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Lecture plan

• Course slides and lab session

− http://www.prismmodelchecker.org/courses/kth15/

• 5 sessions: lectures 9-12noon, labs 2.30-5pm

− 1 – Introduction

− 2 – Discrete time Markov chains (DTMCs)

− 3 – Markov decision processes (MDPs)

− 4 – LTL model checking for DTMCs/MDPs

− 5 – Probabilistic timed automata (PTAs)

• For extended versions of this material

− and an accompanying list of references

− see: http://www.prismmodelchecker.org/lectures/
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Recall – MDPs

• Markov decision processes (MDPs)

− mix probability and nondeterminism

− in a state, there is a nondeterministic choice between multiple 
probability distributions over successor states

• Adversaries

− resolve nondeterministic choices based on history so far

− properties quantify over all possible adversaries

− e.g. P<0.1[◊err] – maximum probability of an error is < 0.1
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Real-world protocol examples

• Systems with probability, nondeterminism and real-time

− e.g. communication protocols, randomised security protocols

• Randomised back-off schemes

− Ethernet, WiFi (802.11), Zigbee (802.15.4)

• Random choice of waiting time

− Bluetooth device discovery phase

− Root contention in IEEE 1394 FireWire

• Random choice over a set of possible addresses

− IPv4 dynamic configuration (link-local addressing) 

• Random choice of a destination

− Crowds anonymity, gossip-based routing 
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Overview (Part 5)

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, time divergence

• PTCTL: A temporal logic for PTAs

− syntax, examples, semantics

• Model checking for PTAs

− the region graph

− digital clocks

− zone-based approaches:

− (i) forwards reachability

− (ii) backwards reachability

− (iii) game-based abstraction refinement

• Costs and rewards

• Parameter synthesis
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Real-time systems verification

• Classical model checking

− labelled transition systems as models

− CTL as specification notation

• Many systems feature real-time aspects

− embedded systems

− in-car and in-flight systems

− communication protocols

− controllers

− etc

• Real-time model checking (e.g. UPPAAL)

− timed automata as models

− TCTL as specification notation
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Light control example

Off Light Bright
press? press?

press?

press?

Spec:
If light is off, press switch once for dimmed light, 
press switch twice quickly for bright light.
Otherwise the light is turned off.

Modelling…
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Light control example

Off Light Bright
press? press?

press?

press?

Modelling with time…

Spec:
If light is off, press switch once for dimmed light, 
press switch twice quickly for bright light.
Otherwise the light is turned off.

x:=0 x<3

x ≥ 3

Clocks
•increase uniformly
•can be reset
•can be used in guards

and invariants.
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Timed automata: basics

A timed automaton is a finite graph:

press? press?

press?

press?

Loc1 Loc2 Loc3

• Finite set of locations

• Finitely many labelled transitions between locations

• Transitions take no time (are instantaneous)

• Automaton can remain in a location for a period of time  

Time passage
Continuous, rather than 

discrete steps
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Counting time: clocks

press? press?

press?

press?

t:=0

Loc1 Loc2 Loc3

Clocks, here t

• real-valued variables

• increase at the same rate as time

• initially t=0

• after a period in Loc1, it is reset to zero

Time elapse
Choice between 

remaining in location 
or taking transition
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Guards

Guards enable progress

press? press?

press?

press?

t:=0 t<3

t ≥ 3

Loc1 Loc2 Loc3

Transitions in timed automata 

• can be guarded

• a guard, e.g. t<3, is a constraint on the value of clock t

• specifies when the transition is enabled

• i.e. t=4 means precisely   

Time elapse
Automaton can remain 

here forever
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Invariants

Loc1
Loc2 Loc3

t ≤ 12

press? press?

press?

press?

Invariants enforce progress

Deadlock
Automaton may 

deadlock

t:=0 t<3

t ≥ 3

Locations in timed automata 

• can have invariants

• i.e. a constraint for remaining in the location
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Time, clocks and clock valuations

• Dense time domain: non-negative reals ℝ≥0

− from this point on, we will abbreviate ℝ≥0 to ℝ

• Finite set of clocks x ∈ X 

− variables taking values from time domain ℝ

− increase at the same rate as real time

• A clock valuation is a tuple v ∈ ℝX. Some notation:

− v(x) : value of clock x in v

− v+t : time increment of t for v

• (v+t)(x) = v(x)+t  ∀x ∈ X

− v[Y:=0] : clock reset of clocks Y ⊆ X in v

• v[Y:=0](x) = 0 if x ∈ Y and v(x) otherwise
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Zones (clock constraints)

• Zones (clock constraints) over clocks X, denoted Zones(X):

− where x, y ∈ X and c, d ∈ ℕ

− used for both syntax and algorithms

• Can derive:

− logical connectives, e.g. ζ1∧ζ2 ≡ ¬(¬ζ1∨¬ζ2)

− strict inequalities, through negation, e.g. x>5 ≡ ¬(x≤5)…

• Some useful classes of zones:

− closed: no strict inequalities (e.g. x>5)

− convex: define a convex set, efficient to manipulate

ζ ::= x ≤ d  | c ≤ x | x+c ≤ y+d  | ¬ζ | ζ ∨ ζ
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Zones and clock valuations

• A clock valuation v satisfies a zone ζ, written v ⊲ ζ if

− ζ resolves to true after substituting each clock x with v(x)

• The semantics of a zone ζ ∈ Zones(X) is the set of clock 
valuations which satisfy it (i.e. a subset of ℝX)

− NB: multiple zones may have the same semantics

− e.g. (x≤2)∧(y≤1)∧(x≤y+2) and (x≤2)∧(y≤1)∧(x≤y+3) 

• We consider only canonical zones

− i.e. zones for which the constraints are as ‘tight’ as possible

− O(|X|3) algorithm to compute (unique) canonical zone [Dil89]

− allows us to use syntax for zones interchangeably with 
semantic, set-theoretic operations

− c-closure ,close(ζ,c), ignores all constraints which are greater 
than c
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Operations on zones – Set theoretic

• Intersection of two zones: ζ1∩ζ2

(0,0) x

y

(0,0) x

y

ζ1∩ζ2

ζ1

ζ2
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Operations on zones – Set theoretic

• Union of two zones: ζ1∪ζ2

(0,0) x

y

(0,0) x

y ζ1∪ζ2

ζ1

ζ2
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Operations on zones – Set theoretic

• Difference of two zones: ζ1\ζ2

(0,0) x

y

ζ1

ζ2

(0,0) x

y
ζ1\ζ2
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Operations on zones – Clock resets

• ζ[Y:=0] = { v[Y:=0]  | v⊲ζ }

− clock valuations obtained from ζ by resetting the clocks in Y

(0,0) x

y

ζ [y:=0]

(0,0) x

y

ζ
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Operations on zones: Projections

• Forwards diagonal projection

• ր ζ = { v | ∃t≥0 . (v-t)⊲ζ }

− contains the clock valuations that can be
reached from ζ by letting time pass

(0,0) x

y

ζ

x

y

ր ζ
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Operations on zones: c-closure

• c-closure: close(ζ,c)

− ignores all constraints which are greater than c

close(ζ,c)

(0,0) x

y

ζ

c

c (0,0) x

y

c

c
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Overview (Part 5)

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, time divergence

• PTCTL: A temporal logic for for PTAs

− syntax, examples, semantics

• Model checking for PTAs

− the region graph

− digital clocks

− zone-based approaches:

− (i) forwards reachability

− (ii) backwards reachability

− (iii) game-based abstraction refinement

• Costs and rewards

• Parameter synthesis
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Probabilistic timed automaton (PTA)

• Models a probabilistic real-time communication protocol

− starts in location di; after between 1 and 2 time units, the 
protocol attempts to send the data:

• with probability 0.9 data is sent correctly, move to location sr

• with probability 0.1 data is lost, move to location si

− in location si, after 2 to 3 time units, attempts to resend

• correctly sent with probability 0.95 and lost with probability 0.05

invariant

guard

clock reset action

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0
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Probabilistic timed automata (PTAs)

• Probabilistic timed automata (PTAs)

− Markov decision processes (MDPs) + real-valued clocks

− or: timed automata + discrete probabilistic choice

− model probabilistic, nondeterministic and timed behaviour

• Syntax: A PTA is a tuple (Loc, linit, Act, X, inv, prob, L)

− Loc is a finite set of locations

− linit ∈ Loc is the initial location

− Act is a finite set of actions

− X is a finite set of clocks

− inv : Loc → Zones(X)
is the invariant condition

− prob ⊆ Loc×Zones(X)×Dist(Loc×2X)
is the probabilistic transition relation

− L : Loc → AP is a labelling function

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0
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Probabilistic transition relation

• Probabilistic edge relation

− prob ⊆ Loc×Zones(X)×Act×Dist(Loc×2X)

• Probabilistic transition (l,g,a,p) ∈ prob

− l is the source location

− g is the guard

− a is the action

− p target distribution

• Edge (l,g,a,p,l’,Y)

− from probabilistic edge (l,g,a,p) where p(l’,Y)>0

− l’ is the target location

− Y is the set of clocks to be reset

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0
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PTAs - Behaviour

• A state of a PTA is a pair (l,v) ∈ Loc×ℝX such that v ⊲ inv(l)

• A PTAs start in the initial location with all clocks set to zero

− let 0 denote the clock valuation where all clocks have value 0

• For any state (l,v), there is nondeterministic choice between 
making a discrete transition and letting time pass

− discrete transition (l,g,a,p) enabled if v ⊲ g and probability of 
moving to location l’ and resetting the clocks Y equals p(l’,Y)

− time transition available only if invariant inv(l) is continuously 
satisfied while time elapses
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PTA - Example

(di,x=0)

1.1

(di,x=1.1)

send
0.10.9

(sr,x=0) (si,x=0)

2.7

(si,x=2.7)

retry
0.050.95

(sr,x=0) (si,x=0)

8.66

(sr,x=8.66)

⋮

⋮ ⋮

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0

PTA: Example
execution:
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PTAs - Formal semantics

• Formally, the semantics of a PTA P is an infinite-state MDP 
MP = (SP, sinit, Steps, LP) with:

• States: SP = { (l,v) ∈ Loc × ℝX such that v ⊲ inv(l) }

• Initial state: sinit = (linit, 0)

• Steps: SP → 2(Act∪ℝ)×Dist(S) such that (α, µ) ∈ Steps(l,v) iff: 

− (time transition) α=t∈ℝ, µ(l,v+t)=1 and v+t’⊲inv(l) for all t’≤t

− (discrete transition) α=a∈Act and there exists (l,g,a,p) ∈ prob

such that v⊲g and, for any (l’,v’) ∈ SP:

• Labelling: LP(l,v) = L(l)

  

µ(l',v' ) =  p(l',Y)
Y ⊆X∧v[Y:=0]=v'

∑

actions of MDP MP are the actions
of PTA P or real time delays

multiple resets may give
same clock valuation
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Time divergence

• We restrict our attention to time divergent behaviour

− a common restriction imposed in real-time systems

− unrealisable behaviour (i.e. corresponding to time not

advancing beyond a time bound) is disregarded

− also called non-zeno behaviour

• For a path ω=s0(α0,µ0)s1(α1,µ1)s2(α2,µ2)... in the MDP MP

− Dω(n) denotes the duration up to state sn

− i.e. Dω(n) = ∑ {| αi | 0≤i<n ∧ αi ∈ ℝ |}

• A path ω is time divergent if, for any t∈ℝ≥0:

− there exists j ∈ ℕ such that Dω(j)>t

• Example of non-divergent path:

− s0(1,µ0)s0(0.5,µ0)s0(0.25,µ0)s0(0.125,µ0)s0…
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PTCTL - Syntax

• PTCTL: Probabilistic timed computation tree logic

− derived from PCTL [BdA95] and TCTL [AD94]

• Syntax:

− φ ::= true | a | ζ | z. φ | φ ∧ φ | ¬φ | P~p [ φ U φ ]

• where:

− where Z is a set of formula clocks, ζ ∈ Zones(X∪Z), z ∈ Z,

− a is an atomic proposition, p ∈ [0,1] and ~ ∈ {<,>,≤,≥}

“freeze quantifier”“zone over X∪Z”

φ U φ is true with probability ~p



39

PTCTL - Examples

• z . P>0.99 [ packet2unsent U packet1delivered ∧ (z<5) ]

− “with probability greater than 0.99, the system delivers packet 
1 within 5 time units and does not try to send packet 2 in the 
meantime”

• z . P>0.95[ (x≤3) U (z=8) ]

− “with probability at least 0.95, the system clock x does not 
exceed 3 before 8 time units elapse”

• z . P≤0.1[ G (failure ∨ (z≤60)) ]

− “the system fails after the first 60 time units have elapsed with 
probability at most 0.01”
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PTCTL - Semantics

• Let (l,v) ∈ SP and ℇ ∈ ℝZ be a formula clock valuation

− (l,v),ℇ ⊨ a ⇔ a ∈ L(l,v)

− (l,v),ℇ ⊨ ζ ⇔ v,ℇ ⊲ ζ

− (l,v),ℇ ⊨ z.φ ⇔ (l,v),ℇ[z:=0] ⊨ φ

− (l,v),ℇ ⊨ φ1 ∧ φ2 ⇔ (l,v),ℇ ⊨ φ1 and (l,v),ℇ ⊨ φ2

− (l,v),ℇ ⊨ ¬φ ⇔ (l,v),ℇ ⊨ φ  is false

− (l,v),ℇ ⊨ P~p[ψ] ⇔  PrA
(l,v){ ω∈PathA(l,v) | ω,ℇ ⊨ ψ } ~ p

for all adversaries A∈AdvMP

after resetting z, 
φ is satisfied 

combined clock valuation of v and ℇ
satisfies ζ

the probability of a path satisfying ψ meets ~p 
for all divergent adversaries
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PTCTL  - Semantics of until

• Let ω be a path in MP and ℇ be a formula clock valuation

− ω,ℇ ⊨ ψ satisfaction of ψ by ω, assuming ℇ initially

• ω,ℇ ⊨ φ1 U φ2 if and only if

there exists i ∈ ℕ and t ∈ Dω(i+1)-Dω(i) such that

− ω(i)+t,ℇ+(Dω(i)+t) ⊨ φ2

− ∀ t’≤t . ω(i)+t’,ℇ+(Dω(i)+t’) ⊨ φ1 ∨ φ2

− ∀ j<i . ∀ t’≤ Dω(j+1)-Dω(j) . ω(j)+t’,ℇ+(Dω(j)+t’) ⊨ φ1 ∨ φ2

• Condition “φ1 ∨ φ2” different from PCTL and CSL

− usually φ2 becomes true and φ1 is true until this point

− difference due to the density of the time domain

− to allow for open intervals use disjunction φ1 ∨ φ2

− for example consider x≤5 U x>5 and x<5 U x≥5
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Probabilistic reachability in PTAs

• For simplicity, in some cases, we just consider probabilistic 
reachability, rather than full PTCTL model checking

− i.e. min/max probability of reaching a set of target locations

− can also encode time-bounded reachability (with extra clock)

• Still captures a wide range of properties

− probabilistic reachability: “with probability at least 0.999, a 
data packet is correctly delivered”

− probabilistic invariance: “with probability 0.875 or greater, the 
system never aborts”

− probabilistic time-bounded reachability: “with probability 0.01 
or less, a data packet is lost within 5 time units”

− bounded response: “with probability 0.99 or greater, a data 
packet will always be delivered within 5 time units”
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Overview (Part 5)

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, time divergence

• PTCTL: A temporal logic for for PTAs

− syntax, examples, semantics

• Model checking for PTAs

− the region graph

− digital clocks

− zone-based approaches:

− (i) forwards reachability

− (ii) backwards reachability

− (iii) game-based abstraction refinement

• Costs and rewards

• Parameter synthesis
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PTA model checking - Summary

• Several different approaches developed

− basic idea: reduce to the analysis of a finite-state model

− in most cases, this is a Markov decision process (MDP)

• Region graph construction [KNSS02]

− shows decidability, but gives exponential complexity

• Digital clocks approach [KNPS06]

− (slightly) restricted classes of PTAs

− works well in practice, still some scalability limitations

• Zone-based approaches:

− (preferred approach for non-probabilistic timed automata)

− forwards reachability [KNSS02]

− backwards reachability [KNSW07]

− game-based abstraction refinement [KNP09c]
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The region graph

• Region graph construction for PTAs [KNSS02]

− adapts region graph construction for timed automata [ACD93]

− partitions PTA states into a finite set of regions

− based on notion of clock equivalence

− construction is also dependent on PTCTL formula

• For a PTA P and PTCTL formula φ

− construct a time-abstract, finite-state MDP R(φ)

− translate PTCTL formula φ to PCTL formula φ’

− φ is preserved by region quivalence

− i.e. φ holds in a state of MP if and only if φ’ holds in the 
corresponding state of R(φ)

− model check R(φ) using standard methods for MDPs
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The region graph - Clock equivalence

• Regions are sets of clock equivalent clock valuations

• Some notation:

− let c be largest constant appearing in PTA or PTCTL formula

− let ⌊t⌋ denotes the integral part of t

− t and t’ agree on their integral parts if and only if

(1) ⌊t⌋ = ⌊t’⌋

(2) t and t’ are both integers or neither is an integer

• The clock valuations v and v’ are clock equivalent (v ≅ v’) if:

− for all clocks x ∈ X, either:

• v(x) and v’(x) agree on their integral parts

• v(x)>c and v’(x)>c

− for all clock pairs x,x’ ∈ X, either:

• v(x) − v(x’) and v’(x) − v’(x’) agree on their integral parts

• v(x) − v(x’) > c and v’(x) − v’(x’) > c
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Region graph - Clock equivalence

• Example regions (for 2 clocks x and y)

(0,0) x

y

x=y ∧ 0<x<1 

x=1 ∧ y=2 

y=1 ∧ 2<x<3 

x<y ∧ 1<x<2 ∧ 1<y<2 
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Region graph - Clock equivalence

• Fundamental result: if v ≅ v’, then v ⊲ ζ ⇔ v’ ⊲ ζ

− it follows that r ⊲ ζ is well defined for a region r

• r’ is the successor region of r, written succ(r) = r’, if 

− for each v∈r, there exists t>0 such that v+t ∈ r’

and v+t’ ∈ r∪r’ for all t’< t 

(0,0) x

y
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The region graph

• The region graph MDP is (SR,sinit,StepsR,LR) where…

− the set of states SR comprises pairs (l,r) such that l is a 
location and r is a region over X ∪ Z

− the initial state is (linit, 0)

− the set of actions is {succ} ∪ Act

• succ is a unique action denoting passage of time

− the probabilistic transition function StepsR is defined as:

− SR × 2({succ}∪Act)×Dist(SR)

− (succ,µ) ∈ StepsR(l,r) iff µ(l,succ(r))=1

− (a,µ) ∈ StepsR(l,r) if and only if ∃ (l,g,a,p) ∈ prob such that

r ⊲ g and, for any (l’,r’) ∈ SR:

− the labelling is given by: LR(l,r) = L(l)
  

µ(l' ,r' ) =  p(l' , Y)
Y ⊆ X ∧r[Y :=0] =r'

∑
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Region graph - Example

• PTCTL formula: z.P~p [ true U (sr<4) ]

(di,x=z=0) (di,0<x=z<1)
succ

(di,x=z=1)
succ succ

(di,1<x=z<2)

(sr,x=0∧z=1) (si,x=0∧z=1)

0.9 0.1

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0
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Region graph construction

• Region graph

− useful for establishing decidability of model checking

− or proving complexity results for model checking algorithms

• But…

− the number of regions is exponential in the number of clocks 
and the size of largest constant

− so model checking based on this is extremely expensive

− and so not implemented (even for timed automata)

• Improved approaches based on:

− digital clocks

− zones (unions of regions)



52

Digital clocks

• Simple idea: Clocks can only take integer (digital) values

− i.e. time domain is ℕ as opposed to ℝ

− based on notion of ε-digitisation [HMP92]

• Only applies to arestricted class of PTAs; zones must be:

− closed – no strict inequalities (e.g. x>5)

• Digital clocks semantics yields a finite-state MDP

− state space is a subset of Loc × ℕX, rather than Loc × ℝX

− clocks bounded by cmax (max constant in PTA and formula)

− then use standard techniques for finite –state MDPs
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Example - Digital clocks

(di,x=z=0) (di,x=z=1) (di,x=z=2)

(sr,x=0∧z=1) (si,x=0∧z=1)

0.9 0.1

(si,x=1∧z=2)

(si,x=2∧z=3)

(sr,x=0∧z=3) (si,x=0∧z=3)

0.95 0.05

0.1
0.9

(sr,x=0∧z=2)

di

0.1 0.05

x≤2

0.9

x≥2

send

x≥1

x:=0x:=0

retry

si
x≤3

sr
true

0.95

x:=0
PTA:

⋮ ⋮

MDP:
(digital
clocks)
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Digital clocks

• Digital clocks approach preserves:

− minimum/maximum reachability probabilities

− a subset of PTCTL properties

− (no nesting, only closed zones in formulae)

− only works for the initial state of the PTA

− (but can be extended to any state with integer clock values)

• In practice:

− translation from PTA to MDP can often be done manually

− (by encoding the PTA directly into the PRISM language)

− automated translations exist

− many case studies, despite “closed” restriction

• Problem: can lead to very large MDPs

− alleviated partially by efficient symbolic model checking
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Zone-based approaches

• An alternative is to use zones to construct an MDP

• Conventional symbolic model checking relies on computing

− post(S’) the states that can be reached from a state in S’ in a 
single step

− pre(S’) the states that can reach S’ in a single step

• Extend these operators to include time passage

− dpost[e](S’) the states that can be reached from a state in S’ 
by traversing the edge e

− tpost(S’) the states that can be reached from a state in S’ by 
letting time elapse

− pre[e](S’) the states that can reach S’ by traversing the edge e

− tpre(S’) the states that can reach S’ by letting time elapse
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Zone-based approaches

• Symbolic states (l, ζ) where 

− l ∈ Loc (location)

− ζ is a zone over PTA clocks and formula clocks

− generally fewer zones than regions

• tpost(l,ζ) = (l, րζ∧inv(l) )

− րζ can be reached from ζ by letting time pass

− րζ∧inv(l) must satisfy the invariant of the location l

• tpre(l,ζ) = (l, ւζ∧inv(l) ) 

− ւ ζ can reach ζ by letting time pass

− ւ ζ∧ inv(l) must satisfy the invariant of the location l
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Zone-based approaches

• For an edge e= (l,g,a,p,l’,Y) where

− l is the source

− g is the guard

− a is the action

− l’ is the target 

− Y is the clock reset

• dpost[e](l,ζ) = (l’, (ζ∧g)[Y:=0] )

− ζ∧g satisfy the guard of the edge

− (ζ∧g)[Y:=0] reset the clocks Y

• dpre[e](l’,ζ’) = (l,  [Y:=0]ζ’ ∧ (g ∧ inv(l)) )

− [Y:=0]ζ’ the clocks Y were reset

− [Y:=0]ζ’ ∧ (g ∧ inv(l)) satisfied guard and invariant of l
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Forwards reachability

• Based on the operation post[e](l,ζ) = tpost(dpost[e](l,ζ))

− (l’,v’) ∈ post[e](l,ζ) if there exists (l,v) ∈ (l,ζ) such that after 
traversing edge e and letting time pass one can reach (l’,v’)

• Forwards algorithm (part 1)

− start with initial state SF={tpost((linit,0))} then iterate

for each symbolic state (l,ζ) ∈ SF and edge e 

add post[e](l,ζ) to SF

− until set of symbolic states SF does not change

• To ensure termination need to take c-closure of each zone 
encountered (c is the largest constant in the PTA)
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Forwards reachability

• Forwards algorithm (part 2)

− construct finite state MDP (SF,(linit,0),StepsF,LF)

− states SF (returned from first part of the algorithm)

− LF(l,ζ)=L(l) for all (l,ζ) ∈ SF

− µ ∈ StepsF(l,ζ) if and only if 

there exists a probabilistic edge (l,g,a,p) of PTA
such that for any (l’, ζ’) ∈ Z:

summation over all the edges of (l,g,a,p) such that 
applying post to (l,ζ) leads to the symbolic state (l’,ζ’)

|})'ζ,'l()ζ,l([e])p(edges)X,'l,p,σ,g,l(|)X,'l(p{|)'ζ,'l(µ =∧∈=∑ post
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Forwards reachability - Example

l1

0.5
x:=0

l2

l3

l0

0.5
true

x=0∧y=1
x=0∧y=0

y:=0

0.5

(l0,x=y)

0.5

(l0,x≤y) (l0,x=y)

(l3,x=y)PTA: MDP:
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Forwards reachability - Limitations

• Problem reduced to analysis of finite-state MDP, but…

• Only obtain upper bounds on maximum probabilities

− caused by when edges are combined

• Suppose post[e1](l,ζ)=(l1,ζ1) and post[e2](l,ζ)=(l2, ζ2)

− where e1 and e2 from the same probabilistic edge

• By definition of post

− there exists (l,vi) ∈ (l,ζ) such that a state in (li, ζi) can be 
reached by traversing the edge ei and letting time pass

• Problem

− we combine these transitions but are (l,v1) and (l,v2) the same?

− may not exist states in (l,ζ) for which both edges are enabled
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Forwards reachability - Example

• Maximum probability of reaching l3 is 0.5 in the PTA

− for the left branch need to take the first transition when x=1

− for the right branch need to take the first transition when x=0

• However, in the forwards reachability graph probability is 1

− can reach l3 via either branch from (l0,x=y)

l1

0.5
x:=0

l2

l3

l0

0.5
true

x=0∧y=1
x=0∧y=0

y:=0

0.5

(l0,x=y)

0.5

(l0,x≤y) (l0,x=y)

(l3,x=y)PTA: MDP:
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Backwards reachability

• An alternative zone-based method: backwards reachability

− state-space exploration in opposite direction, from target to 
initial states; uses pre rather than post operator

• Basic ideas: (see [KNSW07] for details)

− construct a finite-state MDP comprising symbolic states

− need to keep track of branching structure and take 
conjunctions of symbolic states if necessary

− MDP yields maximum reachability probabilities for PTA

− for min. probs, do graph-based analysis and convert to max.

• Advantages:

− gives (exact) minimum/maximum reachability probabilities

− extends to full PTCTL model checking

• Disadvantage:

− operations to implement are expensive, limits applicability

− (requires manipulation of non-convex zones)
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Overview (Part 5)

• Time, clocks and zones

• Probabilistic timed automata (PTAs)

− definition, examples, semantics, time divergence

• PTCTL: A temporal logic for for PTAs

− syntax, examples, semantics

• Model checking for PTAs

− the region graph

− digital clocks

− zone-based approaches:

− (i) forwards reachability

− (ii) backwards reachability

− (iii) game-based abstraction refinement

• Costs and rewards

• Parameter synthesis
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Abstraction

• Very successful in (non-probabilistic) formal methods

− essential for verification of large/infinite-state systems

− hide details irrelevant to the property of interest

− yields smaller/finite model which is easier/feasible to verify

− loss of precision: verification can return “don’t know”

• Construct abstract model of a concrete system

− e.g. based on a partition of the concrete state space

− an abstract state represents a set of concrete states

• Automatic generation of abstractions using refinement

− start with a simple coarse abstraction; iteratively refine
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Abstraction of MDPs

• Abstraction increases degree of nondeterminism

− i.e. minimum probabilities are lower and maximums higher

• We construct abstractions of MDPs using stochastic games

− yields lower/upper bounds for min/max probabilities

0 1ps
min ps

max

0 1ps
min ps

max

11

0.2
0.8

0.5 0.10.8

1

0.5

1

0.1

1

abstract
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Abstraction refinement

• Consider (max) difference between lower/upper bounds

− gives a quantitative measure of the abstraction’s precision

• If the difference (“error”) is too great, refine the abstraction

− a finer partition yields a more precise abstraction

− lower/upper bounds can tell us where to refine (which states)

− (memoryless) strategies can tell us how to refine

0 1ps
min(F) ps

max(F)
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Abstraction-refinement loop

• Quantitative abstraction-refinement loop for MDPs

[error<ε]

Initial
partition

Bounds and
strategies

[error≥ε]

model
check

abstract

refine

New
partition

Return
bounds

Abstraction • Refinements yield 
strictly finer partition

• Guaranteed to
converge for finite 
models

• Guaranteed to 
converge for infinite 
models with finite 
bisimulation
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Abstraction refinement for PTAs

• Model checking for PTAs using abstraction refinement

[error<ε]

Initial
partition

Bounds and
strategies

[error≥ε]

model
check

abstract

refine

New
partition

Return
bounds

Abstraction
Initial

abstraction
from

forwards
reachability

Splitting of
zones (DBMs)

Guaranteed
convergence
for any ε≥0

Abstraction
computed
and stored

using zones
(DBMs)
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Abstraction refinement for PTAs

• Computes reachability probabilities in PTAs

− minimum or maximum, exact values (“error” ε=0)

− also time-bounded reachability, with extra clock

• Integrated in PRISM (development release)

− PRISM modelling language extended with clocks

− implemented using DBMs

• In practice, performs very well

− faster than digital clocks or backwards on large example set

− (sometimes by several orders of magnitude)

− handles larger PTAs than the digital clocks approach
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Costs and rewards

• Like other models, we can define a reward structure (ρ,ι)
for a probabilistic timed automaton

• ρ : Loc →ℝ≥0 location reward function

− ρ(l) is the rate at which the reward is accumulated in location l

• ι : Act →ℝ≥0 action reward function

− ι(a) is the reward associated with performing the action a

• Generalises notion for uniformly priced timed automata

• A useful special case is the elapsed time

− ρ(l)=1 for all locations l ∈ Loc  

− ι(a)=0 for all actions a ∈ Act
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Expected reachability

• Expected reachability:

− min./max. expected cumulated reward until some set of 
states (locations) is reached

• Example properties

− “the maximum expected time until a data packet is delivered”

− “the minimum expected number of retransmissions before the 
message is correctly delivered”

− “the maximum expected number of lost messages within the 
first 200 seconds”

• Model checking

− digital clocks semantics preserves expected reachability

− so can use existing MDP reward model checking techniques

− zone-based approaches solved recently [FORMATS 2015]
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Summary

• Probabilistic timed automata (PTAs)

− combine probability, nondeterminism, real-time

− well suited for e.g. for randomised communication protocols

− MDPs + clocks (or timed automata + discrete probability)

− extension with continuous distributions exists, but model 
checking only approximate

• PTCTL: Temporal logic for properties of PTAs

− but many useful properties expressible with just reachability

• PTA model checking

− region graph: decidability results, exponential complexity

− digital clocks: simple and effective, some scalability issues

− forwards reachability: only upper bounds on max. prob.s

− backwards reachability: exact results but often expensive

− abstraction refinement using stochastic games: performs well 
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PRISM: Recent & new developments

• New features:

1. parametric model checking

2. parameter synthesis

3. strategy synthesis

4. stochastic multi-player games 

5. real-time: probabilistic timed automata (PTAs) [CAV 2015]

• Further new additions:

− enhanced statistical model checking
(approximations + confidence intervals, acceptance sampling)

− efficient CTMC model checking (fast adaptive uniformisation)

− benchmark suite & testing functionality 

− www.prismmodelchecker.org

− Beyond PRISM…
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Modelling PTAs in PRISM

• Probability + nondeterminism + real-time

− timed automata + discrete probabilistic choice, or…

− probabilistic automata + real-valued clocks

• PTA example: message transmission over faulty channel

“init”

x≤2

0.9

retry

“done”

true

“lost”

x≤5

“fail”

true

quit

send
x≥3

x:=0

0.1

x≥1∧tries≤N

tries:=0

tries>N

x:=0,
tries:=tries+1

States
• locations + data variables

Transitions
• guards and action labels

Real-valued clocks
• state invariants, guards, resets

Probability
• discrete probabilistic choice
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Modelling PTAs in PRISM

• PRISM modelling language

− textual language, based on guarded commands

pta

const int N;

module transmitter

s : [0..3] init 0;
tries : [0..N+1] init 0;

x : clock;

invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant

[send] s=0 & tries≤N & x≥1
→ 0.9 : (s’=3)
+ 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);

[retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
[quit] s=0 & tries>N → (s’ =2);

endmodule

rewards “energy” (s=0) : 2.5; endrewards
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Modelling PTAs in PRISM

• PRISM modelling language

− textual language, based on guarded commands

pta

const int N;

module transmitter

s : [0..3] init 0;
tries : [0..N+1] init 0;

x : clock;

invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant

[send] s=0 & tries≤N & x≥1
→ 0.9 : (s’=3)
+ 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);

[retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
[quit] s=0 & tries>N → (s’ =2);

endmodule

rewards “energy” (s=0) : 2.5; endrewards

Basic ingredients:

• modules
• variables
• commands
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Modelling PTAs in PRISM

• PRISM modelling language

− textual language, based on guarded commands

pta

const int N;

module transmitter

s : [0..3] init 0;
tries : [0..N+1] init 0;

x : clock;

invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant

[send] s=0 & tries≤N & x≥1
→ 0.9 : (s’=3)
+ 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);

[retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
[quit] s=0 & tries>N → (s’ =2);

endmodule

rewards “energy” (s=0) : 2.5; endrewards

New for PTAs:

• clocks
• invariants
• guards/resets

Basic ingredients:

• modules
• variables
• commands



79

Modelling PTAs in PRISM

• PRISM modelling language

− textual language, based on guarded commands

New for PTAs:

• clocks
• invariants
• guards/resets

Basic ingredients:

• modules
• variables
• commands

Also:

• rewards
(i.e. costs, prices)

• parallel composition

pta

const int N;

module transmitter

s : [0..3] init 0;
tries : [0..N+1] init 0;

x : clock;

invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant

[send] s=0 & tries≤N & x≥1
→ 0.9 : (s’=3)
+ 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);

[retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
[quit] s=0 & tries>N → (s’ =2);

endmodule

rewards “energy” (s=0) : 2.5; endrewards
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Model checking PTAs in PRISM

• Properties for PTAs:

− min/max probability of reaching X (within time T)

− min/max expected cost/reward to reach X

(for “linearly-priced” PTAs, i.e. reward gain linear with time)

• PRISM has two different PTA model checking techniques…

• “Digital clocks” – conversion to finite-state MDP

− preserves min/max probability + expected cost/reward/price

− (for PTAs with closed, diagonal-free constraints)

− efficient, in combination with PRISM’s symbolic engines

• Quantitative abstraction refinement

− zone-based abstractions of PTAs using stochastic games

− provide lower/upper bounds on quantitative properties

− automatic iterative abstraction refinement 
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PRISM: Recent & new developments

• New features:

1. parametric model checking

2. parameter synthesis

3. strategy synthesis

4. stochastic multi-player games 

5. real-time: probabilistic timed automata (PTAs) [CAV 2015]

• Further new additions:

− enhanced statistical model checking
(approximations + confidence intervals, acceptance sampling)

− efficient CTMC model checking (fast adaptive uniformisation)

− benchmark suite & testing functionality 

− www.prismmodelchecker.org

− Beyond PRISM…
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Case study: Cardiac pacemaker

• Develop model-based framework

− timed automata model  for pacemaker 
software [Jiang et al]

− hybrid heart models in Simulink, adopt 
synthetic ECG model (non-linear ODE) 
[Clifford et al]

• Properties

− (basic safety) maintain 
60-100 beats per minute

− (advanced) detailed analysis 
energy usage, plotted against
timing parameters of the 
pacemaker

− parameter synthesis: find values
for timing delays that optimise
energy usage



83

Optimal timing delays problem

• Optimal timing delay synthesis for timed automata 
[EMSOFT2014][HSB 2015]

• The parameter synthesis problem solved is 

− given a parametric network of timed I/O automata, set of 
controllable and uncontrollable parameters, CMTL property ɸ
and length of path n

− find the optimal controllable parameter values, for any 
uncontrollable parameter values, with respect to an objective
function O, such that the property ɸ is satisfied on paths of 
length n, if such values exist

• Consider family of objective functions

− maximise volume, minimise energy

• Discretise parameters, assume bounded integer parameter 
space and path length

− decidable but high complexity (high time constants)
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Optimal probability of timing delays

• Previously, no nondeterminism and no probability in the 
model considered

• Consider parametric probabilistic timed automata (PPTA), 

− e.g. guards of the form x ≤ b, 

• Can we synthesise optimal timing parameters to optimise
the reachability probability?

• Semi-algorithm [RP 2014]

− exploration of parametric symbolic states, i.e. location, time 
zone and parameter valuations

− forward exploration only gives upper bounds on maximum 
probability (resp. lower for minimum)

− but stochastic game abstraction yields the precise solution…

• Implementation in progress
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Quantitative verification - Trends

• Being ‘younger’, generally lags behind conventional 
verification

− much smaller model capacity

− compositional reasoning in infancy

− automation of model extraction/adaptation very limited

• Tool usage on the increase, in academic/industrial contexts

− real-time verification/synthesis in embedded systems

− probabilistic verification in security, reliability, performance

• Shift towards greater automation 

− specification mining, model extraction, synthesis, verification, …

• But many challenges remain!
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PhD Comics and Oxford…

• You are welcome to visit Oxford!

• PhD scholarships, postdocs in verification and synthesis, 
and more
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www.prismmodelchecker.org
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