing, garbage collection
Efficiency implications
— very significant memory savings
— trivial checking of BDD equality (pointer comparison)
Caching of BDD operation results for reuse
— store result of every BDD operation (memory dependent)
— applied at every step of recursive BDD operations
— relies on fast check for BDD equality

25

BDDs to represent sets of states

- Consider a state space S and some subsetS’ < S

- We can represent S’ by its characteristic function xs
— Xs : S —{0,1} where xo(s) =1 ifandonlyifs € S’

- Assume we have an encoding of S into n Boolean variables

— this is always possible for a finite set S
— e.g. enumerate the elements of S and use a binary encoding
— (note: there may be more efficient encodings though)

- S0 X¢ €can be seen as a function X< (x,,...x,) : {0,1}" — {0,1}
— which is simply a Boolean function
— which can therefore be represented as a BDD

26

BDD and sets of states - Example

- State space S: {0, 1, 2, 3}

- Encoding of S: {000, 001, 010, 011, 100, 101,110, 111}

- SubsetS’ < S: {011,101, 111}

X
X

N
X

w

Truth table:

— O =| O] =|O|O| O]

— Ol = O] —=|O|—]| O

27

Set operations with BDDs

- Set operations can be expressed in terms of Boolean
operations on the characteristic functions of sets

— for sets A and B, represented by BDDs A and B

- Set union: A U B, in BDDs: AV B

- XAug(S) — XA(S) \ XB(S)

- Set intersection: AN B, in BDDs: A A B

- XAmB(S) — XA(S) A XB(S)

- Set complement: S \ A, in BDDs: —A

- XS\A(S) = _'XA(S)

28

BDDs and transition relations

- Transition relations can also be represented by their
characteristic function, but over pairs of states

— relation: RS xS
— characteristic function: x; : S xS - {0,1}

For an encoding of state space S into n Boolean variables
— we have Boolean function fg(x,,...,X,,Y1,---,Y,) : 10,1} — {0,1}
— which can be represented by a BDD

Row and column variables

— for efficiency reasons, we interleave the row variables x,..,X,
and column variables y,,...,y,

— i.e. we use function fy(x,,y,...,X,,Y,) : 10,1}" — {0,1}

29

BDDs and transition relations

Example:
— 4 states: 0, 1, 2, 3
— Encoding: 0—00, 1~01, 2~10, 3—~11

Transition | X, X5 Y; Yo | XiY1X%5Y2
(0,1) 0 0 0 1 0001
(0,2) 0 0 1 0 0100
(1,0) 0 1 0 0 0010
(2,3) 1 0 1 1 1101
(3,1) 1 1] 0 | 1 1011
(3,2) 1 1 1 0 1110

Forward image

Fundamental operation for model checking

— for set of states S, transition relation R € S x S,
subset T < S, Image(T) is the set of states that
can be reached from T in one step @

Express in terms of Boolean functions over states
- T:5-1{0,1}, R:SxS—-1{0,1}, Image_T:S — {0,1}
— Image_T(s’) = ds . T(s) A R(s,s’)
For an encoding of state space S into n Boolean variables
— express in terms of Boolean functions over Boolean variables
— row variables x,,..,x,, and column variables y,,...,y,
— Image_T(y,,...,y,) = 3(X;,-,X,) - T(Xq,..,X,) A R(Xq,-4, X0y Yi5--45Y))

- Translate directly into BDDs

— Image_T = 3(x;,..,x,).T AR

31

Reachability

Basic breadth-first search algorithm to compute the set of
reachable states

— inputs: initial state s, .., transition relation R (in fact, Image)

— output: set T of all states reachable from s, . in R
done = false
T ={s;}
while (done == false)
T =T u Ilmage(T)
if (T’ ==T) done = true
T=T
endwhile
return T

32

Reachability with BDDs

- Translate directly into BDD operations:
— inputs: BDD init for set {s, .}, BDD R for transition relation
— output: BDD T representing all reachable states

done = false

T = init : Forward image
Whlle (done / false) / ..

T =Tv 3(x,-,%,).- T AR
if (T" ==T) done = true
T=T

endwhile

return T

--

Easy thanks to
canonicity of BDDs

33

Overview

- Implementation of probabilistic model checking
— overview, key operations, symbolic vs. explicit

- Binary decision diagrams (BDDs)
— introduction, operations, sets, transition relations, ...

- Multi-terminal BDDs (MTBDDs)
— introduction, operations, vectors, matrices, performance, ...

34

Multi-terminal binary decision diagrams

Multi-terminal BDDs (MTBDDs), sometimes called ADDs
— extension of BDDs to represent real-valued functions
— like BDDs, an MTBDD M is associated with n Boolean variables
— MTBDD M represents a function fy,(x;,...,x,) : {0,1}" = R

X4 X, X3 fu

For clarity, we omit O |0} 010
the zero terminal 0 0 1 3
node and any 0 1 0 9
incoming edges 0]] 0
e.g. 1 0| 0| 4

1 0 1 4

1 1 0 9

1 1 1 0

35

Operations on MTBDDs

- The BDD operation Apply extends easily to MTBDDs

- For MTBDDs A, B and binary operation op over the reals:

— Apply(op, A, B) returns the MTBDD representing f, op f;
— examples for op: +, -, X, min, max, ...
— often just use infix notation, e.g. Apply(+, A, B) = A + B

- BDDs are just an instance of MTBDDs
— in this case, can use Boolean ops too, e.g. Apply(v, A, B)

- The recursive algorithm for implementing Apply on BDDs
— can be reused for Apply on MTBDDs

36

Some other MTBDD operations

- Threshold(A, ~, c)

— for MTBDD A, relational operator op and bound c € R
— converts MTBDD to BDD based on threshold ~c
— i.e. builds BDD representing function f, ~ c

— e.g. computing the underlying transition relation from the
probability matrix of a DTMC: R = Threshold(P, >, 0)

- Abstract(op, {X;,...,X,}, A)

— for MTBDD A, variables {x,,...,x,} and commutative/associative
binary operator over reals op

— analogue of existential/universal quantification for BDDs

— e.g. Abstract(+, {x}, A) constructs the MTBDD representing the
function f,,_o + fa;

— e.g. for BDD A: 3(xy,..,X,).A = Abstract(Vv, {x,,...,x,}, A)

37

MTBDDs to represent vectors

In the same way that BDDs can represent sets of states...
— MTBDDs can represent real-valued vectors over states S
— e.g. a vector of probabilities Prob(s, @) for each state s € S
— assume we have an encoding of S into n Boolean variables
— then vector v : S — R is a function f (x,,...,x,) : {0,1}" - R

X, | X, | X3 i f,
5 5 5 5 5 MTBDD v
0 0 1 1 3
Vector v 0 1 0 2 9
[0,3,9,0,4,4,9,0] R AL L N
1 0 0 4 4
1 0 1 5 4
1 1 0 6 9
1 1 1 7 0

38

MTBDDs to represent matrices

MTBDDs can be used to represent real-valued matrices
indexed over a set of states S

— e.g. the transition probability/rate matrix of a DTMC/CTMC

For an encoding of state space S into n Boolean variables
— avectorv:S — Ris a function f(x,,...,x,) : {0,1}" = R
— a matrix M maps pairs of states to realsi.e.M:S x S—R
— this becomes: f,(xq,...,X,,Y1,---,Y,) 110,117 = R

Row and column variables

— for efficiency reasons, we interleave the row variables x,..,X,
and column variables y,,...,y,

— i.e. we use function f,(x;,y;,..-,X,,Y,) - {0,1}" — R

39

Matrices and MTBDDs - Example

0 8 05
. 2005 MTBDD M

Matrix M 000 5

00 2 0
Entry in M X, X, Y, Y> | X 7%, | fu
0,1) =8 0 0 0 1 0001 8
(1,0) =2 0 1 0 0 0010 2
0,3) =5 0 0 1 1 0101 5
(1,3) =5 0 1 1 1 0111 5
(2,3) =5 1 0 1 1 1101 5
(3,2) =2 1 1 1 0 1110 2

40

Matrices and MTBDDs - Recursion

Descending one level in the MTBDD (i.e. setting x,=b)
— splits the matrix represented by the MTBDD in half
— row variables (x;) give horizontal split
— column variables (y,) give vertical split

41

Matrices and MTBDDs - Recursion

MTBDD M

0 8]0 5

| 2 0|0 5

Matrix M 0 0olo s

0 02 0
Entry in M X, X, Y, Y> | X 7%, | fu
0,1) = 8 0 0 0 1 0001 8
(1,0) = 2 0 1 0 0 0010 2
0,3) =5 0 0 1 1 0101 5
(1,3) =5 0 1 1 1 0111 5
(2,3) =5 1 0 1 1 1101 5
(3,2) =2 1 1 1 0 1110 2

42

Matrices and MTBDDs - Regularity

_ _ Repeated
0_8 AO)’/Smeatrices

| (2 000 5 MTBDD M
Matrix M 00 0 5 /

0 0(2 0)
Entry in M X, X, Y, Y> | X 7%, | fu
0,1) = 8 0 0 0 1 0001 8
(1,0) =2 0 1 0 0 0010 2
0,3) =5 0 0 1 1 0101 5
(1,3) =5 0 1 1 1 0111 5
(2,3) =5 1 0 1 1 1101 5
(3,2) =2 1 1 1 0 1110 2
Shared
MTBDD node

43

Matrices and MTBDDs - Regularity

|dentical
0 & 0 5 >‘/ adjacent
Matrix M 2 O\NO 5 submatrices MTBDD M
O 0 05
0 0 2 0]
Entry in M X, X, Y, Y, x]y]xzyzlr fu
(0,1) = 8 0 0 0 1 0001 8
(1,0) = 2 0 1 0| o oolov| 2
(0,3) =5 0 0 1 1 0101 5
(1,3) =5 0 1 1 1 0111 5
2,3) =5 1 0 1 1 1101 5
(3,2) =2 1 1 1 0 1110 2
MTBDD node
removed

44

Matrices and MTBDDs - Sparseness

0 8 0 5 Blocks of
| 5 0 2)’/ Zeros
Matrix M < 0 o\§ s
0 0/2 0
Entry in M X, X, Y, Y> | X 7%, | fu
0,1) = 8 0 0 0 1 0001 8
(1,0) = 2 0 1 0 0 0010 2
0,3) =5 0 0 1 1 0101 5
(1,3) =5 0 1 1 1 0111 5
(2,3) =5 1 0 1 1 1101 5
(3,2) =2 1 1 1 0 1110 2

MTBDD M

Edge goes
straight to
zero node

45

MTBDD matrix/vector operations

Pointwise addition/multiplication and scalar multiplication

— can be implemented with the Apply operator
— Matrices: A + B, MTBDDs: Apply(+, A, B)

Matrix-matrix multiplication A-B
— can be expressed recursively based on 4-way matrix splits

A A, _ B, B, _ G, G A, =B,-C, +B, - C;, etc.
A, A, B, B,| |C C,

— which forms the basis of an MTBDD implementation
— various optimisations are possible

Matrix-matrix multiplication A-v is done in similar fashion

46

Sparse matrices

Explicit data structure for matrices with many zero entries
— assume a matrix P of size n X n with nnz non-zero elements
— store three arrays: val and col (of size nnz) and row (of size n)
— for each matrix entry (r,c)=v, c and v are stored in col/val
— entries are grouped by row, with pointers stored in row
— also possible to group by column

val 0.5(05| 1 10.3[0.7| 1

. 0.5 - 0.5]
col 1 3 2 0 3 0 : .

row 0 2 3 5 6

47

Sparse matrices

- Advantages
— compact storage (proportional to number of non-zero entries)
— fast access to matrix entries
— especially if usually need an entire row at once
— (which is the case for e.g. matrix-vector multiplication)

- Disadvantage
— less effficient to manipulate (i.e. add/delete matrix entries)

- Storage requirements
— for a matrix of size n X n with nnz non-zero elements
— assume reals are 8 byte doubles, indices are 4 byte integers
— we need 8-nnz+4-nnz+4-n = 12-nnz+4-n bytes

48

Sparse matrices vs. MTBDDs

- Storage requirements
— MTBDDs: each node is 20 bytes
— sparse matrices: 12-nnz+4-n bytes (n states, nnz transitions)

- Case study: Kanban manufacturing system, N jobs
— store transition rate matrix R of the corresponding CTMCs

N States Transitions MTBDD | Sparse matrix
(n) (nnz) (KB) (KB)

3 58,400 446,400 48 5,459

4 454,475 3,979,850 96 48,414

5 2,546,432 24,460,016 123 296,588

6 11,261,376 115,708,992 154 1,399,955
7 41,644,800 450,455,040 186 5,441,445
8 133,865,325 1,507,898,700 287 13,193,599

49

Implementation in PRISM

PRISM is a symbolic probabilistic model checker
— the key underlying data structures are MTBDDs (and BDDs)

In fact, has multiple numerical computation engines

— MTBDDs: storage/analysis of very large models (given
structure/regularity), numerical computation can blow up

— Sparse matrices: fastest solution for smaller models (<10°
states), prohibitive memory consumption for larger models

— Hybrid: combine MTBDD storage with explicit storage,
ten-fold increase in analysable model size (~107 states)

50

Summing up...

Implementation of probabilistic model checking
— graph-based algorithms, e.g. reachability, precomputation
— manipulation of sets of states, transition relations
— iterative numerical computation
— key operation: matrix-vector multiplication
Binary decision diagrams (BDDs)
— representation for Boolean functions
— efficient storage/manipulation of sets, transition relations
Multi-terminal BDDs (MTBDDs)
— extension of BDDs to real-valued functions

— efficient storage/manipulation of real-valued vectors,
matrices (assuming structure and reqularity)

— can be much more compact than (explicit) sparse matrices

51

	Probabilistic Model Checking
	Overview
	Implementation overview
	Model construction
	Model checking
	Underlying operations
	State-space explosion
	Symbolic data structures
	Overview
	Representations of Boolean formulas
	Binary decision trees
	Binary decision diagrams
	BDD reduction rule 1
	BDD reduction rule 2
	BDD reduction rule 3
	Canonicity
	BDD variable ordering
	BDDs - Some notation
	Manipulating BDDs
	The Apply operation
	Apply - Example
	Apply - Example
	Apply - Example
	More on BDD operations
	Implementation of BDDs
	BDDs to represent sets of states
	BDD and sets of states - Example
	Set operations with BDDs
	BDDs and transition relations
	BDDs and transition relations
	Forward image
	Reachability
	Reachability with BDDs
	Overview
	Multi-terminal binary decision diagrams
	Operations on MTBDDs
	Some other MTBDD operations
	MTBDDs to represent vectors
	MTBDDs to represent matrices
	Matrices and MTBDDs - Example
	Matrices and MTBDDs - Recursion
	Matrices and MTBDDs - Recursion
	Matrices and MTBDDs - Regularity
	Matrices and MTBDDs - Regularity
	Matrices and MTBDDs - Sparseness
	MTBDD matrix/vector operations
	Sparse matrices
	Sparse matrices
	Sparse matrices vs. MTBDDs
	Implementation in PRISM
	Summing up…

