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Overview

• Tool support for probabilistic model checking
− motivation, existing tools

• The PRISM model checker
− functionality, features
− resources
− modelling language
− property specification

• PRISM tool demo
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Motivation

• Complexity of PCTL model checking
− generally polynomial in model size (number of states)

• State space explosion problem
− models for realistic case studies are typically huge

• Clearly tool support is required

• Benefits:
− fully automated process
− high-level languages/formalisms for building models
− visualisation of quantitative results
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Probabilistic model checkers

• PRISM (this talk)
− DTMCs, MDPs, CTMCs + rewards

• ETMCC/MRMC
− DTMCs, CTMCs + reward extensions

• MDP tools
− LiQuor: LTL verification for MDPs (Probmela language)
− RAPTURE: prototype for abstraction/refinement of MDPs

• Simulation-based probabilistic model checking:
− APMC, Ymer (both based on PRISM language), VESTA

• CSL model checking for CTMCs:
− APNN-Toolbox, SMART

• Multiple formalism/tool solutions:
− CADP, Möbius
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The PRISM tool

• PRISM: Probabilistic symbolic model checker
− developed at the Birmingham/Oxford University, since 1999
− free, open source (GPL)
− versions for Linux, Unix, Mac OS X, Windows, 64-bit OSs

• Modelling of:
− DTMCs, MDPs, CTMCs  +  costs/rewards

• Verification of:
− PCTL, CSL  +  extensions  +  costs/rewards

• Features:
− high-level modelling language, wide range of model analysis 

methods, graphical user interface, efficient implementation
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Getting PRISM + Other Resources

• PRISM website: www.prismmodelchecker.org
− tool download: binaries, source code (GPL)
− on-line example repository (40+ case studies)
− on-line documentation:

• PRISM manual
• PRISM tutorial

− support: help forum, bug tracking, feature requests 
• hosted on Sourceforge

− related publications, talks, tutorials, links
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PRISM – Model building

• First step of verification = construct full probabilistic model 
(not always necessary in non-probabilistic model checking)

High-level
model

DTMC, CTMC,
MDP

(PRISM
language)

(matrix,
MTBDD, ...)
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PRISM – Imports and exports

• Support for connections to other formats/tools:

Matlab

MRMC

Text

Dot

Exports:

Imports:

PEPA

High-level
model

DTMC, CTMC,
MDP

(PRISM
language)

(matrix,
MTBDD, ...)

Text

In progress:
probabilistic CSP,
pi calculus, SBML,
Probmela, ...
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PRISM modelling language

• Simple, state-based language for DTMCs/MDPs/CTMCs
− based on Reactive Modules [AH99]

• Modules (system components, composed in parallel)
• Variables (finite-valued, local or global)
• Guarded commands (labelled with probabilities/rates)
• Synchronisation (CSP-style) + process-algebraic operators 

(parallel composition, action hiding/renaming)

[send] (s=2) -> ploss : (s'=3)&(lost'=lost+1) + (1-ploss) : (s'=4);

action guard probability update probability update
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PRISM language example

// Herman's self-stabilisation algorithm [Her90]

dtmc // Algorithm is fully synchronous

module process1 // First of N=5 symmetric processes

x1 : [0..1];  // One bit per process; xi=x(i-1) means proc i has a token
[step] (x1=x5) -> 0.5 : (x1'=0) + 0.5 : (x1'=1);
[step] !x1=x5 -> (x1'=x5);

endmodule

// Add further processes through renaming
module process2 = process1 [ x1=x2, x5=x1 ] endmodule
module process3 = process1 [ x1=x3, x5=x2 ] endmodule
module process4 = process1 [ x1=x4, x5=x3 ] endmodule
module process5 = process1 [ x1=x5, x5=x4 ] endmodule

// Can start in any possible configuration
init true endinit
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PRISM language example 2 (fragment)

// Embedded control system
ctmc

const int MIN_SENSORS = 2;
const double lambda_p = 1/(365*24*60*60); // MTTF = 1 year
...

module sensors
s : [0..3] init 3; // Number of sensors working
[] s>1 -> s*lambda_s : (s'=s-1); // Failure of a single sensor

endmodule

module proci // (takes data from sensors and passes onto main processor)
i : [0..2] init 2; // 2=ok, 1=transient fault, 0=failed
[] i>0 & s>=MIN_SENSORS -> lambda_p : (i'=0); // Failure of processor
[] i=2 & s>=MIN_SENSORS -> delta_f : (i'=1); // Transient fault
[reboot] i=1 & s>=MIN_SENSORS -> delta_r : (i'=2); // Transient reboot

endmodule
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Costs and rewards

• Real-valued quantities assigned to model states/transitions
− many possible uses, e.g. time, power consumption, current 

queue size, number of messages lost, ...

• No distinction between costs (“bad”) and rewards (“good”)
− PRISM terminology is rewards

• The meaning of these rewards varies depending on:
− the type of property used to analyse the model:

instantaneous or cumulative
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Rewards in the PRISM language

(instantaneous, state rewards) (cumulative, state rewards)

(cumulative, state rewards)
(up = number of operational 

components)

(cumulative, transition rewards)
(q = queue size, q_max = max 

queue size)

rewards “total_queue_size”
true : queue1+queue2;

endrewards

rewards “time”
true : 1;

endrewards

rewards “power”
sleep=true : 0.25;
sleep=false : 1.2 * up;

endrewards

rewards "dropped"
[receive] q=q_max : 1;

endrewards
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PRISM property specifications

• Based on (probabilistic extensions of) temporal logic
− incorporates PCTL for DTMCs/MDPs,  CSL for CTMCs
− also includes: quantitative extensions, costs/rewards

• Simple PCTL/CSL example:
− P<0.001 [ true U shutdown ] - “the system eventually shuts 

down with probability at most 0.001”

• Usually focus on quantitative properties:
− P=? [ true U shutdown ] - “what is the probability that the 

system eventually shuts down?”
− nested probabilistic operators must be probability-bounded
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Basic types of property specifications

• (Unbounded) reachability:
− P=? [ true U shutdown ] - “probability of eventual shutdown”

• Transient/time-bounded properties:
− P=? [ true U[t,t] (deliv_rate < min) ] - “probability that the 

packet delivery rate has dropped below minimum at time t”
− P=? [ !repair U≤200 done ] - “probability of the process 

completing within 200 hours and without requiring repairs”

• Steady-state properties:
− S=? [ num_sensors ≥ min ] - “long-run probability that an 

adequate number of sensors are operational”
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Cost- and reward-based properties

• Two different interpretations of model rewards
− instantaneous and cumulative properties
− reason about expected values of rewards

• Instantaneous reward properties
− state rewards only
− state-based measures: “queue size”, “number of operational 

channels”, “concentration of reactant X”, ...

• R=? [ I=t ]
− e.g. “expected size of the message queue at time t?”

• R=? [ S ]
− e.g. “long-run expected size of the queue?”
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Cost- and reward-based properties

• Cumulative reward properties
− both state and transition rewards
− CTMC state rewards interpreted as reward rates
− e.g. “time”, “power consumption”, “number of messages lost”

• R=? [ F end ]
− e.g. “expected time taken for the protocol to terminate?”

• R=? [ C≤2 ]
− e.g. “expected power consumption during the first 2 hours 

that the system is in operation?”
− e.g. “expected number of messages lost during...”
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Best/worst-case scenarios

• Combining “quantitative” and “exhaustive” aspects

• Computing values for a range of states
− R=? [ F end {“init”}{max} ] - “maximum expected run-time over 

all possible initial configurations”
− P=? [ true U≤t elected {tokens≤k}{min} ] - “minimum

probability of the leader election algorithm completing within 
t steps from any state where there are at most k tokens”

• All possible resolutions of nondeterminism (MDPs)
− Pmin=? [ !end2 U end1 ] - “minimum probability of process 1 

finishing before process 2, for any scheduling of processes?”
− Rmax=? [ F message_delivered ] - “maximum expected 

number of bits revealed under any eavesdropping strategy?”
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Identifying trends and anomalies

• Counterexamples (error traces)
− widely used in non-probabilistic model checking
− situation much less clear in probabilistic model checking
− counterexample for P<p [true U error] ? and for P=? [ ... ] ?
− work in progress...

• Experiments: ranges of model/property parameters
− e.g. P=? [ true U≤T error ] for N=1..5, T=1..100

where N is some model parameter and T a time bound
− identify patterns, trends, anomalies in quantitative results
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Optimum 
probability of 
leader election by 
time T for various 
coin biases

Probability that 
10% of gate 
outputs are 
erroneous for 
varying 
gate failure rates 
and numbers of 
stages

Probability that 
parties gain unfair 
advantage for 
varying numbers 
of secret packets 
sent
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Maximum 
expected time for 
leader election for 
various coin 
biases

Expected reactant 
concentrations 
over the first 12 
hours

Worst-case 
expected number 
of steps to 
stabilise for initial 
configurations 
with K tokens 
amongst N 
processes
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PRISM functionality

• Graphical user interface
− model/property editor
− discrete-event simulator - model traces for debugging, etc.
− verification of PCTL, CSL + costs/rewards, etc.
− approximate verification using simulation + sampling
− easy automation of verification experiments
− graphical visualisation of results

• Command-line version
− same underlying verification engines
− useful for scripting, batch jobs
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