Probabilistic verification and synthesis

Marta Kwiatkowska

Department of Computer Science, University of Oxford

KTH, Stockholm, August 2015
Lecture plan

• Course slides and lab session
 – http://www.prismmodelchecker.org/courses/kth15/

• 5 sessions: lectures 9–12noon, labs 2.30–5pm
 – 1 – Introduction
 – 2 – Discrete time Markov chains (DTMCs)
 – 3 – Markov decision processes (MDPs)
 – 4 – LTL model checking for DTMCs/MDPs
 – 5 – Probabilistic timed automata (PTAs)

• For extended versions of this material
 – and an accompanying list of references
 – see: http://www.prismmodelchecker.org/lectures/
Probabilistic models

<table>
<thead>
<tr>
<th></th>
<th>Fully probabilistic</th>
<th>Nondeterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discrete time</td>
<td>Discrete-time Markov chains (DTMCs)</td>
<td>Markov decision processes (MDPs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simple stochastic games (SMGs)</td>
</tr>
<tr>
<td>Continuous time</td>
<td>Continuous-time Markov chains (CTMCs)</td>
<td>Probabilistic timed automata (PTAs)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Interactive Markov chains (IMCs)</td>
</tr>
</tbody>
</table>
Part 5

Probabilistic Timed Automata
Recall – MDPs

• **Markov decision processes (MDPs)**
 – mix probability and nondeterminism
 – in a state, there is a nondeterministic choice between multiple probability distributions over successor states

- ![MDP Diagram](image)

• **Adversaries**
 – resolve nondeterministic choices based on history so far
 – properties quantify over all possible adversaries
 – e.g. \(P_{<0.1}[\diamond \text{err}] \) – maximum probability of an error is \(< 0.1\)
Real-world protocol examples

• Systems with probability, nondeterminism and real-time
 – e.g. communication protocols, randomised security protocols

• Randomised back-off schemes
 – Ethernet, WiFi (802.11), Zigbee (802.15.4)

• Random choice of waiting time
 – Bluetooth device discovery phase
 – Root contention in IEEE 1394 FireWire

• Random choice over a set of possible addresses
 – IPv4 dynamic configuration (link-local addressing)

• Random choice of a destination
 – Crowds anonymity, gossip-based routing
Overview (Part 5)

- **Time, clocks and zones**
- **Probabilistic timed automata (PTAs)**
 - definition, examples, semantics, time divergence
- **PTCTL: A temporal logic for PTAs**
 - syntax, examples, semantics
- **Model checking for PTAs**
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- **Costs and rewards**
- **Parameter synthesis**
Real-time systems verification

- Classical model checking
 - labelled transition systems as models
 - CTL as specification notation

- Many systems feature real-time aspects
 - embedded systems
 - in-car and in-flight systems
 - communication protocols
 - controllers
 - etc

- Real-time model checking (e.g. UPPAAL)
 - timed automata as models
 - TCTL as specification notation
Light control example

Modelling...

Spec:
If light is off, press switch once for dimmed light, press switch twice quickly for bright light. Otherwise the light is turned off.
Light control example

Modelling…

Spec:
If light is off, press switch once for dimmed light, press switch twice quickly for bright light. Otherwise the light is turned off.
Light control example

Modelling...

Spec:
If light is off, press switch once for dimmed light, press switch twice quickly for bright light. Otherwise the light is turned off.
Light control example

Modelling...

Spec:
If light is off, press switch once for dimmed light, press switch twice quickly for bright light. Otherwise the light is turned off.
Light control example

Modelling...

Spec:
If light is off, press switch once for dimmed light, press switch twice quickly for bright light. Otherwise the light is turned off.
Light control example

Modelling...

Spec: If light is off, press switch once for dimmed light, press switch twice quickly for bright light. Otherwise the light is turned off.
Light control example

Modelling with time...

Spec:
If light is off, press switch once for dimmed light, press switch twice quickly for bright light. Otherwise the light is turned off.
A timed automaton is a finite graph:

- Finite set of locations
- Finitely many labelled transitions between locations
- Transitions take no time (are instantaneous)
- Automaton can remain in a location for a period of time

Time passage
Continuous, rather than discrete steps
Time elapse
Choice between remaining in location or taking transition

Clocks, here t
- real-valued variables
- increase at the same rate as time
- initially $t=0$
- after a period in Loc_1, it is reset to zero
Guards

Guards enable progress

Transitions in timed automata
- can be guarded
- a guard, e.g. $t < 3$, is a constraint on the value of clock t
- specifies when the transition is enabled
- i.e. $t = 4$ means precisely

Time elapse
Automaton can remain here forever
Invariants enforce progress

Locations in timed automata
- can have invariants
- i.e. a constraint for remaining in the location
Time, clocks and clock valuations

• **Dense time domain:** non-negative reals $\mathbb{R}_{\geq 0}$
 – from this point on, we will abbreviate $\mathbb{R}_{\geq 0}$ to \mathbb{R}

• **Finite set of clocks** $x \in X$
 – variables taking values from time domain \mathbb{R}
 – increase at the same rate as real time

• **A clock valuation** is a tuple $v \in \mathbb{R}^X$. Some notation:
 – $v(x)$: value of clock x in v
 – $v+t$: time increment of t for v
 · $(v+t)(x) = v(x)+t$ $\forall x \in X$
 – $v[Y:=0]$: clock reset of clocks $Y \subseteq X$ in v
 · $v[Y:=0](x) = 0$ if $x \in Y$ and $v(x)$ otherwise
Zones (clock constraints)

- Zones (clock constraints) over clocks X, denoted $\text{Zones}(X)$:

\[
\zeta ::= x \leq d \mid c \leq x \mid x+c \leq y+d \mid \neg \zeta \mid \zeta \lor \zeta
\]

- where $x, y \in X$ and $c, d \in \mathbb{N}$
- used for both syntax and algorithms

- Some useful classes of zones:
 - **closed**: no strict inequalities (e.g. $x>5$)
 - **convex**: define a convex set, efficient to manipulate

- Can derive:
 - logical connectives, e.g. $\zeta_1 \land \zeta_2 \equiv \neg(\neg \zeta_1 \lor \neg \zeta_2)$
 - strict inequalities, through negation, e.g. $x>5 \equiv \neg(x\leq5)\ldots$
Zones and clock valuations

• A clock valuation v satisfies a zone ζ, written $v \triangleright \zeta$ if
 – ζ resolves to true after substituting each clock x with $v(x)$

• The semantics of a zone $\zeta \in \text{Zones}(X)$ is the set of clock valuations which satisfy it (i.e. a subset of \mathbb{R}^X)
 – NB: multiple zones may have the same semantics
 – e.g. $(x \leq 2) \land (y \leq 1) \land (x \leq y + 2)$ and $(x \leq 2) \land (y \leq 1) \land (x \leq y + 3)$

• We consider only canonical zones
 – i.e. zones for which the constraints are as ‘tight’ as possible
 – $O(|X|^3)$ algorithm to compute (unique) canonical zone \cite{Dil89}
 – allows us to use syntax for zones interchangeably with semantic, set-theoretic operations
 – c-closure, $\text{close}(\zeta,c)$, ignores all constraints which are greater than c
Operations on zones – Set theoretic

- Intersection of two zones: $\zeta_1 \cap \zeta_2$
Operations on zones – Set theoretic

- Union of two zones: \(\zeta_1 \cup \zeta_2 \)
Operations on zones – Set theoretic

• Difference of two zones: $\zeta_1 \setminus \zeta_2$
Operations on zones – Clock resets

\[\zeta[Y:=0] = \{ v[Y:=0] \mid v \triangleright \zeta \} \]

– clock valuations obtained from \(\zeta \) by resetting the clocks in \(Y \)
Operations on zones: Projections

- Forwards diagonal projection
- \(\{ v | \exists t \geq 0 . (v-t) \triangleright \zeta \} \)
 - contains the clock valuations that can be reached from \(\zeta \) by letting time pass
Operations on zones: c–closure

- c–closure: close(ζ, c)
 - ignores all constraints which are greater than c
Overview (Part 5)

• Time, clocks and zones
• **Probabilistic timed automata (PTAs)**
 – definition, examples, semantics, time divergence
• **PTCTL: A temporal logic for PTAs**
 – syntax, examples, semantics
• **Model checking for PTAs**
 – the region graph
 – digital clocks
 – zone-based approaches:
 – (i) forwards reachability
 – (ii) backwards reachability
 – (iii) game-based abstraction refinement
• **Costs and rewards**
• **Parameter synthesis**
• Models a probabilistic real-time communication protocol
 – starts in location \(di \); after between 1 and 2 time units, the protocol attempts to send the data:
 • with probability 0.9 data is sent correctly, move to location \(sr \)
 • with probability 0.1 data is lost, move to location \(si \)
 – in location \(si \), after 2 to 3 time units, attempts to resend
 • correctly sent with probability 0.95 and lost with probability 0.05
Probabilistic timed automata (PTAs)

- Probabilistic timed automata (PTAs)
 - Markov decision processes (MDPs) + real-valued clocks
 - or: timed automata + discrete probabilistic choice
 - model probabilistic, nondeterministic and timed behaviour

- Syntax: A PTA is a tuple \((\text{Loc}, l_{\text{init}}, \text{Act}, X, \text{inv}, \text{prob}, L)\)
 - \text{Loc} is a finite set of locations
 - \(l_{\text{init}} \in \text{Loc}\) is the initial location
 - \text{Act} is a finite set of actions
 - \(X\) is a finite set of clocks
 - \text{inv} \colon \text{Loc} \to \text{Zones}(X)
 is the invariant condition
 - \text{prob} \subseteq \text{Loc} \times \text{Zones}(X) \times \text{Dist(}\text{Loc} \times 2^X\) is the probabilistic transition relation
 - \(L : \text{Loc} \to \text{AP}\) is a labelling function
Probabilistic transition relation

Probabilistic edge relation
- \(\text{prob} \subseteq \text{Loc} \times \text{Zones}(X) \times \text{Act} \times \text{Dist}(\text{Loc} \times 2^X) \)

Probabilistic transition \((l, g, a, p) \in \text{prob} \)
- \(l \) is the source location
- \(g \) is the guard
- \(a \) is the action
- \(p \) target distribution

Edge \((l, g, a, p, l', Y) \)
- from probabilistic edge \((l, g, a, p) \) where \(p(l', Y) > 0 \)
- \(l' \) is the target location
- \(Y \) is the set of clocks to be reset
PTAs – Behaviour

• A state of a PTA is a pair \((l,v) \in \text{Loc} \times \mathbb{R}^x\) such that \(v \triangleright \text{inv}(l)\)

• A PTAs start in the initial location with all clocks set to zero
 – let \(_0\) denote the clock valuation where all clocks have value 0

• For any state \((l,v)\), there is nondeterministic choice between making a discrete transition and letting time pass
 – discrete transition \((l,g,a,p)\) enabled if \(v \triangleright g\) and probability of moving to location \(l'\) and resetting the clocks \(Y\) equals \(p(l',Y)\)
 – time transition available only if invariant \(\text{inv}(l)\) is continuously satisfied while time elapses
PTA – Example

PTA:

Example execution:

\[(di, x=0)\]

1.1

\[(di, x=0.1)\]

\[(di, x=1.1)\]

\[(di, x=0)\]

\[(di, x=0.9)\]

\[retry\]

\[x = 0.95\]

\[send\]

\[x = 0.05\]

\[retry\]

\[x = 0.05\]

\[send\]

\[x = 0.05\]
PTAs – Formal semantics

• Formally, the semantics of a PTA P is an infinite-state MDP $M_P = (S_P, s_{\text{init}}, \text{Steps}, L_P)$ with:

• States: $S_P = \{ (l,v) \in \text{Loc} \times \mathbb{R}^X \text{ such that } v \triangleright \text{inv}(l) \}$

• Initial state: $s_{\text{init}} = (l_{\text{init}}, 0)$

• Steps: $S_P \rightarrow 2^{(\text{Act} \cup \mathbb{R}) \times \text{Dist}(S)}$ such that $(\alpha, \mu) \in \text{Steps}(l,v)$ iff:
 – (time transition) $\alpha = t \in \mathbb{R}$, $\mu(l,v+t) = 1$ and $v+t' \triangleright \text{inv}(l)$ for all $t' \leq t$
 – (discrete transition) $\alpha = a \in \text{Act}$ and there exists $(l,g,a,p) \in \text{prob}$ such that $v \triangleright g$ and, for any $(l',v') \in S_P$: $\mu(l',v') = \sum_{Y \subseteq X \wedge v[Y:=0]=v'} p(l', Y)$

• Labelling: $L_P(l,v) = L(l)$

actions of MDP M_p are the actions of PTA P or real time delays

multiple resets may give same clock valuation
We restrict our attention to time divergent behaviour
- a common restriction imposed in real-time systems
- unrealisable behaviour (i.e. corresponding to time not advancing beyond a time bound) is disregarded
- also called non-zeno behaviour

For a path \(\omega = s_0(\alpha_0, \mu_0)s_1(\alpha_1, \mu_1)s_2(\alpha_2, \mu_2)\ldots \) in the MDP \(M_P \)
- \(D_\omega(n) \) denotes the duration up to state \(s_n \)
- i.e. \(D_\omega(n) = \sum \{ | \alpha_i | \mid 0 \leq i < n \land \alpha_i \in \mathbb{R} \} \)

A path \(\omega \) is time divergent if, for any \(t \in \mathbb{R}_{\geq 0} \):
- there exists \(j \in \mathbb{N} \) such that \(D_\omega(j) > t \)

Example of non-divergent path:
- \(s_0(1, \mu_0)s_0(0.5, \mu_0)s_0(0.25, \mu_0)s_0(0.125, \mu_0)s_0\ldots \)
PTCTL – Syntax

- **PTCTL**: Probabilistic timed computation tree logic
 - derived from PCTL [BdA95] and TCTL [AD94]

- **Syntax**:
 \[\phi \ ::= \text{true} \mid a \mid \zeta \mid z. \phi \mid \phi \land \phi \mid \neg \phi \mid \text{P}_{\sim p}[\phi U \phi] \]

- **where**:
 - where \(Z \) is a set of formula clocks, \(\zeta \in \text{Zones}(X \cup Z), \ z \in Z \),
 - \(a \) is an atomic proposition, \(p \in [0,1] \) and \(\sim \in \{<,>,\leq,\geq\} \)

\[\phi U \phi \text{ is true with probability } \sim p \]

“zone over \(X \cup Z \)”

“freeze quantifier”
PTCTL – Examples

• \(z \cdot P_{>0.99}[\text{packet2unsent} U \text{packet1delivered} \land (z<5)] \)
 – “with probability greater than 0.99, the system delivers packet 1 within 5 time units and does not try to send packet 2 in the meantime”

• \(z \cdot P_{>0.95}[(x\leq3) U (z=8)] \)
 – “with probability at least 0.95, the system clock \(x \) does not exceed 3 before 8 time units elapse”

• \(z \cdot P_{\leq0.1}[\text{failure} \lor (z\leq60)] \)
 – “the system fails after the first 60 time units have elapsed with probability at most 0.01”
• Let \((l,v) \in S_p\) and \(\varepsilon \in \mathbb{R}^Z\) be a formula clock valuation.

Combined clock valuation of \(v\) and \(\varepsilon\) satisfies \(\zeta\):

- \((l,v),\varepsilon \models a\) \iff \(a \in L(l,v)\)
- \((l,v),\varepsilon \models \zeta\) \iff \(v,\varepsilon \triangleright \zeta\)
- \((l,v),\varepsilon \models z.\phi\) \iff \((l,v),\varepsilon[z:=0] \models \phi\)
- \((l,v),\varepsilon \models \phi_1 \land \phi_2\) \iff \((l,v),\varepsilon \models \phi_1\) and \((l,v),\varepsilon \models \phi_2\)
- \((l,v),\varepsilon \models \neg \phi\) \iff \((l,v),\varepsilon \models \phi\) is false
- \((l,v),\varepsilon \models P_{\neg p}[\psi]\) \iff \(\Pr^{A,p}_{(l,v)}\{ \omega \in \text{Path}^A(l,v) \mid \omega,\varepsilon \models \psi \} \sim p\)

For all adversaries \(A \in \text{Adv}_{M_p}\)

The probability of a path satisfying \(\psi\) meets \(\sim p\) for all divergent adversaries.
PTCTL – Semantics of until

- Let ω be a path in M_p and \mathcal{E} be a formula clock valuation
 - $\omega, \mathcal{E} \models \psi$ satisfaction of ψ by ω, assuming \mathcal{E} initially

- $\omega, \mathcal{E} \models \phi_1 \mathbf{U} \phi_2$ if and only if
 - there exists $i \in \mathbb{N}$ and $t \in D_\omega(i+1)-D_\omega(i)$ such that
 - $\omega(i)+t, \mathcal{E}+(D_\omega(i)+t) \models \phi_2$
 - $\forall t' \leq t . \omega(i)+t', \mathcal{E}+(D_\omega(i)+t') \models \phi_1 \lor \phi_2$
 - $\forall j<i . \forall t' \leq D_\omega(j+1)-D_\omega(j) . \omega(j)+t', \mathcal{E}+(D_\omega(j)+t') \models \phi_1 \lor \phi_2$

- Condition “$\phi_1 \lor \phi_2$” different from PCTL and CSL
 - usually ϕ_2 becomes true and ϕ_1 is true until this point
 - difference due to the density of the time domain
 - to allow for open intervals use disjunction $\phi_1 \lor \phi_2$
 - for example consider $x \leq 5 \mathbf{U} x > 5$ and $x < 5 \mathbf{U} x \geq 5$
For simplicity, in some cases, we just consider probabilistic reachability, rather than full PTCTL model checking:
- i.e. min/max probability of reaching a set of target locations
- can also encode time-bound reachability (with extra clock)

Still captures a wide range of properties:
- probabilistic reachability: “with probability at least 0.999, a data packet is correctly delivered”
- probabilistic invariance: “with probability 0.875 or greater, the system never aborts”
- probabilistic time-bound reachability: “with probability 0.01 or less, a data packet is lost within 5 time units”
- bounded response: “with probability 0.99 or greater, a data packet will always be delivered within 5 time units”
Overview (Part 5)

• Time, clocks and zones
• Probabilistic timed automata (PTAs)
 – definition, examples, semantics, time divergence
• PTCTL: A temporal logic for PTAs
 – syntax, examples, semantics
• Model checking for PTAs
 – the region graph
 – digital clocks
 – zone-based approaches:
 – (i) forwards reachability
 – (ii) backwards reachability
 – (iii) game-based abstraction refinement
• Costs and rewards
• Parameter synthesis
PTA model checking – Summary

• Several different approaches developed
 – basic idea: reduce to the analysis of a finite-state model
 – in most cases, this is a Markov decision process (MDP)

• Region graph construction [KNSS02]
 – shows decidability, but gives exponential complexity

• Digital clocks approach [KNPS06]
 – (slightly) restricted classes of PTAs
 – works well in practice, still some scalability limitations

• Zone-based approaches:
 – (preferred approach for non-probabilistic timed automata)
 – forwards reachability [KNSS02]
 – backwards reachability [KNSW07]
 – game-based abstraction refinement [KNP09c]
The region graph

- **Region graph construction for PTAs** [KNSS02]
 - adapts region graph construction for timed automata [ACD93]
 - partitions PTA states into a **finite** set of **regions**
 - based on notion of clock equivalence
 - construction is also dependent on PTCTL formula

- **For a PTA P and PTCTL formula ϕ**
 - construct a **time-abstract, finite-state MDP** $R(\phi)$
 - translate PTCTL formula ϕ to PCTL formula ϕ'
 - ϕ is preserved by region equivalence
 - i.e. ϕ holds in a state of M_P if and only if ϕ' holds in the corresponding state of $R(\phi)$
 - model check $R(\phi)$ using standard methods for MDPs
The region graph – Clock equivalence

- **Regions** are sets of clock equivalent clock valuations

- **Some notation:**
 - let c be largest constant appearing in PTA or PTCTL formula
 - let $\lfloor t \rfloor$ denotes the integral part of t
 - t and t' agree on their integral parts if and only if
 1. $\lfloor t \rfloor = \lfloor t' \rfloor$
 2. t and t' are both integers or neither is an integer

- **The clock valuations v and v' are clock equivalent ($v \cong v'$) if:**
 - for all clocks $x \in X$, either:
 - $v(x)$ and $v'(x)$ agree on their integral parts
 - $v(x) > c$ and $v'(x) > c$
 - for all clock pairs $x, x' \in X$, either:
 - $v(x) - v(x')$ and $v'(x) - v'(x')$ agree on their integral parts
 - $v(x) - v(x') > c$ and $v'(x) - v'(x') > c$
• Example regions (for 2 clocks x and y)

$x=1 \land y=2$

$x<y \land 1<x<2 \land 1<y<2$

$x=y \land 0<x<1$

$y=1 \land 2<x<3$
Region graph – Clock equivalence

• Fundamental result: if \(v \equiv v' \), then \(v \triangleright \zeta \iff v' \triangleright \zeta \)
 – it follows that \(r \triangleright \zeta \) is well defined for a region \(r \)

• \(r' \) is the successor region of \(r \), written \(\text{succ}(r) = r' \), if
 – for each \(v \in r \), there exists \(t > 0 \) such that \(v + t \in r' \)
 and \(v + t' \in r \cup r' \) for all \(t' < t \)
The region graph

- The region graph MDP is \((S_R, s_{init}, \text{Steps}_R, L_R)\) where...

 - the set of states \(S_R\) comprises pairs \((l, r)\) such that \(l\) is a location and \(r\) is a region over \(X \cup Z\)
 - the initial state is \((l_{init}, 0)\)
 - the set of actions is \(\{\text{succ}\} \cup \text{Act}\)
 - \(\text{succ}\) is a unique action denoting passage of time
 - the probabilistic transition function \(\text{Steps}_R\) is defined as:
 - \(S_R \times 2^{\{\text{succ}\} \cup \text{Act}} \times \text{Dist}(S_R)\)
 - \((\text{succ}, \mu) \in \text{Steps}_R(l, r)\) iff \(\mu(l, \text{succ}(r)) = 1\)
 - \((a, \mu) \in \text{Steps}_R(l, r)\) if and only if \(\exists (l, g, a, p) \in \text{prob}\) such that
 \[
 r \triangleright g \quad \text{and, for any} \quad (l', r') \in S_R: \quad \mu(l', r') = \sum_{Y \subseteq X \land r[Y := 0] = r'} p(l', Y)
 \]
 - the labelling is given by: \(L_R(l, r) = L(l)\)
Region graph – Example

- PTCTL formula: $z.P_{\neg p} [\text{true} \ U (sr<4)]$

\[
\begin{align*}
\text{Node} & \quad \text{Label} & \quad \text{Prob.} \\
\text{di, } x=z=0 & \quad \text{send} & \quad 0.9 \\
\text{di, } x=z=0 & \quad \text{retry} & \quad 0.1 \\
\text{di, } 0<x=z<1 & \quad \text{success} & \quad 0.9 \\
\text{di, } 0<x=z<1 & \quad \text{retry} & \quad 0.1 \\
\text{di, } x=z=1 & \quad \text{success} & \quad 0.95 \\
\text{di, } 1<x=z<2 & \quad \text{success} & \quad 0.05 \\
\end{align*}
\]
Region graph construction

- **Region graph**
 - useful for establishing *decidability* of model checking
 - or proving *complexity* results for model checking algorithms

- **But…**
 - the number of regions is *exponential* in the number of clocks and the size of largest constant
 - so model checking based on this is extremely expensive
 - and so not implemented (even for timed automata)

- **Improved approaches based on:**
 - digital clocks
 - zones (unions of regions)
Digital clocks

- **Simple idea:** Clocks can only take integer (digital) values
 - i.e. time domain is \mathbb{N} as opposed to \mathbb{R}
 - based on notion of ε-digitisation [HMP92]

- **Only applies to a restricted class of PTAs; zones must be:**
 - **closed** – no strict inequalities (e.g. $x > 5$)

- **Digital clocks semantics yields a finite-state MDP**
 - state space is a subset of $\text{Local} \times \mathbb{N}^X$, rather than $\text{Local} \times \mathbb{R}^X$
 - clocks bounded by c_{max} (max constant in PTA and formula)
 - then use standard techniques for finite-state MDPs
Example – Digital clocks

MDP: (digital clocks)

- \((\text{di}, x = z = 0)\) with probability 0.9
- \((\text{di}, x = z = 1)\) with probability 0.1
- \((\text{di}, x = z = 2)\) with probability 0.9

- \((\text{sr}, x = 0 \land z = 1)\) with probability 0.1
- \((\text{si}, x = 0 \land z = 1)\)
- \((\text{sr}, x = 0 \land z = 2)\)

- \((\text{si}, x = 1 \land z = 2)\)
- \((\text{si}, x = 2 \land z = 3)\)

PTA:

- \(x \leq 2\)
- \(x \geq 1\)
- \(x = 0\)
- \(x = 3\)

- **di**
 - send
 - \(x := 0\) with probability 0.9
 - \(x := 0\) with probability 0.05

- **sr**
 - true
 - \(x := 0\) with probability 0.95
 - \(x := 0\) with probability 0.05

- **si**
 - \(x \leq 3\)
 - \(x \geq 2\)
 - retry
 - \(x := 0\) with probability 0.1
 - \(x := 0\) with probability 0.05

- **PTA:**
 - : :
Digital clocks

• Digital clocks approach preserves:
 – minimum/maximum reachability probabilities
 – a subset of PTCTL properties
 – (no nesting, only closed zones in formulae)
 – only works for the initial state of the PTA
 – (but can be extended to any state with integer clock values)

• In practice:
 – translation from PTA to MDP can often be done manually
 – (by encoding the PTA directly into the PRISM language)
 – automated translations exist
 – many case studies, despite “closed” restriction

• Problem: can lead to very large MDPs
 – alleviated partially by efficient symbolic model checking
Zone-based approaches

- An alternative is to use zones to construct an MDP

- Conventional symbolic model checking relies on computing
 - $\text{post}(S')$ the states that can be reached from a state in S' in a single step
 - $\text{pre}(S')$ the states that can reach S' in a single step

- Extend these operators to include time passage
 - $d\text{post}[e](S')$ the states that can be reached from a state in S' by traversing the edge e
 - $t\text{post}(S')$ the states that can be reached from a state in S' by letting time elapse
 - $d\text{pre}[e](S')$ the states that can reach S' by traversing the edge e
 - $t\text{pre}(S')$ the states that can reach S' by letting time elapse
Zone-based approaches

• **Symbolic states** \((l, \zeta)\) where
 - \(l \in \text{Loc} \) (location)
 - \(\zeta\) is a zone over PTA clocks and formula clocks
 - generally fewer zones than regions

\[
\text{tpost}(l, \zeta) = (l, \neg \zeta \land \text{inv}(l))
\]
 - \(\neg \zeta\) can be reached from \(\zeta\) by letting time pass
 - \(\neg \zeta \land \text{inv}(l)\) must satisfy the **invariant** of the location \(l\)

\[
\text{tpre}(l, \zeta) = (l, \neg \zeta \land \text{inv}(l))
\]
 - \(\neg \zeta\) can reach \(\zeta\) by letting time pass
 - \(\neg \zeta \land \text{inv}(l)\) must satisfy the **invariant** of the location \(l\)
Zone-based approaches

• For an edge $e = (l,g,a,p,l',Y)$ where
 – l is the source
 – g is the guard
 – a is the action
 – l' is the target
 – Y is the clock reset

• $d_{post}[e](l,\zeta) = (l', (\zeta \land g)[Y:=0])$
 – $\zeta \land g$ satisfy the guard of the edge
 – $(\zeta \land g)[Y:=0]$ reset the clocks Y

• $d_{pre}[e](l',\zeta') = (l, [Y:=0] \zeta' \land (g \land inv(l)))$
 – $[Y:=0] \zeta'$ the clocks Y were reset
 – $[Y:=0] \zeta' \land (g \land inv(l))$ satisfied guard and invariant of l
Forwards reachability

- Based on the operation $\text{post}[e](l,\zeta) = t\text{post}(d\text{post}[e](l,\zeta))$
 - $(l',v') \in \text{post}[e](l,\zeta)$ if there exists $(l,v) \in (l,\zeta)$ such that after traversing edge e and letting time pass one can reach (l',v')

- Forwards algorithm (part 1)
 - start with initial state $S_F = \{t\text{post}((l_{\text{init}},0))\}$ then iterate
 for each symbolic state $(l,\zeta) \in S_F$ and edge e
 add $\text{post}[e](l,\zeta)$ to S_F
 - until set of symbolic states S_F does not change

- To ensure termination need to take c–closure of each zone encountered (c is the largest constant in the PTA)
Forwards reachability

- **Forwards algorithm (part 2)**
 - construct finite state MDP \((S_F, (l_{\text{init}}, O), \text{Steps}_F, L_F)\)

- states \(S_F\) (returned from first part of the algorithm)
- \(L_F(l, \zeta) = L(l)\) for all \((l, \zeta) \in S_F\)
- \(\mu \in \text{Steps}_F(l, \zeta)\) if and only if
 - there exists a probabilistic edge \((l, g, a, p)\) of PTA
 - such that for any \((l', \zeta') \in Z:\)

\[
\mu(l', \zeta') = \sum_{\text{edges}(p) \land \text{post}[e](l, \zeta) = (l', \zeta')} \left| p(l', X) \right|
\]

summation over all the edges of \((l, g, a, p)\) such that applying post to \((l, \zeta)\) leads to the symbolic state \((l', \zeta')\)
Forwards reachability – Example

PTA:

\[l_0 \xrightarrow{0.5} l_1, \text{x:=0} \]
\[l_1 \xrightarrow{0.5} l_0, \text{y:=0} \]
\[l_1 \xrightarrow{0.5} l_3, \text{x=0\land y=1} \]
\[l_3 \xrightarrow{0.5} l_2, \text{x=0\land y=0} \]

MDP:

\[(l_0, x\leq y) \]
\[(l_0, x=y) \]
\[(l_3, x=y) \]
Forwards reachability – Limitations

• Problem reduced to analysis of finite-state MDP, but...

• Only obtain upper bounds on maximum probabilities
 – caused by when edges are combined

• Suppose \(\text{post}[e_1](l, \zeta) = (l_1, \zeta_1) \) and \(\text{post}[e_2](l, \zeta) = (l_2, \zeta_2) \)
 – where \(e_1 \) and \(e_2 \) from the same probabilistic edge

• By definition of post
 – there exists \((l, v_i) \in (l, \zeta)\) such that a state in \((l_i, \zeta_i)\) can be reached by traversing the edge \(e_i \) and letting time pass

• Problem
 – we combine these transitions but are \((l, v_1)\) and \((l, v_2)\) the same?
 – may not exist states in \((l, \zeta)\) for which both edges are enabled
Forwards reachability – Example

• Maximum probability of reaching l_3 is 0.5 in the PTA
 – for the left branch need to take the first transition when $x=1$
 – for the right branch need to take the first transition when $x=0$
• However, in the forwards reachability graph probability is 1
 – can reach l_3 via either branch from $(l_0, x=y)$

PTA:

```
\begin{center}
\begin{tikzpicture}
  \node (l0) at (0,0) {$l_0$};
  \node (l1) at (1,1) {$l_1$};
  \node (l3) at (2,2) {$l_3$};
  \node (l2) at (3,1) {$l_2$};

  \path[->,thick]
  (l0) edge node[above] {$y:=0$} (l1)
  (l0) edge node[below] {$x:=0$} (l2)
  (l0) edge node {$0.5$} (true)
  (l1) edge node[above] {$x=0 \land y=1$} (l3)
  (l2) edge node[below] {$x=0 \land y=0$} (l3)
  (true) edge node[below] {$0.5$} (l3)
  (l1) edge node[above] {$0.5$} (l3)
  (l2) edge node[below] {$0.5$} (l3)
\end{tikzpicture}
\end{center}
```

MDP:

```
\begin{center}
\begin{tikzpicture}
  \node (l0) at (0,0) {$l_0$};
  \node (l3) at (1,1) {$l_3$};

  \path[->,thick]
  (l0) edge node[above] {$x=0 \land y=1$} (l3)
  (l0) edge node[below] {$x=0 \land y=0$} (l3)
  (l0) edge node[above] {$x=0 \land y=0$} (l3)
  (true) edge node[below] {$0.5$} (l3)
  (l1) edge node[above] {$0.5$} (l3)
  (l2) edge node[below] {$0.5$} (l3)
\end{tikzpicture}
\end{center}
```
An alternative zone-based method: backwards reachability

- state-space exploration in opposite direction, from target to initial states; uses pre rather than post operator

Basic ideas: (see [KNSW07] for details)

- construct a finite-state MDP comprising symbolic states
- need to keep track of branching structure and take conjunctions of symbolic states if necessary
- MDP yields maximum reachability probabilities for PTA
- for min. probs, do graph-based analysis and convert to max.

Advantages:
- gives (exact) minimum/maximum reachability probabilities
- extends to full PTCTL model checking

Disadvantage:
- operations to implement are expensive, limits applicability
- (requires manipulation of non-convex zones)
Overview (Part 5)

- Time, clocks and zones
- Probabilistic timed automata (PTAs)
 - definition, examples, semantics, time divergence
- PTCTL: A temporal logic for PTAs
 - syntax, examples, semantics
- Model checking for PTAs
 - the region graph
 - digital clocks
 - zone-based approaches:
 - (i) forwards reachability
 - (ii) backwards reachability
 - (iii) game-based abstraction refinement
- Costs and rewards
- Parameter synthesis
Abstraction

- Very successful in (non-probabilistic) formal methods
 - essential for verification of large/infinite-state systems
 - hide details irrelevant to the property of interest
 - yields smaller/finite model which is easier/feasible to verify
 - loss of precision: verification can return “don’t know”
- Construct abstract model of a concrete system
 - e.g. based on a partition of the concrete state space
 - an abstract state represents a set of concrete states

- Automatic generation of abstractions using refinement
 - start with a simple coarse abstraction; iteratively refine
Abstraction of MDPs

- Abstraction increases degree of nondeterminism
 - i.e. minimum probabilities are lower and maximums higher

- We construct abstractions of MDPs using stochastic games
 - yields lower/upper bounds for min/max probabilities
Abstraction refinement

• Consider (max) difference between lower/upper bounds
 – gives a quantitative measure of the abstraction’s precision

• If the difference (“error”) is too great, refine the abstraction
 – a finer partition yields a more precise abstraction
 – lower/upper bounds can tell us where to refine (which states)
 – (memoryless) strategies can tell us how to refine
Abstraction–refinement loop

- Quantitative abstraction–refinement loop for MDPs

- Refinements yield strictly finer partition

- Guaranteed to converge for finite models

- Guaranteed to converge for infinite models with finite bisimulation
Abstraction refinement for PTAs

• Model checking for PTAs using abstraction refinement

Initial abstraction from forwards reachability

Splitting of zones (DBMs)

Guaranteed convergence for any $\epsilon \geq 0$

Abstraction computed and stored using zones (DBMs)
Abstraction refinement for PTAs

• Computes reachability probabilities in PTAs
 – minimum or maximum, exact values ("error" \(\epsilon = 0 \))
 – also time-bounded reachability, with extra clock

• Integrated in PRISM (development release)
 – PRISM modelling language extended with clocks
 – implemented using DBMs

• In practice, performs very well
 – faster than digital clocks or backwards on large example set
 – (sometimes by several orders of magnitude)
 – handles larger PTAs than the digital clocks approach
Costs and rewards

• Like other models, we can define a reward structure \((\rho, \iota)\) for a probabilistic timed automaton

• \(\rho : \text{Loc} \rightarrow \mathbb{R}_{\geq 0}\) location reward function
 – \(\rho(l)\) is the rate at which the reward is accumulated in location \(l\)

• \(\iota : \text{Act} \rightarrow \mathbb{R}_{\geq 0}\) action reward function
 – \(\iota(a)\) is the reward associated with performing the action \(a\)

• Generalises notion for uniformly priced timed automata

• A useful special case is the elapsed time
 – \(\rho(l) = 1\) for all locations \(l \in \text{Loc}\)
 – \(\iota(a) = 0\) for all actions \(a \in \text{Act}\)
Expected reachability

• **Expected reachability:**
 – min./max. expected cumulated reward until some set of states (locations) is reached

• **Example properties**
 – “the maximum expected time until a data packet is delivered”
 – “the minimum expected number of retransmissions before the message is correctly delivered”
 – “the maximum expected number of lost messages within the first 200 seconds”

• **Model checking**
 – digital clocks semantics preserves expected reachability
 – so can use existing MDP reward model checking techniques
 – zone-based approaches solved recently [FORMATS 2015]
Summary

• **Probabilistic timed automata (PTAs)**
 - combine probability, nondeterminism, real-time
 - well suited for e.g. for randomised communication protocols
 - MDPs + clocks (or timed automata + discrete probability)
 - extension with continuous distributions exists, but model checking only approximate

• **PTCTL: Temporal logic for properties of PTAs**
 - but many useful properties expressible with just reachability

• **PTA model checking**
 - region graph: decidability results, exponential complexity
 - digital clocks: simple and effective, some scalability issues
 - forwards reachability: only upper bounds on max. prob.s
 - backwards reachability: exact results but often expensive
 - abstraction refinement using stochastic games: performs well
• **New features:**
 1. parametric model checking
 2. parameter synthesis
 3. strategy synthesis
 4. stochastic multi-player games
 5. *real-time: probabilistic timed automata (PTAs) [CAV 2015]*

• **Further new additions:**
 – enhanced statistical model checking
 (approximations + confidence intervals, acceptance sampling)
 – efficient CTMC model checking (fast adaptive uniformisation)
 – benchmark suite & testing functionality
 – www.prismmodelchecker.org

 – **Beyond PRISM…**
Modelling PTAs in PRISM

- **Probability + nondeterminism + real-time**
 - timed automata + discrete probabilistic choice, or...
 - probabilistic automata + real-valued clocks

- **PTA example**: message transmission over faulty channel

![Diagram of a PTA example]

States
- locations + data variables

Transitions
- guards and action labels

Real-valued clocks
- state invariants, guards, resets

Probability
- discrete probabilistic choice
Modelling PTAs in PRISM

- **PRISM modelling language**
 - textual language, based on guarded commands

```plaintext
pta
const int N;
module transmitter
  s : [0..3] init 0;
  tries : [0..N+1] init 0;
  x : clock;
  invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
  [send] s=0 & tries≤N & x≥1
    → 0.9 : (s'=3)
    + 0.1 : (s'=1) & (tries'=tries+1) & (x'=0);
  [retry] s=1 & x≥3 → (s' =0) & (x' =0);
  [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards
```
Modelling PTAs in PRISM

- PRISM modelling language
 - textual language, based on guarded commands

```plaintext
pta
const int N;
module transmitter
  s : [0..3] init 0;
  tries : [0..N+1] init 0;
  x : clock;
  invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant

  [send] s=0 & tries≤N & x≥1
    → 0.9 : (s’=3)
    + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
  [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
  [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards
```

Basic ingredients:
- modules
- variables
- commands
Modelling PTAs in PRISM

- **PRISM modelling language**
 - textual language, based on guarded commands

```plaintext
pta
const int N;
module transmitter
  s : [0..3] init 0;
  tries : [0..N+1] init 0;
  x : clock;
  invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
  [send] s=0 & tries≤N & x≥1 → 0.9 : (s’=3)
  + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
  [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
  [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards
```

Basic ingredients:
- modules
- variables
- commands

New for PTAs:
- clocks
- invariants
- guards/resets
Modelling PTAs in PRISM

- **PRISM modelling language**
 - textual language, based on guarded commands

```plaintext
pta
const int N;
module transmitter
  s : [0..3] init 0;
  tries : [0..N+1] init 0;
  x : clock;
  invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
[send] s=0 & tries≤N & x≥1
  → 0.9 : (s'=3)
  + 0.1 : (s'=1) & (tries'=tries+1) & (x'=0);
[retry] s=1 & x≥3 → (s' =0) & (x' =0);
[quit] s=0 & tries>N → (s' =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards
```

Basic ingredients:
- modules
- variables
- commands

New for PTAs:
- clocks
- invariants
- guards/resets

Also:
- rewards (i.e. costs, prices)
- parallel composition
Model checking PTAs in PRISM

- **Properties for PTAs:**
 - min/max probability of reaching X (within time T)
 - min/max expected cost/reward to reach X
 (for “linearly-priced” PTAs, i.e. reward gain linear with time)

- **PRISM has two different PTA model checking techniques...**

- **“Digital clocks” – conversion to finite-state MDP**
 - preserves min/max probability + expected cost/reward/price
 - (for PTAs with closed, diagonal-free constraints)
 - efficient, in combination with PRISM’s symbolic engines

- **Quantitative abstraction refinement**
 - zone-based abstractions of PTAs using stochastic games
 - provide lower/upper bounds on quantitative properties
 - automatic iterative abstraction refinement
PRISM: Recent & new developments

- **New features:**
 1. parametric model checking
 2. parameter synthesis
 3. strategy synthesis
 4. stochastic multi-player games
 5. real-time: probabilistic timed automata (PTAs) [CAV 2015]

- **Further new additions:**
 - enhanced statistical model checking (approximations + confidence intervals, acceptance sampling)
 - efficient CTMC model checking (fast adaptive uniformisation)
 - benchmark suite & testing functionality
 - www.prismmodelchecker.org

- Beyond PRISM...
Case study: Cardiac pacemaker

- **Develop model-based framework**
 - timed automata model for pacemaker software [Jiang et al]
 - hybrid heart models in Simulink, adopt synthetic ECG model (non-linear ODE) [Clifford et al]

- **Properties**
 - (basic safety) maintain 60–100 beats per minute
 - (advanced) detailed analysis of energy usage, plotted against timing parameters of the pacemaker
 - parameter synthesis: find values for timing delays that optimise energy usage
Optimal timing delays problem

- Optimal timing delay synthesis for timed automata [EMSOFT2014][HSB 2015]
- The parameter synthesis problem solved is
 - given a parametric network of timed I/O automata, set of controllable and uncontrollable parameters, CMTL property \(\phi \) and length of path \(n \)
 - find the optimal controllable parameter values, for any uncontrollable parameter values, with respect to an objective function \(O \), such that the property \(\phi \) is satisfied on paths of length \(n \), if such values exist
- Consider family of objective functions
 - maximise volume, minimise energy
- Discretise parameters, assume bounded integer parameter space and path length
 - decidable but high complexity (high time constants)
Optimal probability of timing delays

- Previously, no nondeterminism and no probability in the model considered
- Consider parametric probabilistic timed automata (PPTA),
 - e.g. guards of the form $x \leq b$,
- Can we synthesise optimal timing parameters to optimise the reachability probability?
- Semi-algorithm [RP 2014]
 - exploration of parametric symbolic states, i.e. location, time zone and parameter valuations
 - forward exploration only gives upper bounds on maximum probability (resp. lower for minimum)
 - but stochastic game abstraction yields the precise solution…
- Implementation in progress
Quantitative verification – Trends

- Being ‘younger’, generally lags behind conventional verification
 - much smaller model capacity
 - compositional reasoning in infancy
 - automation of model extraction/adaptation very limited

- Tool usage on the increase, in academic/industrial contexts
 - real-time verification/synthesis in embedded systems
 - probabilistic verification in security, reliability, performance

- Shift towards greater automation
 - specification mining, model extraction, synthesis, verification, ...

- But many challenges remain!
Acknowledgements

• My group and collaborators in this work
• Project funding
 – ERC, EPSRC, Microsoft Research
 – Oxford Martin School, Institute for the Future of Computing

• See also
 – VERIWARE www.veriware.org
 – PRISM www.prismmodelchecker.org
• You are welcome to visit Oxford!
• PhD scholarships, postdocs in verification and synthesis, and more
Thank you for your attention

More info here:
www.prismmodelchecker.org