
Probabilistic Model CheckingProbabilistic Model Checking

Part 9 Part 9 -- PRISMPRISM

Marta Marta KwiatkowskaKwiatkowska
GethinGethin NormanNorman

Dave ParkerDave Parker

University of University of OxfordOxford

2

Overview

• Tool support for probabilistic model checking
− motivation, existing tools

• The PRISM model checker
− functionality, features
− resources
− modelling language
− property specification

• PRISM tool demo

3

Motivation

• Complexity of PCTL model checking
− generally polynomial in model size (number of states)

• State space explosion problem
− models for realistic case studies are typically huge

• Clearly tool support is required

• Benefits:
− fully automated process
− high-level languages/formalisms for building models
− visualisation of quantitative results

4

Probabilistic model checkers

• PRISM (this talk)
− DTMCs, MDPs, CTMCs + rewards

• ETMCC/MRMC
− DTMCs, CTMCs + reward extensions

• MDP tools
− LiQuor: LTL verification for MDPs (Probmela language)
− RAPTURE: prototype for abstraction/refinement of MDPs

• Simulation-based probabilistic model checking:
− APMC, Ymer (both based on PRISM language), VESTA

• CSL model checking for CTMCs:
− APNN-Toolbox, SMART

• Multiple formalism/tool solutions:
− CADP, Möbius

5

Overview

• Tool support for probabilistic model checking
− motivation, existing tools

• The PRISM model checker
− functionality, features
− resources
− modelling language
− property specification

• PRISM tool demo

6

The PRISM tool

• PRISM: Probabilistic symbolic model checker
− developed at the Birmingham/Oxford University, since 1999
− free, open source (GPL)
− versions for Linux, Unix, Mac OS X, Windows, 64-bit OSs

• Modelling of:
− DTMCs, MDPs, CTMCs + costs/rewards

• Verification of:
− PCTL, CSL + extensions + costs/rewards

• Features:
− high-level modelling language, wide range of model analysis

methods, graphical user interface, efficient implementation

7

Getting PRISM + Other Resources

• PRISM website: www.prismmodelchecker.org
− tool download: binaries, source code (GPL)
− on-line example repository (40+ case studies)
− on-line documentation:

• PRISM manual
• PRISM tutorial

− support: help forum, bug tracking, feature requests
• hosted on Sourceforge

− related publications, talks, tutorials, links

8

PRISM – Model building

• First step of verification = construct full probabilistic model
(not always necessary in non-probabilistic model checking)

High-level
model

DTMC, CTMC,
MDP

(PRISM
language)

(matrix,
MTBDD, ...)

9

PRISM – Imports and exports

• Support for connections to other formats/tools:

Matlab

MRMC

Text

Dot

Exports:

Imports:

PEPA

High-level
model

DTMC, CTMC,
MDP

(PRISM
language)

(matrix,
MTBDD, ...)

Text

In progress:
probabilistic CSP,
pi calculus, SBML,
Probmela, ...

10

PRISM modelling language

• Simple, state-based language for DTMCs/MDPs/CTMCs
− based on Reactive Modules [AH99]

• Modules (system components, composed in parallel)
• Variables (finite-valued, local or global)
• Guarded commands (labelled with probabilities/rates)
• Synchronisation (CSP-style) + process-algebraic operators

(parallel composition, action hiding/renaming)

[send] (s=2) -> ploss : (s'=3)&(lost'=lost+1) + (1-ploss) : (s'=4);

action guard probability update probability update

11

PRISM language example

// Herman's self-stabilisation algorithm [Her90]

dtmc // Algorithm is fully synchronous

module process1 // First of N=5 symmetric processes

x1 : [0..1]; // One bit per process; xi=x(i-1) means proc i has a token
[step] (x1=x5) -> 0.5 : (x1'=0) + 0.5 : (x1'=1);
[step] !x1=x5 -> (x1'=x5);

endmodule

// Add further processes through renaming
module process2 = process1 [x1=x2, x5=x1] endmodule
module process3 = process1 [x1=x3, x5=x2] endmodule
module process4 = process1 [x1=x4, x5=x3] endmodule
module process5 = process1 [x1=x5, x5=x4] endmodule

// Can start in any possible configuration
init true endinit

12

PRISM language example 2 (fragment)

// Embedded control system
ctmc

const int MIN_SENSORS = 2;
const double lambda_p = 1/(365*24*60*60); // MTTF = 1 year
...

module sensors
s : [0..3] init 3; // Number of sensors working
[] s>1 -> s*lambda_s : (s'=s-1); // Failure of a single sensor

endmodule

module proci // (takes data from sensors and passes onto main processor)
i : [0..2] init 2; // 2=ok, 1=transient fault, 0=failed
[] i>0 & s>=MIN_SENSORS -> lambda_p : (i'=0); // Failure of processor
[] i=2 & s>=MIN_SENSORS -> delta_f : (i'=1); // Transient fault
[reboot] i=1 & s>=MIN_SENSORS -> delta_r : (i'=2); // Transient reboot

endmodule

13

Costs and rewards

• Real-valued quantities assigned to model states/transitions
− many possible uses, e.g. time, power consumption, current

queue size, number of messages lost, ...

• No distinction between costs (“bad”) and rewards (“good”)
− PRISM terminology is rewards

• The meaning of these rewards varies depending on:
− the type of property used to analyse the model:

instantaneous or cumulative

14

Rewards in the PRISM language

(instantaneous, state rewards) (cumulative, state rewards)

(cumulative, state rewards)
(up = number of operational

components)

(cumulative, transition rewards)
(q = queue size, q_max = max

queue size)

rewards “total_queue_size”
true : queue1+queue2;

endrewards

rewards “time”
true : 1;

endrewards

rewards “power”
sleep=true : 0.25;
sleep=false : 1.2 * up;

endrewards

rewards "dropped"
[receive] q=q_max : 1;

endrewards

15

PRISM property specifications

• Based on (probabilistic extensions of) temporal logic
− incorporates PCTL for DTMCs/MDPs, CSL for CTMCs
− also includes: quantitative extensions, costs/rewards

• Simple PCTL/CSL example:
− P<0.001 [true U shutdown] - “the system eventually shuts

down with probability at most 0.001”

• Usually focus on quantitative properties:
− P=? [true U shutdown] - “what is the probability that the

system eventually shuts down?”
− nested probabilistic operators must be probability-bounded

16

Basic types of property specifications

• (Unbounded) reachability:
− P=? [true U shutdown] - “probability of eventual shutdown”

• Transient/time-bounded properties:
− P=? [true U[t,t] (deliv_rate < min)] - “probability that the

packet delivery rate has dropped below minimum at time t”
− P=? [!repair U≤200 done] - “probability of the process

completing within 200 hours and without requiring repairs”

• Steady-state properties:
− S=? [num_sensors ≥ min] - “long-run probability that an

adequate number of sensors are operational”

17

Cost- and reward-based properties

• Two different interpretations of model rewards
− instantaneous and cumulative properties
− reason about expected values of rewards

• Instantaneous reward properties
− state rewards only
− state-based measures: “queue size”, “number of operational

channels”, “concentration of reactant X”, ...

• R=? [I=t]
− e.g. “expected size of the message queue at time t?”

• R=? [S]
− e.g. “long-run expected size of the queue?”

18

Cost- and reward-based properties

• Cumulative reward properties
− both state and transition rewards
− CTMC state rewards interpreted as reward rates
− e.g. “time”, “power consumption”, “number of messages lost”

• R=? [F end]
− e.g. “expected time taken for the protocol to terminate?”

• R=? [C≤2]
− e.g. “expected power consumption during the first 2 hours

that the system is in operation?”
− e.g. “expected number of messages lost during...”

19

Best/worst-case scenarios

• Combining “quantitative” and “exhaustive” aspects

• Computing values for a range of states
− R=? [F end {“init”}{max}] - “maximum expected run-time over

all possible initial configurations”
− P=? [true U≤t elected {tokens≤k}{min}] - “minimum

probability of the leader election algorithm completing within
t steps from any state where there are at most k tokens”

• All possible resolutions of nondeterminism (MDPs)
− Pmin=? [!end2 U end1] - “minimum probability of process 1

finishing before process 2, for any scheduling of processes?”
− Rmax=? [F message_delivered] - “maximum expected

number of bits revealed under any eavesdropping strategy?”

20

Identifying trends and anomalies

• Counterexamples (error traces)
− widely used in non-probabilistic model checking
− situation much less clear in probabilistic model checking
− counterexample for P<p [true U error] ? and for P=? [...] ?
− work in progress...

• Experiments: ranges of model/property parameters
− e.g. P=? [true U≤T error] for N=1..5, T=1..100

where N is some model parameter and T a time bound
− identify patterns, trends, anomalies in quantitative results

21

Optimum
probability of
leader election by
time T for various
coin biases

Probability that
10% of gate
outputs are
erroneous for
varying
gate failure rates
and numbers of
stages

Probability that
parties gain unfair
advantage for
varying numbers
of secret packets
sent

22

Maximum
expected time for
leader election for
various coin
biases

Expected reactant
concentrations
over the first 12
hours

Worst-case
expected number
of steps to
stabilise for initial
configurations
with K tokens
amongst N
processes

23

PRISM functionality

• Graphical user interface
− model/property editor
− discrete-event simulator - model traces for debugging, etc.
− verification of PCTL, CSL + costs/rewards, etc.
− approximate verification using simulation + sampling
− easy automation of verification experiments
− graphical visualisation of results

• Command-line version
− same underlying verification engines
− useful for scripting, batch jobs

24

Overview

• Tool support for probabilistic model checking
− motivation, existing tools

• The PRISM model checker
− functionality, features
− resources
− modelling language
− property specification

• PRISM tool demo

	Probabilistic Model Checking
	Overview
	Motivation
	Probabilistic model checkers
	Overview
	The PRISM tool
	Getting PRISM + Other Resources
	PRISM – Model building
	PRISM – Imports and exports
	PRISM modelling language
	PRISM language example
	PRISM language example 2 (fragment)
	Costs and rewards
	Rewards in the PRISM language
	PRISM property specifications
	Basic types of property specifications
	Cost- and reward-based properties
	Cost- and reward-based properties
	Best/worst-case scenarios
	Identifying trends and anomalies
	PRISM functionality
	Overview

