
Probabilistic verification and synthesis

Marta Kwiatkowska

Department of Computer Science, University of Oxford

KTH, Stockholm, August 2015

2

Lecture plan

• Course slides and lab session

− http://www.prismmodelchecker.org/courses/kth15/

• 5 sessions: lectures 9-12noon, labs 2.30-5pm

− 1 – Introduction

− 2 – Discrete time Markov chains (DTMCs)

− 3 – Markov decision processes (MDPs)

− 4 – LTL model checking for DTMCs/MDPs

− 5 – Probabilistic timed automata (PTAs)

• For extended versions of this material

− and an accompanying list of references

− see: http://www.prismmodelchecker.org/lectures/

3

Probabilistic models

Discrete
time

Continuous
time

NondeterministicFully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)

Probabilistic timed
automata (PTAs)

Simple stochastic
games (SMGs)

Interactive Markov
chains (IMCs)

Probabilistic Timed Automata

Part 5

5

Recall – MDPs

• Markov decision processes (MDPs)

− mix probability and nondeterminism

− in a state, there is a nondeterministic choice between multiple
probability distributions over successor states

• Adversaries

− resolve nondeterministic choices based on history so far

− properties quantify over all possible adversaries

− e.g. P<0.1[◊err] – maximum probability of an error is < 0.1

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

6

Real-world protocol examples

• Systems with probability, nondeterminism and real-time

− e.g. communication protocols, randomised security protocols

• Randomised back-off schemes

− Ethernet, WiFi (802.11), Zigbee (802.15.4)

• Random choice of waiting time

− Bluetooth device discovery phase

− Root contention in IEEE 1394 FireWire

• Random choice over a set of possible addresses

− IPv4 dynamic configuration (link-local addressing)

• Random choice of a destination

− Crowds anonymity, gossip-based routing

7

Overview (Part 5)

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, time divergence

• PTCTL: A temporal logic for PTAs

− syntax, examples, semantics

• Model checking for PTAs

− the region graph

− digital clocks

− zone-based approaches:

− (i) forwards reachability

− (ii) backwards reachability

− (iii) game-based abstraction refinement

• Costs and rewards

• Parameter synthesis

8

Real-time systems verification

• Classical model checking

− labelled transition systems as models

− CTL as specification notation

• Many systems feature real-time aspects

− embedded systems

− in-car and in-flight systems

− communication protocols

− controllers

− etc

• Real-time model checking (e.g. UPPAAL)

− timed automata as models

− TCTL as specification notation

9

Light control example

Off Light Bright
press? press?

press?

press?

Spec:
If light is off, press switch once for dimmed light,
press switch twice quickly for bright light.
Otherwise the light is turned off.

Modelling…

10

Light control example

Off Light Bright
press? press?

press?

press?

Modelling…

Spec:
If light is off, press switch once for dimmed light,
press switch twice quickly for bright light.
Otherwise the light is turned off.

11

Light control example

Off Light Bright
press? press?

press?

press?

Modelling…

Spec:
If light is off, press switch once for dimmed light,
press switch twice quickly for bright light.
Otherwise the light is turned off.

12

Light control example

Off Light Bright
press? press?

press?

press?

Modelling…

Spec:
If light is off, press switch once for dimmed light,
press switch twice quickly for bright light.
Otherwise the light is turned off.

13

Light control example

Off Light Bright
press? press?

press?

press?

Modelling…

Spec:
If light is off, press switch once for dimmed light,
press switch twice quickly for bright light.
Otherwise the light is turned off.

14

Light control example

Off Light Bright
press? press?

press?

press?

Modelling…

Spec:
If light is off, press switch once for dimmed light,
press switch twice quickly for bright light.
Otherwise the light is turned off.

15

Light control example

Off Light Bright
press? press?

press?

press?

Modelling with time…

Spec:
If light is off, press switch once for dimmed light,
press switch twice quickly for bright light.
Otherwise the light is turned off.

x:=0 x<3

x ≥ 3

Clocks
•increase uniformly
•can be reset
•can be used in guards

and invariants.

16

Timed automata: basics

A timed automaton is a finite graph:

press? press?

press?

press?

Loc1 Loc2 Loc3

• Finite set of locations

• Finitely many labelled transitions between locations

• Transitions take no time (are instantaneous)

• Automaton can remain in a location for a period of time

Time passage
Continuous, rather than

discrete steps

17

Counting time: clocks

press? press?

press?

press?

t:=0

Loc1 Loc2 Loc3

Clocks, here t

• real-valued variables

• increase at the same rate as time

• initially t=0

• after a period in Loc1, it is reset to zero

Time elapse
Choice between

remaining in location
or taking transition

18

Guards

Guards enable progress

press? press?

press?

press?

t:=0 t<3

t ≥ 3

Loc1 Loc2 Loc3

Transitions in timed automata

• can be guarded

• a guard, e.g. t<3, is a constraint on the value of clock t

• specifies when the transition is enabled

• i.e. t=4 means precisely

Time elapse
Automaton can remain

here forever

19

Invariants

Loc1
Loc2 Loc3

t ≤ 12

press? press?

press?

press?

Invariants enforce progress

Deadlock
Automaton may

deadlock

t:=0 t<3

t ≥ 3

Locations in timed automata

• can have invariants

• i.e. a constraint for remaining in the location

20

Time, clocks and clock valuations

• Dense time domain: non-negative reals ℝ≥0

− from this point on, we will abbreviate ℝ≥0 to ℝ

• Finite set of clocks x ∈ X

− variables taking values from time domain ℝ

− increase at the same rate as real time

• A clock valuation is a tuple v ∈ ℝX. Some notation:

− v(x) : value of clock x in v

− v+t : time increment of t for v

• (v+t)(x) = v(x)+t ∀x ∈ X

− v[Y:=0] : clock reset of clocks Y ⊆ X in v

• v[Y:=0](x) = 0 if x ∈ Y and v(x) otherwise

21

Zones (clock constraints)

• Zones (clock constraints) over clocks X, denoted Zones(X):

− where x, y ∈ X and c, d ∈ ℕ

− used for both syntax and algorithms

• Can derive:

− logical connectives, e.g. ζ1∧ζ2 ≡ ¬(¬ζ1∨¬ζ2)

− strict inequalities, through negation, e.g. x>5 ≡ ¬(x≤5)…

• Some useful classes of zones:

− closed: no strict inequalities (e.g. x>5)

− convex: define a convex set, efficient to manipulate

ζ ::= x ≤ d | c ≤ x | x+c ≤ y+d | ¬ζ | ζ ∨ ζ

22

Zones and clock valuations

• A clock valuation v satisfies a zone ζ, written v ⊲ ζ if

− ζ resolves to true after substituting each clock x with v(x)

• The semantics of a zone ζ ∈ Zones(X) is the set of clock
valuations which satisfy it (i.e. a subset of ℝX)

− NB: multiple zones may have the same semantics

− e.g. (x≤2)∧(y≤1)∧(x≤y+2) and (x≤2)∧(y≤1)∧(x≤y+3)

• We consider only canonical zones

− i.e. zones for which the constraints are as ‘tight’ as possible

− O(|X|3) algorithm to compute (unique) canonical zone [Dil89]

− allows us to use syntax for zones interchangeably with
semantic, set-theoretic operations

− c-closure ,close(ζ,c), ignores all constraints which are greater
than c

23

Operations on zones – Set theoretic

• Intersection of two zones: ζ1∩ζ2

(0,0) x

y

(0,0) x

y

ζ1∩ζ2

ζ1

ζ2

24

Operations on zones – Set theoretic

• Union of two zones: ζ1∪ζ2

(0,0) x

y

(0,0) x

y ζ1∪ζ2

ζ1

ζ2

25

Operations on zones – Set theoretic

• Difference of two zones: ζ1\ζ2

(0,0) x

y

ζ1

ζ2

(0,0) x

y
ζ1\ζ2

26

Operations on zones – Clock resets

• ζ[Y:=0] = { v[Y:=0] | v⊲ζ }

− clock valuations obtained from ζ by resetting the clocks in Y

(0,0) x

y

ζ [y:=0]

(0,0) x

y

ζ

27

Operations on zones: Projections

• Forwards diagonal projection

• ր ζ = { v | ∃t≥0 . (v-t)⊲ζ }

− contains the clock valuations that can be
reached from ζ by letting time pass

(0,0) x

y

ζ

x

y

ր ζ

28

Operations on zones: c-closure

• c-closure: close(ζ,c)

− ignores all constraints which are greater than c

close(ζ,c)

(0,0) x

y

ζ

c

c (0,0) x

y

c

c

29

Overview (Part 5)

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, time divergence

• PTCTL: A temporal logic for for PTAs

− syntax, examples, semantics

• Model checking for PTAs

− the region graph

− digital clocks

− zone-based approaches:

− (i) forwards reachability

− (ii) backwards reachability

− (iii) game-based abstraction refinement

• Costs and rewards

• Parameter synthesis

30

Probabilistic timed automaton (PTA)

• Models a probabilistic real-time communication protocol

− starts in location di; after between 1 and 2 time units, the
protocol attempts to send the data:

• with probability 0.9 data is sent correctly, move to location sr

• with probability 0.1 data is lost, move to location si

− in location si, after 2 to 3 time units, attempts to resend

• correctly sent with probability 0.95 and lost with probability 0.05

invariant

guard

clock reset action

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0

31

Probabilistic timed automata (PTAs)

• Probabilistic timed automata (PTAs)

− Markov decision processes (MDPs) + real-valued clocks

− or: timed automata + discrete probabilistic choice

− model probabilistic, nondeterministic and timed behaviour

• Syntax: A PTA is a tuple (Loc, linit, Act, X, inv, prob, L)

− Loc is a finite set of locations

− linit ∈ Loc is the initial location

− Act is a finite set of actions

− X is a finite set of clocks

− inv : Loc → Zones(X)
is the invariant condition

− prob ⊆ Loc×Zones(X)×Dist(Loc×2X)
is the probabilistic transition relation

− L : Loc → AP is a labelling function

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0

32

Probabilistic transition relation

• Probabilistic edge relation

− prob ⊆ Loc×Zones(X)×Act×Dist(Loc×2X)

• Probabilistic transition (l,g,a,p) ∈ prob

− l is the source location

− g is the guard

− a is the action

− p target distribution

• Edge (l,g,a,p,l’,Y)

− from probabilistic edge (l,g,a,p) where p(l’,Y)>0

− l’ is the target location

− Y is the set of clocks to be reset

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0

33

PTAs - Behaviour

• A state of a PTA is a pair (l,v) ∈ Loc×ℝX such that v ⊲ inv(l)

• A PTAs start in the initial location with all clocks set to zero

− let 0 denote the clock valuation where all clocks have value 0

• For any state (l,v), there is nondeterministic choice between
making a discrete transition and letting time pass

− discrete transition (l,g,a,p) enabled if v ⊲ g and probability of
moving to location l’ and resetting the clocks Y equals p(l’,Y)

− time transition available only if invariant inv(l) is continuously
satisfied while time elapses

34

PTA - Example

(di,x=0)

1.1

(di,x=1.1)

send
0.10.9

(sr,x=0) (si,x=0)

2.7

(si,x=2.7)

retry
0.050.95

(sr,x=0) (si,x=0)

8.66

(sr,x=8.66)

⋮

⋮ ⋮

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0

PTA: Example
execution:

35

PTAs - Formal semantics

• Formally, the semantics of a PTA P is an infinite-state MDP
MP = (SP, sinit, Steps, LP) with:

• States: SP = { (l,v) ∈ Loc × ℝX such that v ⊲ inv(l) }

• Initial state: sinit = (linit, 0)

• Steps: SP → 2(Act∪ℝ)×Dist(S) such that (α, µ) ∈ Steps(l,v) iff:

− (time transition) α=t∈ℝ, µ(l,v+t)=1 and v+t’⊲inv(l) for all t’≤t

− (discrete transition) α=a∈Act and there exists (l,g,a,p) ∈ prob

such that v⊲g and, for any (l’,v’) ∈ SP:

• Labelling: LP(l,v) = L(l)

µ(l',v') = p(l',Y)
Y ⊆X∧v[Y:=0]=v'

∑

actions of MDP MP are the actions
of PTA P or real time delays

multiple resets may give
same clock valuation

36

Time divergence

• We restrict our attention to time divergent behaviour

− a common restriction imposed in real-time systems

− unrealisable behaviour (i.e. corresponding to time not

advancing beyond a time bound) is disregarded

− also called non-zeno behaviour

• For a path ω=s0(α0,µ0)s1(α1,µ1)s2(α2,µ2)... in the MDP MP

− Dω(n) denotes the duration up to state sn

− i.e. Dω(n) = ∑ {| αi | 0≤i<n ∧ αi ∈ ℝ |}

• A path ω is time divergent if, for any t∈ℝ≥0:

− there exists j ∈ ℕ such that Dω(j)>t

• Example of non-divergent path:

− s0(1,µ0)s0(0.5,µ0)s0(0.25,µ0)s0(0.125,µ0)s0…

38

PTCTL - Syntax

• PTCTL: Probabilistic timed computation tree logic

− derived from PCTL [BdA95] and TCTL [AD94]

• Syntax:

− φ ::= true | a | ζ | z. φ | φ ∧ φ | ¬φ | P~p [φ U φ]

• where:

− where Z is a set of formula clocks, ζ ∈ Zones(X∪Z), z ∈ Z,

− a is an atomic proposition, p ∈ [0,1] and ~ ∈ {<,>,≤,≥}

“freeze quantifier”“zone over X∪Z”

φ U φ is true with probability ~p

39

PTCTL - Examples

• z . P>0.99 [packet2unsent U packet1delivered ∧ (z<5)]

− “with probability greater than 0.99, the system delivers packet
1 within 5 time units and does not try to send packet 2 in the
meantime”

• z . P>0.95[(x≤3) U (z=8)]

− “with probability at least 0.95, the system clock x does not
exceed 3 before 8 time units elapse”

• z . P≤0.1[G (failure ∨ (z≤60))]

− “the system fails after the first 60 time units have elapsed with
probability at most 0.01”

40

PTCTL - Semantics

• Let (l,v) ∈ SP and ℇ ∈ ℝZ be a formula clock valuation

− (l,v),ℇ ⊨ a ⇔ a ∈ L(l,v)

− (l,v),ℇ ⊨ ζ ⇔ v,ℇ ⊲ ζ

− (l,v),ℇ ⊨ z.φ ⇔ (l,v),ℇ[z:=0] ⊨ φ

− (l,v),ℇ ⊨ φ1 ∧ φ2 ⇔ (l,v),ℇ ⊨ φ1 and (l,v),ℇ ⊨ φ2

− (l,v),ℇ ⊨ ¬φ ⇔ (l,v),ℇ ⊨ φ is false

− (l,v),ℇ ⊨ P~p[ψ] ⇔ PrA
(l,v){ ω∈PathA(l,v) | ω,ℇ ⊨ ψ } ~ p

for all adversaries A∈AdvMP

after resetting z,
φ is satisfied

combined clock valuation of v and ℇ
satisfies ζ

the probability of a path satisfying ψ meets ~p
for all divergent adversaries

41

PTCTL - Semantics of until

• Let ω be a path in MP and ℇ be a formula clock valuation

− ω,ℇ ⊨ ψ satisfaction of ψ by ω, assuming ℇ initially

• ω,ℇ ⊨ φ1 U φ2 if and only if

there exists i ∈ ℕ and t ∈ Dω(i+1)-Dω(i) such that

− ω(i)+t,ℇ+(Dω(i)+t) ⊨ φ2

− ∀ t’≤t . ω(i)+t’,ℇ+(Dω(i)+t’) ⊨ φ1 ∨ φ2

− ∀ j<i . ∀ t’≤ Dω(j+1)-Dω(j) . ω(j)+t’,ℇ+(Dω(j)+t’) ⊨ φ1 ∨ φ2

• Condition “φ1 ∨ φ2” different from PCTL and CSL

− usually φ2 becomes true and φ1 is true until this point

− difference due to the density of the time domain

− to allow for open intervals use disjunction φ1 ∨ φ2

− for example consider x≤5 U x>5 and x<5 U x≥5

42

Probabilistic reachability in PTAs

• For simplicity, in some cases, we just consider probabilistic
reachability, rather than full PTCTL model checking

− i.e. min/max probability of reaching a set of target locations

− can also encode time-bounded reachability (with extra clock)

• Still captures a wide range of properties

− probabilistic reachability: “with probability at least 0.999, a
data packet is correctly delivered”

− probabilistic invariance: “with probability 0.875 or greater, the
system never aborts”

− probabilistic time-bounded reachability: “with probability 0.01
or less, a data packet is lost within 5 time units”

− bounded response: “with probability 0.99 or greater, a data
packet will always be delivered within 5 time units”

43

Overview (Part 5)

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, time divergence

• PTCTL: A temporal logic for for PTAs

− syntax, examples, semantics

• Model checking for PTAs

− the region graph

− digital clocks

− zone-based approaches:

− (i) forwards reachability

− (ii) backwards reachability

− (iii) game-based abstraction refinement

• Costs and rewards

• Parameter synthesis

44

PTA model checking - Summary

• Several different approaches developed

− basic idea: reduce to the analysis of a finite-state model

− in most cases, this is a Markov decision process (MDP)

• Region graph construction [KNSS02]

− shows decidability, but gives exponential complexity

• Digital clocks approach [KNPS06]

− (slightly) restricted classes of PTAs

− works well in practice, still some scalability limitations

• Zone-based approaches:

− (preferred approach for non-probabilistic timed automata)

− forwards reachability [KNSS02]

− backwards reachability [KNSW07]

− game-based abstraction refinement [KNP09c]

45

The region graph

• Region graph construction for PTAs [KNSS02]

− adapts region graph construction for timed automata [ACD93]

− partitions PTA states into a finite set of regions

− based on notion of clock equivalence

− construction is also dependent on PTCTL formula

• For a PTA P and PTCTL formula φ

− construct a time-abstract, finite-state MDP R(φ)

− translate PTCTL formula φ to PCTL formula φ’

− φ is preserved by region quivalence

− i.e. φ holds in a state of MP if and only if φ’ holds in the
corresponding state of R(φ)

− model check R(φ) using standard methods for MDPs

46

The region graph - Clock equivalence

• Regions are sets of clock equivalent clock valuations

• Some notation:

− let c be largest constant appearing in PTA or PTCTL formula

− let ⌊t⌋ denotes the integral part of t

− t and t’ agree on their integral parts if and only if

(1) ⌊t⌋ = ⌊t’⌋

(2) t and t’ are both integers or neither is an integer

• The clock valuations v and v’ are clock equivalent (v ≅ v’) if:

− for all clocks x ∈ X, either:

• v(x) and v’(x) agree on their integral parts

• v(x)>c and v’(x)>c

− for all clock pairs x,x’ ∈ X, either:

• v(x) − v(x’) and v’(x) − v’(x’) agree on their integral parts

• v(x) − v(x’) > c and v’(x) − v’(x’) > c

47

Region graph - Clock equivalence

• Example regions (for 2 clocks x and y)

(0,0) x

y

x=y ∧ 0<x<1

x=1 ∧ y=2

y=1 ∧ 2<x<3

x<y ∧ 1<x<2 ∧ 1<y<2

48

Region graph - Clock equivalence

• Fundamental result: if v ≅ v’, then v ⊲ ζ ⇔ v’ ⊲ ζ

− it follows that r ⊲ ζ is well defined for a region r

• r’ is the successor region of r, written succ(r) = r’, if

− for each v∈r, there exists t>0 such that v+t ∈ r’

and v+t’ ∈ r∪r’ for all t’< t

(0,0) x

y

49

The region graph

• The region graph MDP is (SR,sinit,StepsR,LR) where…

− the set of states SR comprises pairs (l,r) such that l is a
location and r is a region over X ∪ Z

− the initial state is (linit, 0)

− the set of actions is {succ} ∪ Act

• succ is a unique action denoting passage of time

− the probabilistic transition function StepsR is defined as:

− SR × 2({succ}∪Act)×Dist(SR)

− (succ,µ) ∈ StepsR(l,r) iff µ(l,succ(r))=1

− (a,µ) ∈ StepsR(l,r) if and only if ∃ (l,g,a,p) ∈ prob such that

r ⊲ g and, for any (l’,r’) ∈ SR:

− the labelling is given by: LR(l,r) = L(l)

µ(l' ,r') = p(l' , Y)
Y ⊆ X ∧r[Y :=0] =r'

∑

50

Region graph - Example

• PTCTL formula: z.P~p [true U (sr<4)]

(di,x=z=0) (di,0<x=z<1)
succ

(di,x=z=1)
succ succ

(di,1<x=z<2)

(sr,x=0∧z=1) (si,x=0∧z=1)

0.9 0.1

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0

51

Region graph construction

• Region graph

− useful for establishing decidability of model checking

− or proving complexity results for model checking algorithms

• But…

− the number of regions is exponential in the number of clocks
and the size of largest constant

− so model checking based on this is extremely expensive

− and so not implemented (even for timed automata)

• Improved approaches based on:

− digital clocks

− zones (unions of regions)

52

Digital clocks

• Simple idea: Clocks can only take integer (digital) values

− i.e. time domain is ℕ as opposed to ℝ

− based on notion of ε-digitisation [HMP92]

• Only applies to arestricted class of PTAs; zones must be:

− closed – no strict inequalities (e.g. x>5)

• Digital clocks semantics yields a finite-state MDP

− state space is a subset of Loc × ℕX, rather than Loc × ℝX

− clocks bounded by cmax (max constant in PTA and formula)

− then use standard techniques for finite –state MDPs

53

Example - Digital clocks

(di,x=z=0) (di,x=z=1) (di,x=z=2)

(sr,x=0∧z=1) (si,x=0∧z=1)

0.9 0.1

(si,x=1∧z=2)

(si,x=2∧z=3)

(sr,x=0∧z=3) (si,x=0∧z=3)

0.95 0.05

0.1
0.9

(sr,x=0∧z=2)

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0
PTA:

⋮ ⋮

MDP:
(digital
clocks)

54

Digital clocks

• Digital clocks approach preserves:

− minimum/maximum reachability probabilities

− a subset of PTCTL properties

− (no nesting, only closed zones in formulae)

− only works for the initial state of the PTA

− (but can be extended to any state with integer clock values)

• In practice:

− translation from PTA to MDP can often be done manually

− (by encoding the PTA directly into the PRISM language)

− automated translations exist

− many case studies, despite “closed” restriction

• Problem: can lead to very large MDPs

− alleviated partially by efficient symbolic model checking

55

Zone-based approaches

• An alternative is to use zones to construct an MDP

• Conventional symbolic model checking relies on computing

− post(S’) the states that can be reached from a state in S’ in a
single step

− pre(S’) the states that can reach S’ in a single step

• Extend these operators to include time passage

− dpost[e](S’) the states that can be reached from a state in S’
by traversing the edge e

− tpost(S’) the states that can be reached from a state in S’ by
letting time elapse

− pre[e](S’) the states that can reach S’ by traversing the edge e

− tpre(S’) the states that can reach S’ by letting time elapse

56

Zone-based approaches

• Symbolic states (l, ζ) where

− l ∈ Loc (location)

− ζ is a zone over PTA clocks and formula clocks

− generally fewer zones than regions

• tpost(l,ζ) = (l, րζ∧inv(l))

− րζ can be reached from ζ by letting time pass

− րζ∧inv(l) must satisfy the invariant of the location l

• tpre(l,ζ) = (l, ւζ∧inv(l))

− ւ ζ can reach ζ by letting time pass

− ւ ζ∧ inv(l) must satisfy the invariant of the location l

57

Zone-based approaches

• For an edge e= (l,g,a,p,l’,Y) where

− l is the source

− g is the guard

− a is the action

− l’ is the target

− Y is the clock reset

• dpost[e](l,ζ) = (l’, (ζ∧g)[Y:=0])

− ζ∧g satisfy the guard of the edge

− (ζ∧g)[Y:=0] reset the clocks Y

• dpre[e](l’,ζ’) = (l, [Y:=0]ζ’ ∧ (g ∧ inv(l)))

− [Y:=0]ζ’ the clocks Y were reset

− [Y:=0]ζ’ ∧ (g ∧ inv(l)) satisfied guard and invariant of l

58

Forwards reachability

• Based on the operation post[e](l,ζ) = tpost(dpost[e](l,ζ))

− (l’,v’) ∈ post[e](l,ζ) if there exists (l,v) ∈ (l,ζ) such that after
traversing edge e and letting time pass one can reach (l’,v’)

• Forwards algorithm (part 1)

− start with initial state SF={tpost((linit,0))} then iterate

for each symbolic state (l,ζ) ∈ SF and edge e

add post[e](l,ζ) to SF

− until set of symbolic states SF does not change

• To ensure termination need to take c-closure of each zone
encountered (c is the largest constant in the PTA)

59

Forwards reachability

• Forwards algorithm (part 2)

− construct finite state MDP (SF,(linit,0),StepsF,LF)

− states SF (returned from first part of the algorithm)

− LF(l,ζ)=L(l) for all (l,ζ) ∈ SF

− µ ∈ StepsF(l,ζ) if and only if

there exists a probabilistic edge (l,g,a,p) of PTA
such that for any (l’, ζ’) ∈ Z:

summation over all the edges of (l,g,a,p) such that
applying post to (l,ζ) leads to the symbolic state (l’,ζ’)

|})'ζ,'l()ζ,l([e])p(edges)X,'l,p,σ,g,l(|)X,'l(p{|)'ζ,'l(µ =∧∈=∑ post

60

Forwards reachability - Example

l1

0.5
x:=0

l2

l3

l0

0.5
true

x=0∧y=1
x=0∧y=0

y:=0

0.5

(l0,x=y)

0.5

(l0,x≤y) (l0,x=y)

(l3,x=y)PTA: MDP:

61

Forwards reachability - Limitations

• Problem reduced to analysis of finite-state MDP, but…

• Only obtain upper bounds on maximum probabilities

− caused by when edges are combined

• Suppose post[e1](l,ζ)=(l1,ζ1) and post[e2](l,ζ)=(l2, ζ2)

− where e1 and e2 from the same probabilistic edge

• By definition of post

− there exists (l,vi) ∈ (l,ζ) such that a state in (li, ζi) can be
reached by traversing the edge ei and letting time pass

• Problem

− we combine these transitions but are (l,v1) and (l,v2) the same?

− may not exist states in (l,ζ) for which both edges are enabled

62

Forwards reachability - Example

• Maximum probability of reaching l3 is 0.5 in the PTA

− for the left branch need to take the first transition when x=1

− for the right branch need to take the first transition when x=0

• However, in the forwards reachability graph probability is 1

− can reach l3 via either branch from (l0,x=y)

l1

0.5
x:=0

l2

l3

l0

0.5
true

x=0∧y=1
x=0∧y=0

y:=0

0.5

(l0,x=y)

0.5

(l0,x≤y) (l0,x=y)

(l3,x=y)PTA: MDP:

63

Backwards reachability

• An alternative zone-based method: backwards reachability

− state-space exploration in opposite direction, from target to
initial states; uses pre rather than post operator

• Basic ideas: (see [KNSW07] for details)

− construct a finite-state MDP comprising symbolic states

− need to keep track of branching structure and take
conjunctions of symbolic states if necessary

− MDP yields maximum reachability probabilities for PTA

− for min. probs, do graph-based analysis and convert to max.

• Advantages:

− gives (exact) minimum/maximum reachability probabilities

− extends to full PTCTL model checking

• Disadvantage:

− operations to implement are expensive, limits applicability

− (requires manipulation of non-convex zones)

64

Overview (Part 5)

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, time divergence

• PTCTL: A temporal logic for for PTAs

− syntax, examples, semantics

• Model checking for PTAs

− the region graph

− digital clocks

− zone-based approaches:

− (i) forwards reachability

− (ii) backwards reachability

− (iii) game-based abstraction refinement

• Costs and rewards

• Parameter synthesis

65

Abstraction

• Very successful in (non-probabilistic) formal methods

− essential for verification of large/infinite-state systems

− hide details irrelevant to the property of interest

− yields smaller/finite model which is easier/feasible to verify

− loss of precision: verification can return “don’t know”

• Construct abstract model of a concrete system

− e.g. based on a partition of the concrete state space

− an abstract state represents a set of concrete states

• Automatic generation of abstractions using refinement

− start with a simple coarse abstraction; iteratively refine

66

Abstraction of MDPs

• Abstraction increases degree of nondeterminism

− i.e. minimum probabilities are lower and maximums higher

• We construct abstractions of MDPs using stochastic games

− yields lower/upper bounds for min/max probabilities

0 1ps
min ps

max

0 1ps
min ps

max

11

0.2
0.8

0.5 0.10.8

1

0.5

1

0.1

1

abstract

67

Abstraction refinement

• Consider (max) difference between lower/upper bounds

− gives a quantitative measure of the abstraction’s precision

• If the difference (“error”) is too great, refine the abstraction

− a finer partition yields a more precise abstraction

− lower/upper bounds can tell us where to refine (which states)

− (memoryless) strategies can tell us how to refine

0 1ps
min(F) ps

max(F)

68

Abstraction-refinement loop

• Quantitative abstraction-refinement loop for MDPs

[error<ε]

Initial
partition

Bounds and
strategies

[error≥ε]

model
check

abstract

refine

New
partition

Return
bounds

Abstraction • Refinements yield
strictly finer partition

• Guaranteed to
converge for finite
models

• Guaranteed to
converge for infinite
models with finite
bisimulation

69

Abstraction refinement for PTAs

• Model checking for PTAs using abstraction refinement

[error<ε]

Initial
partition

Bounds and
strategies

[error≥ε]

model
check

abstract

refine

New
partition

Return
bounds

Abstraction
Initial

abstraction
from

forwards
reachability

Splitting of
zones (DBMs)

Guaranteed
convergence
for any ε≥0

Abstraction
computed
and stored

using zones
(DBMs)

70

Abstraction refinement for PTAs

• Computes reachability probabilities in PTAs

− minimum or maximum, exact values (“error” ε=0)

− also time-bounded reachability, with extra clock

• Integrated in PRISM (development release)

− PRISM modelling language extended with clocks

− implemented using DBMs

• In practice, performs very well

− faster than digital clocks or backwards on large example set

− (sometimes by several orders of magnitude)

− handles larger PTAs than the digital clocks approach

71

Costs and rewards

• Like other models, we can define a reward structure (ρ,ι)
for a probabilistic timed automaton

• ρ : Loc →ℝ≥0 location reward function

− ρ(l) is the rate at which the reward is accumulated in location l

• ι : Act →ℝ≥0 action reward function

− ι(a) is the reward associated with performing the action a

• Generalises notion for uniformly priced timed automata

• A useful special case is the elapsed time

− ρ(l)=1 for all locations l ∈ Loc

− ι(a)=0 for all actions a ∈ Act

72

Expected reachability

• Expected reachability:

− min./max. expected cumulated reward until some set of
states (locations) is reached

• Example properties

− “the maximum expected time until a data packet is delivered”

− “the minimum expected number of retransmissions before the
message is correctly delivered”

− “the maximum expected number of lost messages within the
first 200 seconds”

• Model checking

− digital clocks semantics preserves expected reachability

− so can use existing MDP reward model checking techniques

− zone-based approaches solved recently [FORMATS 2015]

73

Summary

• Probabilistic timed automata (PTAs)

− combine probability, nondeterminism, real-time

− well suited for e.g. for randomised communication protocols

− MDPs + clocks (or timed automata + discrete probability)

− extension with continuous distributions exists, but model
checking only approximate

• PTCTL: Temporal logic for properties of PTAs

− but many useful properties expressible with just reachability

• PTA model checking

− region graph: decidability results, exponential complexity

− digital clocks: simple and effective, some scalability issues

− forwards reachability: only upper bounds on max. prob.s

− backwards reachability: exact results but often expensive

− abstraction refinement using stochastic games: performs well

74

PRISM: Recent & new developments

• New features:

1. parametric model checking

2. parameter synthesis

3. strategy synthesis

4. stochastic multi-player games

5. real-time: probabilistic timed automata (PTAs) [CAV 2015]

• Further new additions:

− enhanced statistical model checking
(approximations + confidence intervals, acceptance sampling)

− efficient CTMC model checking (fast adaptive uniformisation)

− benchmark suite & testing functionality

− www.prismmodelchecker.org

− Beyond PRISM…

75

Modelling PTAs in PRISM

• Probability + nondeterminism + real-time

− timed automata + discrete probabilistic choice, or…

− probabilistic automata + real-valued clocks

• PTA example: message transmission over faulty channel

“init”

x≤2

0.9

retry

“done”

true

“lost”

x≤5

“fail”

true

quit

send
x≥3

x:=0

0.1

x≥1∧tries≤N

tries:=0

tries>N

x:=0,
tries:=tries+1

States
• locations + data variables

Transitions
• guards and action labels

Real-valued clocks
• state invariants, guards, resets

Probability
• discrete probabilistic choice

76

Modelling PTAs in PRISM

• PRISM modelling language

− textual language, based on guarded commands

pta

const int N;

module transmitter

s : [0..3] init 0;
tries : [0..N+1] init 0;

x : clock;

invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant

[send] s=0 & tries≤N & x≥1
→ 0.9 : (s’=3)
+ 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);

[retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
[quit] s=0 & tries>N → (s’ =2);

endmodule

rewards “energy” (s=0) : 2.5; endrewards

77

Modelling PTAs in PRISM

• PRISM modelling language

− textual language, based on guarded commands

pta

const int N;

module transmitter

s : [0..3] init 0;
tries : [0..N+1] init 0;

x : clock;

invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant

[send] s=0 & tries≤N & x≥1
→ 0.9 : (s’=3)
+ 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);

[retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
[quit] s=0 & tries>N → (s’ =2);

endmodule

rewards “energy” (s=0) : 2.5; endrewards

Basic ingredients:

• modules
• variables
• commands

78

Modelling PTAs in PRISM

• PRISM modelling language

− textual language, based on guarded commands

pta

const int N;

module transmitter

s : [0..3] init 0;
tries : [0..N+1] init 0;

x : clock;

invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant

[send] s=0 & tries≤N & x≥1
→ 0.9 : (s’=3)
+ 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);

[retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
[quit] s=0 & tries>N → (s’ =2);

endmodule

rewards “energy” (s=0) : 2.5; endrewards

New for PTAs:

• clocks
• invariants
• guards/resets

Basic ingredients:

• modules
• variables
• commands

79

Modelling PTAs in PRISM

• PRISM modelling language

− textual language, based on guarded commands

New for PTAs:

• clocks
• invariants
• guards/resets

Basic ingredients:

• modules
• variables
• commands

Also:

• rewards
(i.e. costs, prices)

• parallel composition

pta

const int N;

module transmitter

s : [0..3] init 0;
tries : [0..N+1] init 0;

x : clock;

invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant

[send] s=0 & tries≤N & x≥1
→ 0.9 : (s’=3)
+ 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);

[retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
[quit] s=0 & tries>N → (s’ =2);

endmodule

rewards “energy” (s=0) : 2.5; endrewards

80

Model checking PTAs in PRISM

• Properties for PTAs:

− min/max probability of reaching X (within time T)

− min/max expected cost/reward to reach X

(for “linearly-priced” PTAs, i.e. reward gain linear with time)

• PRISM has two different PTA model checking techniques…

• “Digital clocks” – conversion to finite-state MDP

− preserves min/max probability + expected cost/reward/price

− (for PTAs with closed, diagonal-free constraints)

− efficient, in combination with PRISM’s symbolic engines

• Quantitative abstraction refinement

− zone-based abstractions of PTAs using stochastic games

− provide lower/upper bounds on quantitative properties

− automatic iterative abstraction refinement

81

PRISM: Recent & new developments

• New features:

1. parametric model checking

2. parameter synthesis

3. strategy synthesis

4. stochastic multi-player games

5. real-time: probabilistic timed automata (PTAs) [CAV 2015]

• Further new additions:

− enhanced statistical model checking
(approximations + confidence intervals, acceptance sampling)

− efficient CTMC model checking (fast adaptive uniformisation)

− benchmark suite & testing functionality

− www.prismmodelchecker.org

− Beyond PRISM…

82

Case study: Cardiac pacemaker

• Develop model-based framework

− timed automata model for pacemaker
software [Jiang et al]

− hybrid heart models in Simulink, adopt
synthetic ECG model (non-linear ODE)
[Clifford et al]

• Properties

− (basic safety) maintain
60-100 beats per minute

− (advanced) detailed analysis
energy usage, plotted against
timing parameters of the
pacemaker

− parameter synthesis: find values
for timing delays that optimise
energy usage

83

Optimal timing delays problem

• Optimal timing delay synthesis for timed automata
[EMSOFT2014][HSB 2015]

• The parameter synthesis problem solved is

− given a parametric network of timed I/O automata, set of
controllable and uncontrollable parameters, CMTL property ɸ
and length of path n

− find the optimal controllable parameter values, for any
uncontrollable parameter values, with respect to an objective
function O, such that the property ɸ is satisfied on paths of
length n, if such values exist

• Consider family of objective functions

− maximise volume, minimise energy

• Discretise parameters, assume bounded integer parameter
space and path length

− decidable but high complexity (high time constants)

84

Optimal probability of timing delays

• Previously, no nondeterminism and no probability in the
model considered

• Consider parametric probabilistic timed automata (PPTA),

− e.g. guards of the form x ≤ b,

• Can we synthesise optimal timing parameters to optimise
the reachability probability?

• Semi-algorithm [RP 2014]

− exploration of parametric symbolic states, i.e. location, time
zone and parameter valuations

− forward exploration only gives upper bounds on maximum
probability (resp. lower for minimum)

− but stochastic game abstraction yields the precise solution…

• Implementation in progress

85

Quantitative verification - Trends

• Being ‘younger’, generally lags behind conventional
verification

− much smaller model capacity

− compositional reasoning in infancy

− automation of model extraction/adaptation very limited

• Tool usage on the increase, in academic/industrial contexts

− real-time verification/synthesis in embedded systems

− probabilistic verification in security, reliability, performance

• Shift towards greater automation

− specification mining, model extraction, synthesis, verification, …

• But many challenges remain!

86

Acknowledgements

• My group and collaborators in this work

• Project funding

− ERC, EPSRC, Microsoft Research

− Oxford Martin School, Institute for the Future of Computing

• See also

− www.veriware.org

− PRISM www.prismmodelchecker.org

87

PhD Comics and Oxford…

• You are welcome to visit Oxford!

• PhD scholarships, postdocs in verification and synthesis,
and more

More info here:
www.prismmodelchecker.org

Thank you for your attention

