Probabilistic Model Checking

Marta Kwiatkowska
Gethin Norman
Dave Parker

University of Oxford

Part 7 – Probabilistic Timed Automata
Overview

- **Motivation**
- **Time, clocks and zones**
- **Probabilistic timed automata (PTAs)**
 - definition, examples, semantics, time divergence
- **Properties of PTAs: The logic PTCTL**
 - syntax, semantics, examples
- **PTCTL model checking**
 - the region graph
 - forwards and backwards symbolic approaches
 - digital clocks
- **Costs and rewards**
Real-world protocol examples

- Protocols with probability, real-time and nondeterminism

- Randomised back-off schemes
 - Ethernet, WiFi (802.11), Zigbee (802.15.4)

- Random choice of waiting time
 - Bluetooth, device discovery phase

- Random choice of a timing delay
 - Root contention in IEEE 1394 FireWire

- Random choice over a set of possible addresses
 - IPv4 dynamic configuration (link-local addressing)

- Random choice of a destination
 - Crowds anonymity, gossip-based routing
Time, clocks and clock valuations

- **Dense time domain:** non-negative reals \(\mathbb{R}_{\geq 0} \)

- **Finite set of clocks** \(x \in X \)
 - take values from time domain \(\mathbb{R}_{\geq 0} \), abbreviate to \(\mathbb{R} \)
 - increase at the same rate as real time

- **Clock valuation** \(v \in \mathbb{R}^X \)
 - \(v(x) \) value of clock \(x \)
 - \(v+t \) is time increment for \(v \) with \(t \): \((v+t)(x) = v(x)+t \) \(\forall x \in X \)
 - \(v[Y:=0] \) clock reset of all clocks in \(Y \subseteq X \)
 - \(v[Y:=0](x)=0 \) if \(x \in Y \)
 - \(v[Y:=0](x)=v(x) \) otherwise
Zones (clock constraints)

• Zones (clock constraints) over clocks X, denoted $\text{zones}(X)$:

$$\zeta ::= x \leq d \mid c \leq x \mid x + c \leq y + d \mid \neg \zeta \mid \zeta \land \zeta$$

where $x,y \in X$, $c,d \in \mathbb{N}$

– derived logical connectives: $\zeta_1 \lor \zeta_2 = \neg (\neg \zeta_1 \land \neg \zeta_2)$, $\zeta_1 \lor \zeta_2 \rightarrow \ldots$
– get strict inequalities through negation $x > 5 = \neg (x \leq 5) \ldots$

• Closed: do not feature negation (no strict inequalities)

• Diagonal–free: do not feature $x + c \leq y + d$ (no comparisons between clocks)
Zones and clock valuations

- A clock valuation v satisfies a zone ζ, written $v \models \zeta$ if
 - ζ resolves to true after substituting each clock $x \in X$ with $v(x)$

- Semantics of a zone is the set of clock valuations which satisfy the zone (subset of \mathbb{R}^N if N clocks)
 - more than one zone may have the same semantics:
 $$(x \leq 2) \land (y \leq 1) \land (x \leq y + 2) \text{ and } (x \leq 2) \land (y \leq 1) \land (x \leq y + 3)$$

- Consider only canonical zones
 - zones for which the constraints are as ‘tight’ as possible
 - $O(|X|^3)$ algorithm to compute (unique) canonical zone [Dil89]
 - allows us to use syntax for zones interchangeably with semantic, set-theoretic operations
c-equivalence and c-closure

- Clock valuations v and v' are c-equivalent if for any $x, y \in X$
 - either $v(x) = v'(x)$, or $v(x) > c$ and $v'(x) > c$
 - either $v(x) - v(y) = v'(x) - v'(y)$ or $v(x) - v(y) > c$ and $v'(x) - v'(y) > c$

- The c-closure of the zone ζ, denoted close(ζ, c), equals
 - the greatest zone $\zeta' \supseteq \zeta$ such that, for any $v' \in \zeta'$, there exists $v \in \zeta$ and v and v' are c-equivalent
 - c-closure ignores all constrains which are greater than c
 - for a given c, there are only a finite number of c-closed zones
Operations on zones – Set theoretic

- Union of two zones: $\zeta_1 \cup \zeta_2$
Operations on zones – Set theoretic

• Intersection of two zones: $\zeta_1 \cap \zeta_2$
Operations on zones – Set theoretic

- Difference of two zones: $\zeta_1 \setminus \zeta_2$
Operations on zones – clock resets

• $\zeta[X:=0] = \{ v[X:=0] \mid v \gg \zeta \}$
 – clock valuations obtained from ζ by resetting the clocks in X

• $[X:=0]\zeta = \{ v \mid v[X:=0] \gg \zeta \}$
 – clock valuations which are in ζ if the clocks in X are reset
Operations on zones: c–closure

- **c–closure** $\text{close}(\zeta, c)$
 - ignores all constrains which are greater than c
Operations on zones: Projection

- Forwards diagonal projection
- \(\nu \zeta = \{ v \mid \exists t \geq 0 . (v-t) \triangleright \zeta \} \)
 - contains the clock valuations that can be reached from \(\zeta \) by letting time pass
Operations on zones: Projection

- Backwards diagonal projection

\[\zeta = \{ v \mid \exists t \geq 0 . (v + t) \triangleright \zeta \} \]
- contains the clock valuations that, by letting time pass, reach a clock valuation in \(\zeta \)
Overview

- Motivation
- Time, clocks and zones
- **Probabilistic timed automata (PTAs)**
 - definition, examples, semantics, time divergence
- Properties of PTAs: The logic PTCTL
 - syntax, semantics, examples
- PTCTL model checking
 - the region graph
 - forwards and backwards symbolic approaches
 - digital clocks
- Costs and rewards
Probabilistic timed automata – Syntax

- PTA = (Loc, l_{init}, X, \Sigma, inv, prob, L)
 - Loc finite set of locations
 - l_{init} \in Loc the initial location
 - X finite set of clocks
 - \Sigma finite set of events
 - inv : Loc \rightarrow \text{zones}(X) invariant condition
 - prob \subseteq \text{Loc} \times \text{zones}(X) \times \text{dist}(\text{Loc} \times 2^X) probabilistic edge relation
 - L : \text{Loc} \rightarrow \text{AP} labelling function
Probabilistic timed automata – Example

- Models a simple probabilistic communication protocol
 - starts in location di; after between 1 and 2 time units, the protocol attempts to send the data:
 - with probability 0.9 data is sent correctly, move to location sr
 - with probability 0.1 data is lost, move to location si
 - in location si, after 2 to 3 time units, attempts to resend
 - correctly sent with probability 0.95 and lost with probability 0.05
Probabilistic timed automata – Edges

- **Probabilistic edge relation**
 - \(\text{prob} \subseteq \text{Loc} \times \text{zones}(X) \times \Sigma \times \text{dist} \left(\text{Loc} \times 2^X \right) \)

- **Probabilistic edge** \((l,g,\sigma,p) \in \text{prob}\)
 - \(l\) is the source location
 - \(g\) is the guard
 - \(\sigma\) is the event
 - \(p\) target distribution

- **Edge** \((l,g,\sigma,p,l',X) \subseteq \text{Loc} \times \text{zones}(X) \times \Sigma \times \text{dist} \left(\text{Loc} \times 2^X \right) \times \text{Loc} \times 2^X\)
 - \((l,g,\sigma,p)\) is a probabilistic edge and \(p(l',X)>0\)
 - \(l\) is the source location, \(g\) is the guard, \(\sigma\) is the event
 - \(l'\) is target location
 - \(X\) is the set of clocks to be reset
Probabilistic timed automata – Behaviour

- **State of a PTA is a pair** $(l,v) \in \text{Loc} \times \mathbb{R}^X$ **such that** $v \triangleright \text{inv}(l)$

- **Start in the initial location with all clocks initialized to zero**
 - let 0 denote the clock valuation where all clocks have value 0

- **For any state** (l,v) **there is non-deterministic choice between making a discrete transition and letting time pass**
 - **discrete transition** (l,g,σ,p) enabled if $g \triangleright \zeta$ and probability of moving to location l' and resetting the clocks X equals $p(l',X)$
 - **time transition** available only if invariant $\text{inv}(l)$ is continuously satisfied while time elapses
Probabilistic timed automata – Example

(di, x=0)
 1.1
 (di, x=1.1)
 0.9
 send
 0.1
 (sr, x=0) (si, x=0)
 8.66
 2.7
 (sr, x=8.66) (si, x=2.7)
 ⋮
 0.95
 retry
 0.05
 (sr, x=0) (si, x=0)
 ⋮
 ⋮

(di, x=0)
 (di, x=0)

sr

true

x≥2
send

x:=0
0.9
0.95
retry

x≥1

x:=0
0.1

x:=0

x≤3
x:=0
0.05

⋯
Probabilistic timed automata – Semantics

Infinite Markov decision process $M_{PTA} = (S_{PTA}, s_{init}, \text{Steps}, L_{PTA})$

- $S_{PTA} \subseteq \text{Loc} \times \mathbb{R}^X$ where $(l,v) \in S_{PTA}$ if and only if $v \triangleright inv(l)$
- $s_{init} = (l_{init}, 0)$

- $\text{Steps} : S_{PTA} \rightarrow 2^{(\Sigma \cup \mathbb{R}) \times \text{Dist}(S)}$ where $((l,v), a, \mu) \in \text{Steps}$ if and only
 - time transition $a = t \geq 0$, $\mu(l,v+t) = 1$ and $v+t' \triangleright inv(l)$ for all $t' \leq t$
 - discrete transition $a = \sigma$, there exists $(l,g,\sigma,p) \in \text{prob}$ such that
 1. $v \triangleright g$
 2. for any $(l',v') \in S_{PTA}$: $\mu(l', v') = \sum_{Y \subseteq X \wedge v'[Y:=0]=v'} p(l', Y)$

- $L_{PTA}(l,v) = L(l)$

actions of M_{PTA} are the events of PTA and non-negative reals ($\Sigma \cup \mathbb{R}_{\geq 0}$)

summation as multiple resets may give same clock valuation (e.g. resetting a clock that equals 0)
Time divergence

• **Restrict to time divergent behaviour**
 – a common restriction imposed in real-time systems
 – unrealisable behaviour (i.e. corresponding to time not advancing beyond a time bound) is disregarded during
 – also called *non-zeno* behaviour

• **A path of** M_{PTA} **of the form:** $\omega = s_0(a_1,\mu_1) \ s_0(a_1,\mu_1) \ s_2(a_2,\mu_2)\ldots$
 – where $a_i \in \Sigma \cup \mathbb{R}_{\geq 0}$
 – *duration* up until the $(n+1)$th state

 $$D_\omega(n+1) = \Sigma \{ | a_i | \ 1 \leq i \leq n \ \land \ a_i \in \mathbb{R}_{\geq 0} | \}$$

• **A path** ω **is time divergent if for any** $t \in \mathbb{R}_{\geq 0}$:
 – there exists $j \in \mathbb{N}$ such that $D_\omega(j) > t$
Time divergence

• An adversary of M_{PTA} is **divergent** if for each state $s \in S_{\text{PTA}}$:
 - the probability of divergent paths under A is 1
 - i.e. $Pr^A_s\{ \omega \in \text{Path}^A(s) \mid \omega \text{ is divergent} \} = 1$

• **Probabilistic divergence motivation** by following example
 - any adversary has a non–divergent path:
 - remain in l_{init} and do not let 1 time unit elapse
 - chance of such behaviour is 0

![Diagram](image)

Strong notion – all paths divergent would mean **NO** divergent adversaries for this example
Overview

• Motivation
• Time, clocks and zones
• Probabilistic timed automata (PTAs)
 – definition, examples, semantics, time divergence
• Properties of PTAs: The logic PTCTL
 – syntax, semantics, examples
• PTCTL model checking
 – the region graph
 – forwards and backwards symbolic approaches
 – digital clocks
• Costs and rewards
PTCTL – Syntax

- Z – set of formula clocks

- $\phi \ ::= \ true \mid a \mid \zeta \mid z. \phi \mid \phi \land \phi \mid \neg \phi \mid P_{\sim p}[\phi \cup \phi]$

- $\phi \cup \phi$ is true with probability $\sim p$

- where a an atomic proposition, $\zeta \in \text{zones}(X \cup Z)$, $z \in Z$ and $p \in [0,1]$, $\sim \in \{<,>,\leq,\geq\}$

- derived from PCTL [BdA95] and TCTL [AD94]
PTCTL – Examples

• $z \cdot P_{>0.99} [\text{packet2unsent} \ U \ \text{packet1delivered} \ \land \ (z < 5)]$
 – with probability greater than 0.99, the system delivers packet 1 within 5 time units and does not try to send packet 2 in the meantime

• $z \cdot P_{>0.95} [(x \leq 3) \ U \ (z = 8)]$
 – with probability at least 0.95, the system clock x does not exceed 3 before 8 time units elapse

• $z \cdot P_{\leq0.1} [G (\text{failure} \ \lor \ (z \leq 60))]$
 – the system fails after the first 60 time units have elapsed with probability at most 0.01
PTCTL – Semantics

- Let \((l,v) \in S_{PTA}\) and \(\varepsilon \in \mathbb{R}^Z\) be a formula clock valuation.

combined clock valuation of \(v\) and \(\varepsilon\) satisfies \(\zeta\)

- \((l,v),\varepsilon \models a \iff a \in L(l)\)
- \((l,v),\varepsilon \models \zeta \iff v,\varepsilon \triangleright \zeta\)
- \((l,v),\varepsilon \models z.\phi \iff (l,v),\varepsilon [z:=0] \models \phi\)
- \((l,v),\varepsilon \models \phi_1 \land \phi_2 \iff (l,v),\varepsilon \models \phi_1\) and \((l,v),\varepsilon \models \phi_2\)
- \((l,v),\varepsilon \models \neg \phi \iff (l,v),\varepsilon \models \phi\) is false
- \((l,v),\varepsilon \models P_{\sim p}[\psi] \iff \Pr_{(l,v)}^A\{ \omega \in \text{Path}^A(l,v) \mid \omega,\varepsilon \models \psi\} \sim p\) for all \(A\)

the probability of a path satisfying \(\psi\) meets \(\sim p\) for all divergent adversaries

after resetting \(z\), \(\phi\) is satisfied
PTCTL – Semantics of until

• $\omega, \xi \models \phi_1 U \phi_2$ if and only if
 there exists $i \in \mathbb{N}$ and $t \in D_\omega(i+1) - D_\omega(i)$ such that
 - $\omega(i)+t, \xi+(D_\omega(i)+t) \models \phi_2$
 - $\forall t' \leq t . \omega(i)+t', \xi+(D_\omega(i)+t') \models \phi_1 \lor \phi_2$
 - $\forall j<i . \forall t' \leq D_\omega(j+1) - D_\omega(j) . \omega(j)+t', \xi+(D_\omega(j)+t') \models \phi_1 \lor \phi_2$

• Condition “$\phi_1 \lor \phi_2$” different from PCTL and CSL
 - usually ϕ_2 becomes true and ϕ_1 is true until this point
 - difference due to the density of the time domain
 - to allow for open intervals use disjunction $\phi_1 \lor \phi_2$
 - for example consider $x \leq 5 U x > 5$ and $x < 5 U x \geq 5$
Overview

• Motivation
• Time, clocks and zones
• Probabilistic timed automata (PTAs)
 – definition, examples, semantics, time divergence
• Properties of PTAs: The logic PTCTL
 – syntax, semantics, examples
• **PTCTL model checking**
 – the region graph
 – forwards and backwards symbolic approaches
 – digital clocks
• Costs and rewards
The region graph

- **Region graph construction for PTAs** [KNSS02]
 - adapt the region graph construction for TAs [ACD93]
 - construction *dependent on PTCTL formula* under study

- **For a PTA and PTCTL formula** ϕ
 - construct a *time-abstract, finite-state MDP* $R(\phi)$
 - translate PTCTL formula ϕ to PCTL (denoted Φ)
 - ϕ is preserved via region quotient
 - ϕ holds in a state of M_{PTA} if and only if Φ holds in the corresponding state of $R(\phi)$
 - model check $R(\phi)$ using standard methods for MDPs
The region graph – Clock equivalence

- Construction of region graph based on clock equivalence
 - let c be largest constant appearing in PTA or PTCTL formula
 - let $\lfloor t \rfloor$ denotes the integral part of t
 - t and t' agree on their integral parts if and only if
 (1) $\lfloor t \rfloor = \lfloor t' \rfloor$
 (2) both t and t' are integers or neither is an integer

- The clock valuations v and v' are clock equivalent ($v \equiv v'$) if:
 - for all $x \in X$ one of the following conditions hold:
 (a) $v(x)$ and $v'(x)$ agree on their integral parts
 (b) $v(x) > c$ and $v'(x) > c$
 - for all $x, y \in X$ one of the following conditions hold:
 (a) $v(x) - v(x')$ and $v'(x) - v'(x')$ agree on their integral parts
 (b) $v(x) - v(x') > c$ and $v'(x) - v'(x') > c$
Region graph – Clock equivalence

- $x = 1 \land y = 2$
- $x < y \land 1 < x < 2 \land 1 < y < 2$
- $x = y \land 0 < x < 1$
- $y = 1 \land 2 < x < 3$
Region graph – Clock equivalence

• Fundamental result: if $v \equiv v'$, then $v \triangleright \zeta \iff v' \triangleright \zeta$

 – follows $\alpha \triangleright \zeta$ is well defined (where α equivalence class)

• β is the successor class of α, written $\text{succ}(\alpha) = \beta$, if

 – for each $v \in \alpha$, there exists $t > 0$ such that $(v+t, \mathcal{E}+t) \in \beta$
 and $(v+t', \mathcal{E}+t') \in \alpha \cup \beta$ for all $t' < t$
The region graph

- Region graph MDP \((S_R, (l_{init}, 0), \text{Steps}_R, L_R)\)

- \((l, \alpha) \in S_R\) if \(l\) is a location and \(\alpha\) equivalence class of clock valuations over \(X \cup Z\) such that \(\alpha \triangleright inv(l)\)

- \((\text{succ}, \mu) \in \text{Steps}_R(l, \alpha) \iff \text{succ}(\alpha) \triangleright inv(l)\) and \(\mu(l, \text{succ}(\alpha)) = 1\)

- \((\sigma, \mu) \in \text{Steps}_R(l, \alpha) \iff \exists (l, g, \sigma, p) \in \text{prob}\) such that \(\alpha \triangleright g\) and for any \((l', \beta) \in S_R:\)

 \[
 \mu(l', \beta) = \sum_{Y \subseteq X \land \alpha[Y:=0]=\beta} p(l', Y)
 \]

- \(L_R(l, \alpha) = L(l)\)

action set \(\{\text{succ}\} \cup \Sigma\) (\text{succ} corresponds to time passage)

probabilistic transition function \(\text{Steps}_R: S_R \times 2^{(\{\text{succ}\} \cup \Sigma) \times \text{Dist}(S_R)}\)

summation as multiple resets may give same clock equivalence class
Region graph – Example

- PTCTL formula: $z.P_{\sim p}[true \ U (sr<4)]$

\[
\text{succ} (\text{di}, x=z=0) \rightarrow (\text{di}, 0<x=z<1) \rightarrow (\text{di}, x=z=1) \rightarrow (\text{di}, 1<x=z<2)
\]

\[
0.9 \quad 0.1
\]

\[
\text{(sr, } x=0 \land z=1) \quad (\text{si, } x=0 \land z=1)
\]

\[
\text{di} \quad \text{sr} \quad \text{true}
\]

\[
\text{x}:=0 \quad \text{x} \geq 1 \quad \text{send} \quad \text{retry} \quad \text{x} \geq 2
\]

\[
0.9 \quad 0.1 \quad 0.95 \quad 0.05 \quad 0.05
\]
Region graph – Model checking

- **Problem**
 - prohibitive complexity (exponential in number of clocks and size of largest constant)
 - not implemented (even for timed automata)

- **Improved approach based on zones instead of regions**
 - symbolic states \((l, \zeta)\) where \(\zeta\) is a zone
 - zones are **unions of regions**

- **Two approaches based on:**
 - forwards reachability [KNSS02]
 - backwards reachability [KNSW07]
Overview

- Motivation
- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- Properties of PTAs: The logic PTCTL
 - syntax, semantics, examples
- PTCTL model checking
 - the region graph
 - forwards and backwards symbolic approaches
 - digital clocks
- Costs and rewards
Symbolic model checking

- **Conventional symbolic model checking relies on computing**
 - \(\text{post}(S') \) the states that can be reached from a state in \(S' \) in a single step
 - \(\text{pre}(S') \) the states that can reach \(S' \) in a single step

- **Extend these operators to include time passage**
 - \(\text{dpost}[e](S') \) the states that can be reached from a state in \(S' \) by traversing the edge \(e \)
 - \(\text{tpost}(S') \) the states that can be reached from a state in \(S' \) by letting time elapse
 - \(\text{dpre}[e](S') \) the states that can reach \(S' \) by traversing the edge \(e \)
 - \(\text{tpre}(S') \) the states that can reach \(S' \) by letting time elapse
Symbolic model checking

- **Symbolic states** \((l, \zeta)\) where
 - \(l \in \text{Loc}\) (location)
 - \(\zeta\) is a zone over PTA clocks and formula clocks
 - generally fewer zones than regions

- **tpost** \((l, \zeta) = (l, \neg\zeta \wedge \text{inv}(l))\)
 - \(\neg\zeta\) can be reached from \(\zeta\) by letting time pass
 - \(\neg\zeta \wedge \text{inv}(l)\) must satisfy the invariant of the location \(l\)

- **tpre** \((l, \zeta) = (l, \neg\zeta \wedge \text{inv}(l))\)
 - \(\neg\zeta\) can reach \(\zeta\) by letting time pass
 - \(\neg\zeta \wedge \text{inv}(l)\) must satisfy the invariant of the location \(l\)
Symbolic model checking

- **Edge** $e = (l, g, \sigma, p, l', X)$
 - l is the source
 - g is the guard
 - σ is the event
 - l' is the target
 - X is the clock reset

- **dpost** $[e](l, \zeta) = (l', (\zeta \land g)[X:=0])$
 - $\zeta \land g$ satisfy the guard of the edge
 - $(\zeta \land g)[X:=0]$ reset the clocks X

- **dpre** $[e](l', \zeta') = (l, [X:=0]\zeta' \land (g \land \text{inv}(l)))$
 - $[X:=0]\zeta'$ the clocks X were reset
 - $[X:=0]\zeta' \land (g \land \text{inv}(l))$ satisfied guard and invariant of l
Symbolic model checking – Forwards

• Based on the operation $\text{post}[e](l,\zeta) = \text{tpost}(d\text{post}[e](l,\zeta))$

 – $(l',v') \in \text{post}[e](l,\zeta)$ if there exists $(l,v) \in (l,\zeta)$ such that after traversing edge e and letting time pass one can reach (l',v')

• Forwards algorithm (part 1)

 – start with initial state $S_F=\{\text{tpost}(l_{init},0)\}$ then iterate
 for each symbolic state $(l,\zeta) \in S_F$ and edge e
 add $\text{post}[e](l,\zeta)$ to S_F
 – until set of symbolic states S_F does not change

• To ensure termination need to take c–closure of each zone encountered (c largest constant in the PTA)
Symbolic model checking – Forwards

- **Forwards algorithm (part 2)**
 - construct finite state MDP \((S_F, (l_{init}, 0), \text{Steps}_F, L_F)\)
 - states \(S_F\) (returned from first part of the algorithm)
 - \(L_F(l, \zeta) = L(l)\) for all \((l, \zeta) \in S_F\)
 - \(\mu \in \text{Steps}_F(l, \zeta)\) if and only if there exists a probabilistic edge \((l, g, \sigma, p)\) of PTA such that for any \((l', \zeta') \in Z:\)

\[
\mu(l', \zeta') = \sum \{ | p(l', X) | (l, g, \sigma, p, l', X) \in \text{edges}(p) \wedge \text{post}[e](l, \zeta) = (l', \zeta') \}
\]

summation over all the edges of \((l, g, \sigma, p)\) such that applying \(\text{post}\) to \((l, \zeta)\) leads to the symbolic state \((l', \zeta')\)
Symbolic model checking – Forwards

- Only obtain upper bounds on maximum probabilities
 - caused by when edges are combined

- Suppose \(\text{post}[e_1](l, \zeta) = (l_1, \zeta_1) \) and \(\text{post}[e_2](l, \zeta) = (l_2, \zeta_2) \)
 - where \(e_1 \) and \(e_2 \) from the same probabilistic edge

- By definition of \text{post}
 - there exists \((l, v_i) \in (l, \zeta)\) such that a state in \((l_i, \zeta_i)\) can be reached by traversing the edge \(e_i \) and letting time pass

- Problem
 - we combine these transitions but are \((l, v_1)\) and \((l, v_2)\) the same?
 - may not exist states in \((l, \zeta)\) for which both edges are enabled
Symbolic model checking – Forwards

- Maximum probability of reaching l_3 is 0.5 in the PTA
 - for the left branch need to take the first transition when $x=1$
 - for the right branch need to take the first transition when $x=0$
- However, in the forwards reachability graph probability is 1
 - can reach l_3 via either branch from $(l_0, x=y)$
Symbolic model checking – Forwards

- **Main result** [KNSS02]
 - obtain *time-abstract, finite-state MDP* over zones
 - *bound on maximum reachability probabilities* only
 - can model check the MDP using standard methods
 - loss of on-the-fly, must construct MDP first

- **Implementations**
 - **KRONOS** pre-processor into PRISM input language, outputs time-abstract MDP [DKN02]
 - **Explicit**, using **Difference Bound Matrices** (DBMs), to PRISM input language [WK05]
 - **Symbolic**, using **Difference Decision Diagrams** (DDDs), via MTBDD-coded PTA syntax directly to PRISM engine [WK05]
Symbolic model checking – Backwards

• Based on pre as opposed to post

\[\text{pre}[e](l, \zeta) = \text{dpre}[e](\text{tpre}(l, \zeta)) \]

• Suppose pre[e_1](l_1, \zeta_1') = (l, \zeta_1) and pre[e_2](l_2, \zeta_2') = (l, \zeta_2)
 – where e_1 and e_2 from the same probabilistic edge

• By definition of pre
 – for all \((l, v_i) \in (l, \zeta_i)\), a state in \((l_i, \zeta_i')\) can be reached by traversing the edge \(e_i\) and letting time pass
 – therefore, for any \((l, v)\) in the intersection \((l, \zeta_1 \cap \zeta_2)\)
 \((l_i, \zeta_i')\) can be reached by traversing the edge \(e_i\) and letting time pass for both \(i=1\) and \(i=2\)

• To preserve the probabilistic branching structure
 – use both pre and intersection operations
 – unlike the forwards approach results precise
Symbolic model checking – Backwards

- **Backwards Algorithm for PTCTL model checking**
 - **Input**: PTA, PTCTL property ϕ
 - **Output**: set of symbolic states $\text{Sat}(\phi)$

- $\text{Sat}(a) := \{ (l, \text{inv}(l)) \mid l \in \text{Loc} \text{ and } a \in L(l) \}$
- $\text{Sat}(\zeta) := \{ (l, \text{inv}(l) \land \zeta) \mid l \in \text{Loc} \}$
- $\text{Sat}(\neg \phi) := \{ (l, \text{inv}(l) \land (\lor (l, \zeta) \in \text{Sat}(\phi) \neg \zeta)) \mid l \in \text{Loc} \}$
- $\text{Sat}(\phi_1 \lor \phi_2) := \text{Sat}(\phi_1) \cup \text{Sat}(\phi_2)$
- $\text{Sat}(z.\phi) := \{ (l, [z:=0]\zeta) \mid (l, \zeta) \in \text{Sat}(\phi) \}$
- $\text{Sat}(P_{\sim p}[\phi_1 U \phi_2]) := ?$
Symbolic model checking – Backwards

- Remains to compute the set of states $\text{Sat}(P_{\sim \mathbb{P}}[\phi_1 \cup \phi_2])$
 - sufficient to consider maximum or minimum probability

- Recall from the MDP lecture
 - if $\sim \in \{<,\leq\}$, then $s,\varepsilon \models P_{\sim \mathbb{P}}[\phi_1 \cup \phi_2] \iff p_{\text{max}}(s,\varepsilon, \phi_1 \cup \phi_2) \sim \mathbb{P}$
 - if $\sim \in \{\geq,>\}$, then $s,\varepsilon \models P_{\sim \mathbb{P}}[\phi_1 \cup \phi_2] \iff p_{\text{min}}(s,\varepsilon, \phi_1 \cup \phi_2) \sim \mathbb{P}$

where

$$p_{\text{max}}(s,\varepsilon, \phi_1 \cup \phi_2) = \sup_{A \in \text{Adv}} \Pr_A^s \{\omega \in \text{Path}^A(s) \mid \omega,\varepsilon \models \phi_1 \cup \phi_2\}$$

$$p_{\text{min}}(s,\varepsilon, \phi_1 \cup \phi_2) = \inf_{A \in \text{Adv}} \Pr_A^s \{\omega \in \text{Path}^A(s) \mid \omega,\varepsilon \models \phi_1 \cup \phi_2\}$$
Backwards – Maximum probabilities

- Based on classical backwards exploration for TAs
 - iteratively apply pre operations

- Qualitative case (probability bound 0 or 1)
 - graph based analysis
 - uses methods for finite state MDPs [dA97a, dAKN+00]

- Quantitative case (probability bound in interval (0,1))
 - construct finite–state MDP during backwards exploration
 - states: symbolic states generated during exploration
 - transitions: induced by those of the PTA
 - compute maximal probability for all states of the original PTA through maximum reachability probabilities of the MDP
Backwards – Maximum probabilities

- **Basic algorithm for** $P_{\sim p}[\phi_1 \cup \phi_2]$
 - start with the set of symbolic states $S_B = \text{Sat}(\phi_2)$ then iterate
 for each symbolic state $(l, \zeta) \in S_B$ and edge e
 add $\text{pre}[e](l, \zeta)$ to S_B
 until set of symbolic states S_B does not change

- Slightly more complicated...

- Restrict to states in $\text{Sat}(\phi_1)$

- Retain the probabilistic branching structure
 - keep track of which symbolic states are constructed through which edges of the PTA and take *conjunctions* of relevant symbolic states
 - relevant symbolic states are those generated by traversing edges taken from the same probabilistic edge
Backwards – Maximum probabilities

• Once the symbolic states S_B have been found

• Construct MDP $(S_B, \text{Steps}_B, L_B)$
 no initial state as we have traversed backwards
 construction similar to forwards approach

• Find maximum probability of reaching $\text{Sat}(\phi_2)$
 – that is compute $p_{\text{max}}(s_B, F a_{\text{Sat}(\phi_2)})$ for all $s_B \in S_B$
 where $a_{\text{Sat}(\phi_2)}$ is an atomic proposition labelling only those
 states in $\text{Sat}(\phi_2)$

• For any state (l,v) of the PTA and formula clock valuation \mathcal{E}:
 $p_{\text{max}}((l,v), \mathcal{E}, \phi_1 U \phi_2) = \max \{p_{\text{max}}(s_B, F a_{\text{Sat}(\phi_2)}) \mid (l,v), \mathcal{E} \in S_B \land s_B \in S_B\}$
Backwards – Maximum probabilities

- Maximum probability of reaching l_4

\bullet predecessors from the same probabilistic transition: take conjunction of zones

$\begin{align*}
\frac{1}{2} & \quad \frac{1}{2} & \\
(l_1, y \geq x) & (l_1, y = x) & (l_1, x \geq y) \\
\frac{1}{2} & & \frac{1}{2} \\
(l_2, y \geq x) & (l_3, x \geq y) & \\
\frac{1}{2} & & \\
(l_4, \text{true}) & & \\
\end{align*}$
Backwards – Maximum probabilities

- \(z.P_{\sim p}[true \ U sr \land z<4] \) maximum probability of sending the message before 4 time units have passed

\[
\begin{align*}
\text{(si, } 2 \leq x \leq 3 \land z<4) & \xrightarrow{0.95} (sr, z<4) \xrightarrow{0.9} (di, 1 \leq x \leq 2 \land z<4) \\
\text{(si, } 2 \leq x \leq 3 \land z<3) & \xrightarrow{0.05} (di, 1 \leq x \leq 2 \land z<3)
\end{align*}
\]

\[
\begin{align*}
\text{(si, } 2 \leq x \leq 3 \land z<2) & \xrightarrow{0.95} (di, 1 \leq x \leq 2 \land z<4) \\
\text{(si, } 2 \leq x \leq 3 \land z<3) & \xrightarrow{0.05} (di, 1 \leq x \leq 2 \land z<3)
\end{align*}
\]

\[
\begin{align*}
\text{(di, } 1 \leq x \leq 2 \land z<3) & \xrightarrow{0.9} (si, 2 \leq x \leq 3 \land z<4) \\
\text{(di, } 1 \leq x \leq 2 \land z<4) & \xrightarrow{0.9} (si, 2 \leq x \leq 3 \land z<3)
\end{align*}
\]

\[
\begin{align*}
\text{(di, } 1 \leq x \leq 2 \land z<3) & \xrightarrow{0.1} (di, 1 \leq x \leq 2 \land z<4)
\end{align*}
\]

\[
\begin{align*}
\text{(di, } 1 \leq x \leq 2 \land z<4) & \xrightarrow{0.9} (sr, true)
\end{align*}
\]

\[
\begin{align*}
\text{(si, } x \leq 3) & \xrightarrow{0.95} \text{retry}
\end{align*}
\]

for \((l_{\text{init}}, 0), 0\) given by \(p_{\text{max}}((di, 1 \leq di \leq 2 \land z<3), F (sr, z<4)) = 0.995 \)

- \(x := 0 \) – no new symbolic states encountered.

maximum probability of reaching \(sr \land z<4 \) from the initial state corresponds to taking discrete transitions as soon as enabled
Backwards – Minimum probabilities

- Problem: restriction to divergent adversaries
 - minimum probability for until under divergent adversaries
 does not equal minimum under all adversaries

- Example:
 - the minimum probability of formula clock reaching $z > 1$
 - equals 1 under divergent adversaries
 - equals 0 under all adversaries, e.g. consider any adversary
 which lets time converge to a value < 1

- Maximum until probability under divergent adversaries
 does equal maximum under all adversaries
 - just delay time divergence until after satisfaction
Backwards – Minimum probabilities

• Similar problem occurs for timed automata and TCTL

 • $\phi_1 \forall U \phi_2$ – all paths satisfy $\phi_1 U \phi_2$
 – all divergent paths satisfy “true $U z>1$”
 – there exist non-divergent paths not satisfying “true $U z>1$”
 – cannot ignore time divergence when model checking

 • $\phi_1 \exists U \phi_2$ – there exists a path satisfying $\phi_1 U \phi_2$
 – there exists a path satisfying $\phi_1 U \phi_2$ if and only if there exists a divergent path satisfying $\phi_1 U \phi_2$
 – (use same path but let time diverge after ϕ_2 is reached)
 – can ignore time–divergence when model checking
Backwards – Minimum probabilities

- **Solution for timed automata and TCTL**
 - consider simple case of $\text{AF}\phi$ ($= \text{true} \ \forall U \ \phi$):
 - find state satisfying the dual formula $\text{EG} \neg \phi$
 - (there exists a path for which $\neg \phi$ holds at all times)

- **Compute states satisfying $\text{EG}\phi$ as the greatest fixpoint of**
 \[H(X) = \phi \land \exists z. (X \exists U z > c) \]
 - 0 iterations: all states
 - 1 iteration: satisfy ϕ
 - 2 iterations: can satisfy ϕ until c time units have passed, ...
 - $k+1$ iterations: can satisfy ϕ until $k \cdot c$ time units have passed
 - ... **always** satisfy ϕ

c is any constant greater than 0
Backwards – Qualitative minimum probabilities

- Set of states satisfying $\neg P_{<1}[G \phi]$ is greatest fixpoint of $H(X) = \phi \land z. \neg P_{<1}[X U (X \lor z>c)]$

 - 0 iterations: all states
 - 1 iteration: all states satisfying ϕ
 - 2 iterations: all states for which the maximum probability of satisfying ϕ until c time units have passed equals 1...
 - $k+1$ iterations: all states for which the maximum probability of satisfying ϕ until $k \cdot c$ time units have passed equals 1...
 - ...all states for which the maximum probability of always satisfying ϕ equals 1

maximum probability of satisfying $G \phi$ equals 1 (is not less than 1)

maximum probability of satisfying $X U (X \lor z>c)$ equals 1
Backwards – Quantitative minimum probabilities

• For formulae of the form $F \phi$ use the following result

\[
p_{\text{min}}(s, F \phi) = 1 - p_{\text{max}}(s, G \neg \phi)
= 1 - p_{\text{max}}(s, \neg \phi U \neg P_{<1}[G \neg \phi])
\]

and the fact that we have already shown methods for
– computing maximum until probabilities
– the set of states satisfying $\neg P_{<1}[G \phi]$

• Problem reduces to
 – graph analysis (compute $\text{Sat}(\neg P_{<1}[G \phi])$)
 – computation of maximum until probabilities
 (compute $p_{\text{max}}(s, \neg \phi U \neg P_{<1}[G \neg \phi])$)
Backwards – Minimum probabilities

• For formulae of the form $\phi_1 \ U \ \phi_2$ instead use

$$p_{\min}(s, \ \phi_1 \ U \ \phi_2) = 1 - p_{\max}(s, \ \neg\phi_1 \ R \ \neg\phi_2)$$
$$= 1 - p_{\max}(s, \ \neg\phi_2 \ U \ \neg P_{<1}[\neg\phi_1 \ R \ \neg\phi_2])$$

– operator R (release) is the dual of U (until)
– $\phi_1 \ U \ \phi_2 \equiv \neg (\neg\phi_1 \ R \ \neg\phi_2)$
– $\text{Sat}(\neg P_{<1}[\neg\phi_1 R \ \neg\phi_2])$ can be computed via a greatest fixpoint
– similar to the method for $\text{Sat}(\neg P_{<1}[\ G \ \neg\phi])$

• Problem reduces to
 – graph analysis (compute $\text{Sat}(\neg P_{<1}[\neg\phi_1 R \ \neg\phi_2])$)
 – computation of maximum until probabilities
 (compute $p_{\max}(s, \ \neg\phi_2 \ U \ \neg P_{<1}[\neg\phi_1 \ R \ \neg\phi_2])$)
Backwards – Minimum probabilities

- $z.P_{\sim p}[F \ sr \land z<6]$ minimum probability of sending the message before 6 time units have passed

 - first step is to find the set of states which satisfy the formula
 \[\neg P_{<1} [G \neg (sr \land z<6)] = \neg P_{<1} [G \ si \lor di \lor (z\geq6)] \]
 - following method described this set is computed as
 \{ (sr,z\geq6), (si,x\leq3 \land z\geq x+3), (di,x\leq2 \land z\geq x+3) \}
 - now find maximum probability of reaching this set of states while remaining in $\neg (sr \land z<6)$
 - i.e. compute $p_{\text{max}}(s, \neg \phi U \neg P_{<1} [G \neg \phi])$
Backwards – Minimum probabilities

• find maximum probability of reaching
 – \((sr, z \geq 6)\), \((si, x \leq 3 \land z \geq x + 3)\), \((di, x \leq 2 \land z \geq x + 4)\)
 – while remaining in \(\neg (sr \land z < 6)\)

\[(si, x \leq 3 \land z \geq x + 1), (sr, z \geq 4), (di, x \leq 2 \land z \geq x + 2)\]

\[
\text{for } (l_{\text{init}}, 0), 0 \text{ given by } p_{\text{max}}((di, 1 \leq di \leq 2), F_{a_{\text{target}}}) = 0.005
\]

minimum probability of reaching \(sr \land z < 6\) from the initial state corresponds to taking transitions as late as possible
Symbolic model checking – Backwards

- **Main result** [KNS01b, KNSW04]
 - obtain time-abstract, finite-state MDP over zones
 - full PTCTL is preserved via quotient
 - conjunctions of zones to preserve probabilistic branching
 - not on-the fly, must construct MDP first

- **Experimental implementation**
 - Implemented in Java, using Difference Bound Matrices (DBMs)
 - Explicit, into PRISM input language

- **Problem: need to consider non-convex zones**
 - represented as unions of convex zones, i.e. lists of DBMs
 - expensive operations
Overview

• Motivation
• Time, clocks and zones
• Probabilistic timed automata (PTAs)
 – definition, examples, semantics, time divergence
• Properties of PTAs: The logic PTCTL
 – syntax, semantics, examples
• PTCTL model checking
 – the region graph
 – forwards and backwards symbolic approaches
 – digital clocks
• Costs and rewards
Model checking – Digital clocks

• Durations can only take integer durations
 – time domain is \mathbb{N} as opposed to $\mathbb{R}_{\geq 0}$

• Restricted to PTAs class of PTAs, zones must be:
 – closed – do not feature strict inequalities
 – diagonal-free – no comparisons between clocks ($x+c \leq y+d$)

• Based on ϵ–digitisation [HMP92]

• Preserves a subset of properties
 – no nested PTCTL properties
 – zones appearing in formulae closed and diagonal free

• Semantics is an MDP with finite state space
 – need only count up to c_{max} (max constant in PTA and formula)
 – can employ model checking algorithms for PCTL against MDPs
Model checking – Digital clocks

\[(di, x=z=0) \xrightarrow{0.9} (di, x=z=1) \xrightarrow{0.1} (di, x=z=2)\]

\[(sr, x=0 \land z=1) \xrightarrow{} (si, x=0 \land z=1) \xrightarrow{} (sr, x=0 \land z=2)\]

\[(si, x=1 \land z=2) \xrightarrow{} (si, x=2 \land z=3)\]

\[(sr, x=0 \land z=3) \xrightarrow{0.95} (si, x=0 \land z=3) \xrightarrow{0.05} (si, x=0 \land z=3)\]
Model checking – Digital clocks

- **Main result for digital semantics** [KNPS06]
 - for closed diagonal free PTAs digital semantics preserves minimum/maximum reachability probabilities
 - only for initial state

 - extends to formula of the form $z.P_{\sim_p}[\phi_1 U \phi_2]$ if ϕ_1 and ϕ_2 contain only atomic propositions and closed diagonal–free zones
 - extends to any state where all clocks have integer values

- **Restriction to closed, diagonal–free** found not to be important for many case studies

- **Problem**: inefficiency for some models, as large constants give rise to very large state spaces
Digital clocks – Probabilistic reachability

- **Probabilistic reachability:**
 - with probability at least 0.999, a data packet is correctly delivered

- **Probabilistic time–bounded reachability**
 - with probability 0.01 or less, a data packet is lost within 5 time units

- **Probabilistic cost–bounded reachability**
 - with probability 0.75 or greater, a data packet is correctly delivered with at most 4 retransmissions

- **Invariance:**
 - with probability 0.875 or greater, the system never aborts

- **Bounded response:**
 - with probability 0.99 or greater, a data packet will always be delivered within 5 time units
Digital clocks – PTCTL not preserved

- Consider the PTCTL formula $\phi = \mathit{z.P} <_1 [\mathit{true U (a_{l1} \land z \leq 1)}]$
 - a_{l1} atomic proposition only true in location l_1
- Digital semantics:
 - no state satisfies ϕ since for any state we have $\text{Prob}^{A}(s,\varepsilon[\mathit{z:=0}], \mathit{true U (a_{l1} \land z \leq 1)}) = 1$ for some adversary A
 - hence $P_{<_1}[\mathit{true U \phi}]$ is trivially true in all states
Digital clocks – PTCTL not preserved

- Consider the PTCTL formula $\phi = z. P_{<1}[\text{true} \ U (a_{l_1} \land z \leq 1)]$
 - a_{l_1} atomic proposition only true in location l_1
- Dense time semantics:
 - any state (l_{init}, v) where $v(x) \in (1, 2)$ satisfies ϕ
 more than one time unit must pass before we can reach l_1
 - hence $P_{<1}[\text{true} \ U \phi]$ is not true in the initial state
Overview

• Motivation
• Time, clocks and zones
• Probabilistic timed automata (PTAs)
 – definition, examples, semantics, time divergence
• Properties of PTAs: The logic PTCTL
 – syntax, semantics, examples
• PTCTL model checking
 – the region graph
 – forwards and backwards symbolic approaches
 – digital clocks
• Costs and rewards
Costs and rewards

Add reward structure \((\rho, \iota)\) to Probabilistic Timed Automata

- \(\rho : \text{Loc} \to \mathbb{R}_{\geq 0}\) location reward function
 - \(\rho(l)\) is the rate at which the reward is accumulated in location \(l\)
- \(\iota : \Sigma \to \mathbb{R}_{\geq 0}\) event reward function
 - \(\iota(\sigma)\) is the reward associated with performing the event \(\sigma\)

- Generalisation of uniformly priced timed automata

- Special case reward is the elapsed time
 - \(\rho(l) = 1\) for all locations \(l \in \text{Loc}\)
 - \(\iota(\sigma) = 0\) for all events \(\sigma \in \Sigma\)
Expected reachability

- **Expected reward of reaching set of target states**
 - digital clocks semantics preserves expected reachability [KNPS06]
 - can use finite-state MDP algorithm
 - no approach based on zones (yet)

- **Expected reachability properties:**
 - the maximum expected time until a data packet is delivered
 - the minimum expected time until a packet collision occurs
 - the minimum expected number of retransmissions before the message is correctly delivered
 - the minimum expected number of packets sent before failure
 - the maximum expected number of lost messages within the first 200 seconds
Summing up...

- **Probabilistic timed automata (PTAs)**
 - discrete probability distributions only
 - useful in modelling protocols with timing delays and probability
 - extension with continuous distributions exists, but model checking only approximate

- **Implementation**
 - digital clocks via model checking for MDPs
 - forward/backward, experimental implementations only
 - still no satisfactory combination of symbolic probabilistic and real-time data structures

- **More research needed...**
 - contribution to theory and practice