

Probabilistic verification and synthesis

Marta Kwiatkowska

Department of Computer Science, University of Oxford

KTH, Stockholm, August 2015

Lecture plan

- Course slides and lab session
 - <u>http://www.prismmodelchecker.org/courses/kth15/</u>
 - 5 sessions: lectures 9-12noon, labs 2.30-5pm
 - 1 Introduction
 - 2 Discrete time Markov chains (DTMCs)
 - 3 Markov decision processes (MDPs)
 - 4 LTL model checking for DTMCs/MDPs & beyond MDPs
 - 5 Probabilistic timed automata (PTAs)
- For extended versions of this material
 - and an accompanying list of references
 - see: <u>http://www.prismmodelchecker.org/lectures/</u>

Probabilistic models

	Fully probabilistic	Nondeterministic
Discrete time	Discrete-time Markov chains (DTMCs)	Markov decision processes (MDPs)
		Simple stochastic games (SMGs)
Continuous time	Continuous-time Markov chains (<mark>CTMCs</mark>)	Probabilistic timed automata (PTAs)
		Interactive Markov chains (IMCs)

Part 4

LTL Model Checking; Beyond MDPs

Overview (Part 4)

- Linear temporal logic (LTL)
- Strongly connected components
- ω-automata (Büchi, Rabin)
- LTL model checking for DTMCs
- LTL model checking for MDPs
- Beyond MDPs: stochastic multiplayer games

Limitations of PCTL

- PCTL, although useful in practice, has limited expressivity
 - essentially: probability of reaching states in X, passing only through states in Y (and within k time-steps)
- One useful approach: extend models with costs/rewards
 - see last two lectures
- Another direction: Use more expressive logics. e.g.:
 - LTL [Pnu77] (non-probabilistic) linear-time temporal logic
 - PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL
 - both allow path operators to be combined
 - (in PCTL, $P_{\sim p}$ [...] always contains a single temporal operator)

LTL – Linear temporal logic

- LTL syntax (path formulae only)
 - $\psi ::= true \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi \cup \psi$
 - where $a \in AP$ is an atomic proposition
 - usual equivalences hold: F φ \equiv true U $\varphi,$ G φ \equiv $\neg(F$ $\neg\varphi)$

• LTL semantics (for a path ω)

 $\begin{array}{lll} - \ \omega \vDash true & always \\ - \ \omega \vDash a & \Leftrightarrow & a \in L(\omega(0)) \\ - \ \omega \vDash \psi_1 \land \psi_2 & \Leftrightarrow & \omega \vDash \psi_1 \text{ and } \omega \vDash \psi_2 \\ - \ \omega \vDash \neg \psi & \Leftrightarrow & \omega \nvDash \psi \\ - \ \omega \vDash \neg \psi & \Leftrightarrow & \omega [1 \dots] \vDash \psi \\ - \ \omega \vDash \psi_1 \cup \psi_2 & \Leftrightarrow & \exists k \ge 0 \text{ s.t. } \omega[k \dots] \vDash \psi_2 \land \forall i < k \ \omega[i \dots] \vDash \psi_1 \end{array}$

where $\omega(i)$ is ith state of ω , and $\omega[i...]$ is suffix starting at $\omega(i)$

7

LTL examples

• (F tmp_fail₁) \land (F tmp_fail₂)

- "both servers suffer temporary failures at some point"

• GF ready

- "the server always eventually returns to a ready-state"

• FG error

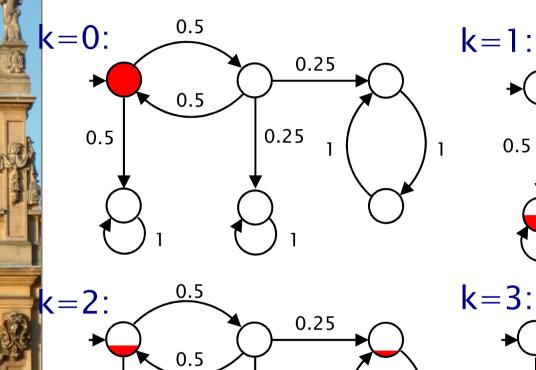
- "an irrecoverable error occurs"
- G (req \rightarrow X ack)
 - "requests are always immediately acknowledged"

LTL for DTMCs

- Same idea as PCTL: probabilities of sets of path formulae
 - for a state s of a DTMC and an LTL formula ψ :
 - $\operatorname{Prob}(s, \psi) = \operatorname{Pr}_{s} \{ \omega \in \operatorname{Path}(s) \mid \omega \vDash \psi \}$
 - all such path sets are measurable [Var85]
- A (probabilistic) LTL specification often comprises an LTL (path) formula and a probability bound
 - e.g. $P_{\geq 1}$ [GF ready] "with probability 1, the server always eventually returns to a ready-state"
 - e.g. $P_{\leq 0.01}$ [FG error] "with probability at most 0.01, an irrecoverable error occurs"
- PCTL* subsumes both LTL and PCTL
 - e.g. $P_{>0.5}$ [GF crit_1] \wedge $P_{>0.5}$ [GF crit_2]

Long-run behaviour of DTMCs

1

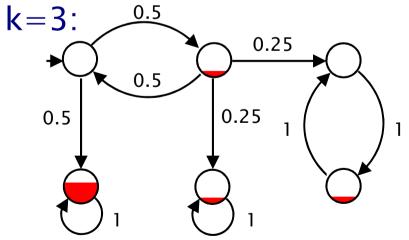


0.25

8

0.5





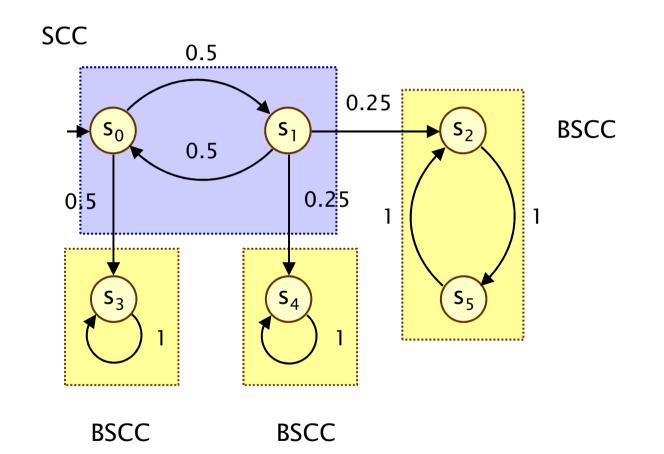
10

Strongly connected components

- Long-run properties of DTMCs rely on an analysis of their underlying graph structure (i.e. ignoring probabilities)
- Strongly connected set of states T
 - for any pair of states s and s' in T, there is a path from s to s', passing only through states in T
- Strongly connected component (SCC)
 - a maximally strongly connected set of states
 (i.e. no superset of it is also strongly connected)
- Bottom strongly connected component (BSCC)
 - an SCC T from which no state outside T is reachable from T

Example – (B)SCCs

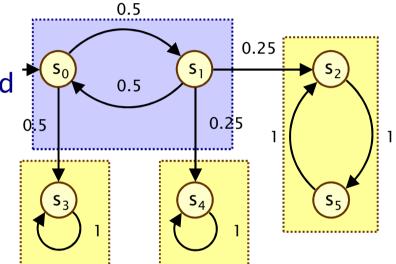
R



Fundamental property of DTMCs

• Fundamental property of (finite) DTMCs...

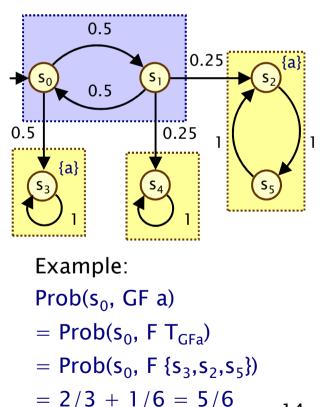
 With probability 1, some BSCC will be reached and all of its states visited infinitely often



- Formally:
 - Pr_{s0} ($s_0s_1s_2... | \exists i \ge 0$, $\exists BSCC T$ such that
 - ∀ j≥i s_j ∈ T and ∀ s∈T s_k = s for infinitely many k) = 1

LTL model checking for DTMCs

- LTL model checking for DTMCs relies on:
 - computing the probability $\text{Prob}(s,\,\psi)$ for LTL formula ψ
 - reduces to probability of reaching a set of "accepting" BSCCs
 - 2 simple cases: GF a and FG a...
- Prob(s, GF a) = Prob(s, F T_{GFa})
 - where T_{GFa} = union of all BSCCs containing some state satisfying a
- Prob(s, FG a) = Prob(s, F T_{FGa})
 - where T_{FGa} = union of all BSCCs containing only a-states
- To extend this idea to arbitrary LTL formula, we use ω -automata...



14

Overview (Part 3)

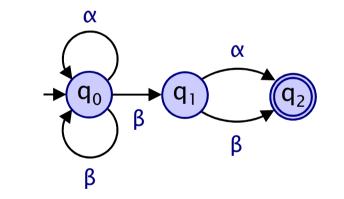
- Linear temporal logic (LTL)
- Strongly connected components
- ω-automata (Büchi, Rabin)
- LTL model checking for DTMCs
- LTL model checking for MDPs
- Beyond MDPs: stochastic multiplayer games

Reminder – Finite automata

- A regular language over alphabet Σ
 - is a set of finite words $L \subseteq \Sigma^*$ such that either:
 - L = L(E) for some regular expression E
 - L = L(A) for some nondeterministic finite automaton (NFA) A
 - L = L(A) for some deterministic finite automaton (DFA) A
- Example:

Regexp: $(\alpha + \beta)^*\beta(\alpha + \beta)$

NFA A:

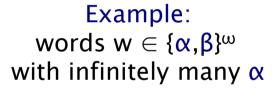


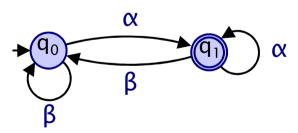
NFAs and DFAs have the same expressive power

- we can always determinise an NFA to an equivalent DFA
- (with a possibly exponential blow-up in size)

Büchi automata

- ω -automata represent sets of infinite words $L \subseteq \Sigma^{\omega}$
 - e.g. Büchi automata, Rabin automata, Streett, Muller, ...
- A nondeterministic Büchi automaton (NBA) is...
 - a tuple $A = (Q, \Sigma, \delta, Q_0, F)$ where:
 - **Q** is a finite set of states
 - $-\Sigma$ is an alphabet
 - $\delta:Q\times\Sigma\to 2^Q$ is a transition function
 - $\mathbf{Q}_0 \subseteq \mathbf{Q}$ is a set of initial states
 - $\mathbf{F} \subseteq \mathbf{Q}$ is a set of "accept" states





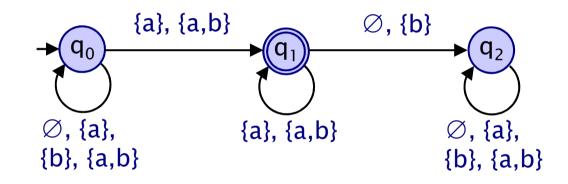
- NBA acceptance condition
 - language L(A) for A contains $w \in \Sigma^{\omega}$ if there is a corresponding run in A that passes through states in F infinitely often

ω-regular properties

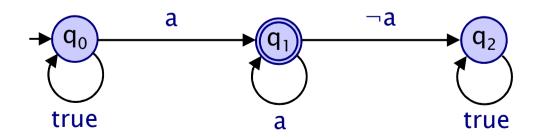
- Consider a model, i.e. an LTS/DTMC/MDP/...
 - for example: DTMC $D = (S, s_{init}, P, Lab)$
 - where labelling Lab uses atomic propositions from set AP
- We can capture properties of these using ω -automata
 - let $\omega \in Path(s)$ be some infinite path in D
 - trace(ω) \in (2^{AP}) $^{\omega}$ denotes the projection of state labels of ω
 - i.e. trace($s_0s_1s_2s_3...$) = Lab(s_0)Lab(s_1)Lab(s_2)Lab(s_3)...
 - can specify a set of paths of D with an $\omega\text{-}automaton$ over 2^{AP}
- Let Prob^D(s, A) denote the probability...
 - from state ${\color{black} s}$ in a discrete-time Markov chain ${\color{black} D}$
 - of satisfying the property specified by automaton A
 - i.e. $Prob^{D}(s,\,A)=Pr^{D}_{s}\{\,\omega\in Path(s)\mid trace(\omega)\in L(A)\,\}$

Example

- Nondeterministic Büchi automaton
 - for LTL formula FG a, i.e. "eventually always a"
 - for a DTMC with atomic propositions $AP = \{a, b\}$



• We abbreviate this to just:



Büchi automata + LTL

- Nondeterministic Büchi automata (NBAs)
 - define the set of ω -regular languages
- ω -regular languages are more expressive than LTL
 - can convert any LTL formula ψ over atomic propositions AP
 - into an equivalent NBA A_{ψ} over 2^{AP}
 - i.e. $\omega \models \psi \Leftrightarrow trace(\omega) \in L(A_{\psi})$ for any path ω
 - for LTL-to-NBA translation, see e.g. [VW94], [DGV99], [BK08]
 - worst-case: exponential blow-up from $|\psi|$ to $|A_{\psi}|$
- But deterministic Büchi automata (DBAs) are less expressive
 - e.g. there is no DBA for the LTL formula FG a
 - for probabilistic model checking, need deterministic automata
 - so we use deterministic Rabin automata (DRAs)

Deterministic Rabin automata

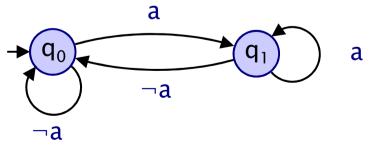
- A deterministic Rabin automaton is a tuple (Q, Σ , δ , q_0 , Acc):
 - **Q** is a finite set of states, $q_0 \in Q$ is an initial state
 - Σ is an alphabet, $\delta:Q\times\Sigma \to Q$ is a transition function
 - Acc = { (L_i, K_i) }_{i=1..k} \subseteq 2^Q \times 2^Q is an acceptance condition

• A run of a word on a DRA is accepting iff:

- for some pair (L_i, K_i) , the states in L_i are visited finitely often and (some of) the states in K_i are visited infinitely often

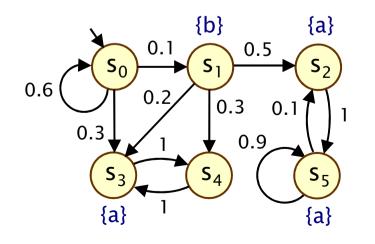
- or in LTL:
$$\bigvee_{1 \le i \le k} (FG \neg L_i \land GFK_i)$$

- Example: DRA for FG a
 - acceptance condition is Acc = { ($\{q_0\}, \{q_1\}$) }



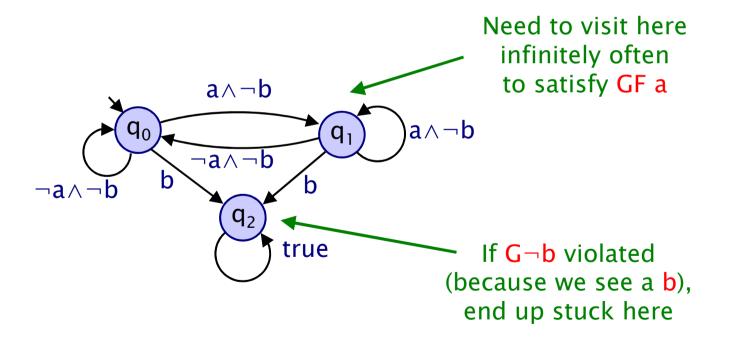
LTL model checking for DTMCs

- + LTL model checking for DTMC D and LTL formula ψ
- + 1. Construct DRA A_{ψ} for ψ
- + 2. Construct product D \otimes A of DTMC D and DRA A_ψ
- + 3. Compute $Prob^{D}(s, \psi)$ from DTMC $D \otimes A$
- Running example:
 - compute probability of satisfying LTL formula $\psi = G \neg b \land GF$ a on:



Example – DRA

- DRA A_{ψ} for $\psi = G \neg b \land GF$ a
 - acceptance condition is $Acc = \{ (\{\}, \{q_1\}) \}$
 - (i.e. this is actually a deterministic Büchi automaton)



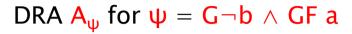
Product DTMC for a DRA

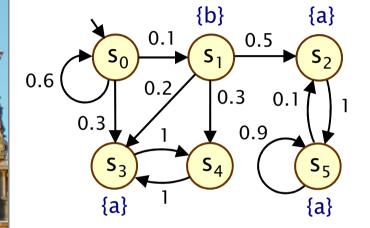
- We construct the product DTMC
 - for DTMC D and DRA A, denoted D \otimes A
 - D & A can be seen as an unfolding of D with states (s,q),
 where q records state of automaton A for path fragment so far
 - since A is deterministic, $D \otimes A$ is a also a DTMC
 - each path in D has a corresponding (unique) path in D \otimes A
 - the probabilities of paths in D are preserved in $D \otimes A$
- Formally, for $D = (S, s_{init}, P, L)$ and $A = (Q, \Sigma, \delta, q_0, \{(L_i, K_i)\}_{i=1..k})$
 - D \otimes A is the DTMC (S×Q, (s_{init},q_{init}), P', L') where:
 - $q_{init} = \delta(q_0, L(s_{init}))$ $- P'((s_1, q_1), (s_2, q_2)) = \begin{cases} P(s_1, s_2) & \text{if } q_2 = \delta(q_1, L(s_2)) \\ 0 & \text{otherwise} \end{cases}$

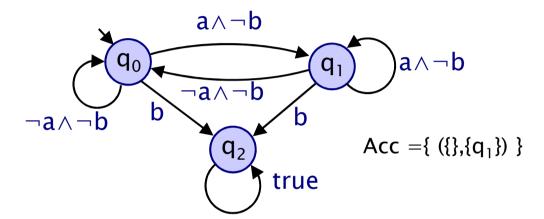
– $I_i \in L\textbf{'}(s,q)$ if $q \in L_i$ and $k_i \in L\textbf{'}(s,q)$ if $q \in K_i$

Example – Product DTMC

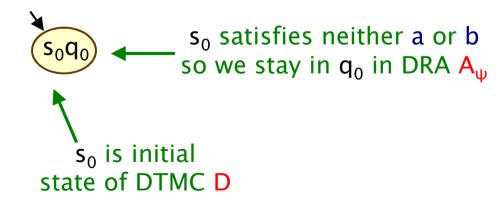
DTMC D





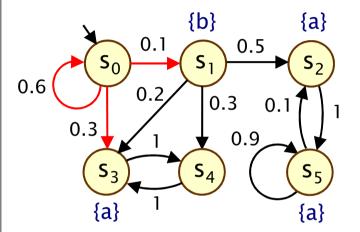


Product DTMC $D \otimes A_{\psi}$

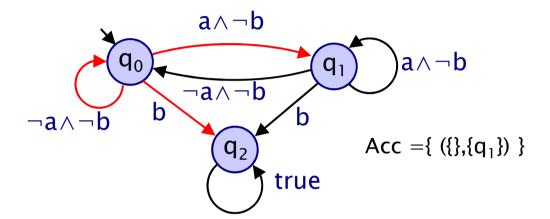


Example – Product DTMC

DTMC D



DRA A_{ψ} for $\psi = G \neg b \wedge GF$ a



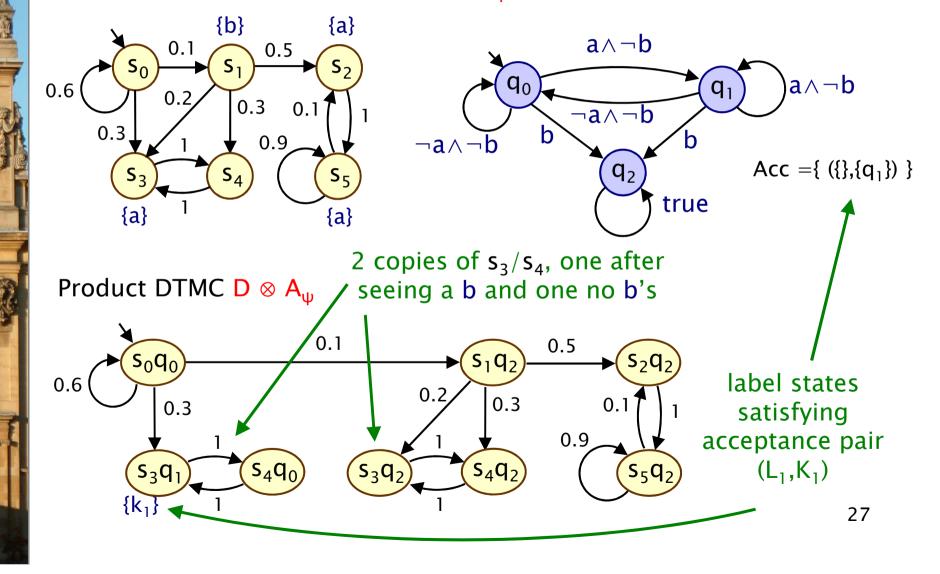
Product DTMC $D \otimes A_{\psi}$



Example – Product DTMC

DTMC D

DRA A_{ψ} for $\psi = G \neg b \land GF$ a



Product DTMC for a DRA

+ For DTMC D and DRA A

 $Prob^{D}(s, A) = Prob^{D \otimes A}((s,q_s), \ \forall_{1 \le i \le k} \ (FG \ \neg I_i \land GF \ k_i)$

- where
$$q_s = \delta(q_0, L(s))$$

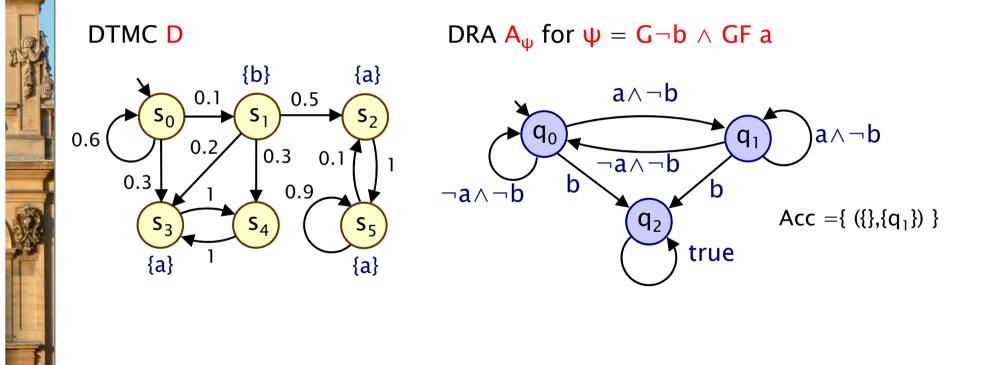
Hence:

$$Prob^{D}(s, A) = Prob^{D\otimes A}((s,q_s), F T_{Acc})$$

- where T_{Acc} is the union of all accepting BSCCs in $D{\otimes}A$
- an accepting BSCC T of D \otimes A is such that, for some $1 \le i \le k$, no states in T satisfy I_i and some state in T satisfies k_i
- Reduces to computing BSCCs and reachability probabilities

Example: LTL for DTMCs

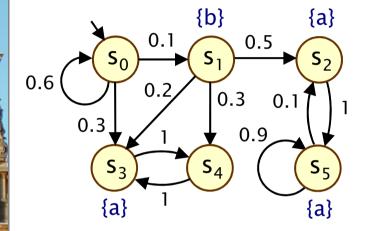
• Compute Prob(s₀, $G \neg b \land GF$ a) for DTMC D:

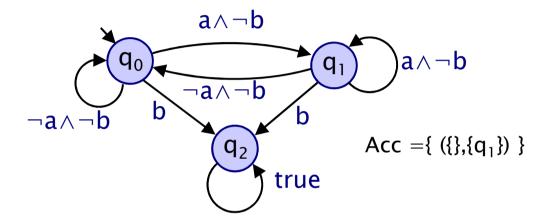


Example: LTL for DTMCs

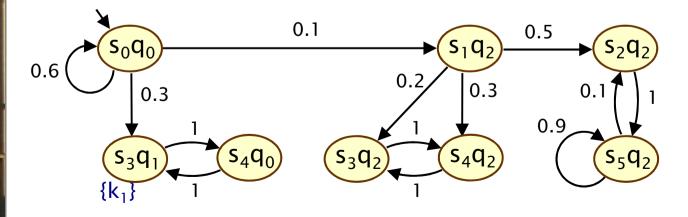
DTMC D

DRA A_{ψ} for $\psi = G \neg b \wedge GF$ a



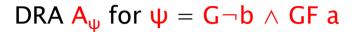


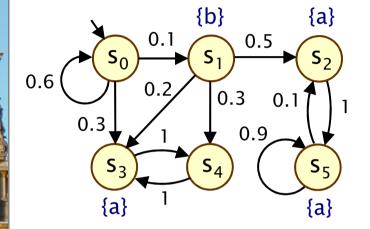
Product DTMC $D \otimes A_{\psi}$

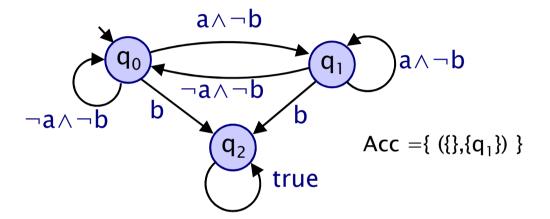


Example: LTL for DTMCs

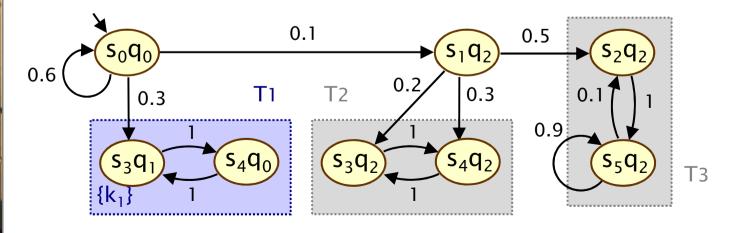
DTMC D







Product DTMC $D \otimes A_{\psi}$



Complexity of LTL model checking

- + Complexity of model checking LTL formula ψ on DTMC D
 - is doubly exponential in $|\psi|$ and polynomial in $|\mathsf{D}|$
 - (for the algorithm presented in these lectures)
- Double exponential blow-up comes from use of DRAs
 - size of NBA can be exponential in $|\psi|$
 - and DRA can be exponentially bigger than NBA
 - in practice, this does not occur and $\boldsymbol{\psi}$ is small anyway
- Polynomial-time operations required on product model
 - BSCC computation linear in (product) model size
 - probabilistic reachability cubic in (product) model size
- In total: $O(poly(|D|, |A_{\psi}|))$
- Complexity can be reduced to single exponential in |ψ|
 see e.g. [CY88,CY95]

PCTL* model checking

- PCTL* syntax:
 - $\varphi ::= true | a | \phi \land \phi | \neg \phi | P_{\sim p} [\psi]$
 - $\ \psi \ ::= \varphi \ \left| \ \psi \land \psi \ \right| \ \neg \psi \ \left| \ X \ \psi \ \right| \ \psi \ U \ \psi$

• Example:

− $P_{>p}$ [GF (send → $P_{>0}$ [F ack])]

PCTL* model checking algorithm

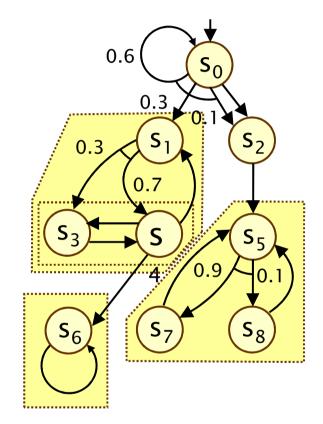
- bottom-up traversal of parse tree for formula (like PCTL)
- to model check $P_{_{\!\!\!-p}}$ [ψ]:
 - replace maximal state subformulae with atomic propositions
 - · (state subformulae already model checked recursively)
 - \cdot modified formula ψ is now an LTL formula
 - \cdot which can be model checked as for LTL

Overview (Part 4)

- Linear temporal logic (LTL)
- Strongly connected components
- ω-automata (Büchi, Rabin)
- LTL model checking for DTMCs
- LTL model checking for MDPs
- Beyond MDPs: stochastic multiplayer games

End components in MDPs

- End components of MDPs are the analogue of BSCCs in DTMCs
- An end component is a strongly connected sub-MDP
- A sub-MDP comprises a subset of states and a subset of the actions/distributions available in those states, which is closed under probabilistic branching

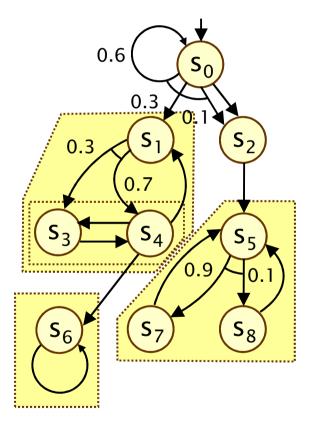


Note:

- action labels omitted
- probabilities omitted where =1

Recall – end components in MDPs

- End components of MDPs are the analogue of BSCCs in DTMCs
- For every end component, there
 is an adversary which, with
 probability 1, forces the MDP
 to remain in the end component,
 and visit all its states infinitely often
- Under every adversary σ, with probability 1 some end component will be reached and all of its states visited infinitely often (union of ECs reached with prob 1)



Long-run properties of MDPs

- Maximum probabilities
 - $p_{max}(s, GF a) = p_{max}(s, F T_{GFa})$
 - where T_{GFa} is the union of sets T for all end components (T,Steps') with T \cap Sat(a) $\neq \emptyset$
 - $p_{max}(s, FG a) = p_{max}(s, F T_{FGa})$
 - where T_{FGa} is the union of sets T for all end components (T,Steps') with $T \subseteq Sat(a)$

Minimum probabilities

- need to compute from maximum probabilities...
- $p_{min}(s, GF a) = 1 p_{max}(s, FG \neg a)$
- $p_{min}(s, FG a) = 1 p_{max}(s, GF \neg a)$

Example

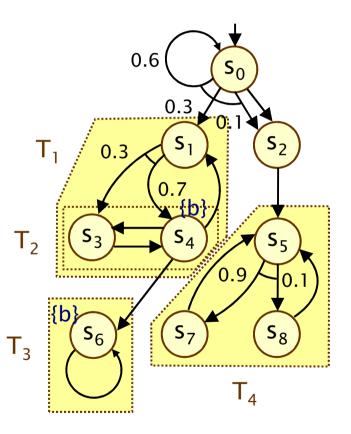
- Model check: $P_{<0.8}$ [GF b] for s_0
- Compute p_{max}(GF b)
 - $p_{max}(GF b) = p_{max}(s, F T_{GFb})$
 - T_{GFb} is the union of sets T for all end components with T \cap Sat(b) $\neq \emptyset$
 - Sat(b) = { s₄, s₆ }

$$- T_{GFb} = T_1 \cup T_2 \cup T_3 = \{ s_1, s_3 s_4, s_6 \}$$

$$- p_{max}(s, F T_{GFb}) = 0.75$$

$$- p_{max}(GF b) = 0.75$$

• Result: $s_0 \models P_{<0.8}$ [GF b]



Automata-based properties for MDPs

- For an MDP M and automaton A over alphabet 2^{AP}
 - consider probability of "satisfying" language $L(A) \subseteq (2^{AP})^\omega$
 - $\ Prob^{M,adv}(s, P) = Pr_s^{M,adv} \{ \ \omega \in Path^{M,adv}(s) \ | \ trace(\omega) \in L(A) \ \}$
 - $p_{max}^{M}(s, A) = sup_{adv \in Adv} Prob^{M,adv}(s, A)$
 - $p_{min}{}^{M}(s, A) = inf_{adv \in Adv} Prob^{M,adv}(s, A)$
- Might need minimum or maximum probabilities
 - $-\text{ e.g. } s \vDash P_{\geq 0.99} \left[\ \psi_{good} \ \right] \Leftrightarrow p_{min}{}^{M} \left(s, \ \psi_{good} \right) \geq 0.99$
 - $-\text{ e.g. s}\vDash P_{\leq 0.05}\left[\left.\psi_{bad} \right.\right] \Leftrightarrow p_{max}{}^{M}\left(s, \,\psi_{bad}\right) \leq 0.05$
- But, ψ -regular properties are closed under negation
 - as are the automata that represent them
 - so can always consider maximum probabilities...
 - $p_{max}^{M}(s, \psi_{bad}) \text{ or } 1 p_{max}^{M}(s, \neg \psi_{good})$

LTL model checking for MDPs

- Model check LTL specification $P_{\sim p}$ [ψ] against MDP M
- 1. Convert problem to one needing maximum probabilities
 - e.g. convert $P_{>p}$ [ψ] to $P_{<1\text{-}p}$ [$\neg\psi$]
- 2. Generate a DRA for ψ (or $\neg \psi$)
 - build nondeterministic Büchi automaton (NBA) for ψ [VW94]
 - convert the NBA to a DRA [Saf88]
- 3. Construct product MDP $M \otimes A$
- + 4. Identify accepting end components (ECs) of $M \otimes A$
- 5. Compute max. probability of reaching accepting ECs
 - from all states of the $\mathsf{D}{\otimes}\mathsf{A}$
- 6. Compare probability for (s, q_s) against p for each s

Product MDP for a DRA

- For an MDP M = (S, s_{init}, Steps, L)
- and a (total) DRA A = (Q, Σ , δ , q_0 , Acc)
 - where Acc = { (L_i, K_i) | $1 \le i \le k$ }

• The product MDP $M \otimes A$ is:

- the MDP (S×Q, (s_{init},q_{init}), Steps', L') where: $q_{init} = \delta(q_0, L(s_{init}))$ Steps'(s,q) = { $\mu^q \mid \mu \in \text{Step(s)}$ } $\mu^q(s',q') = \begin{cases} \mu(s') & \text{if } q' = \delta(q, L(s)) \\ 0 & \text{otherwise} \end{cases}$

 $I_i \in L'(s,q)$ if $q \in L_i$ and $k_i \in L'(s,q)$ if $q \in K_i$ (i.e. state sets of acceptance condition used as labels)

Product MDP for a DRA

For MDP M and DRA A

$$p_{\max}^{M}(s, A) = p_{\max}^{M \otimes A}((s,q_s), \vee_{1 \le i \le k} (FG \neg i \land GF k_i))$$

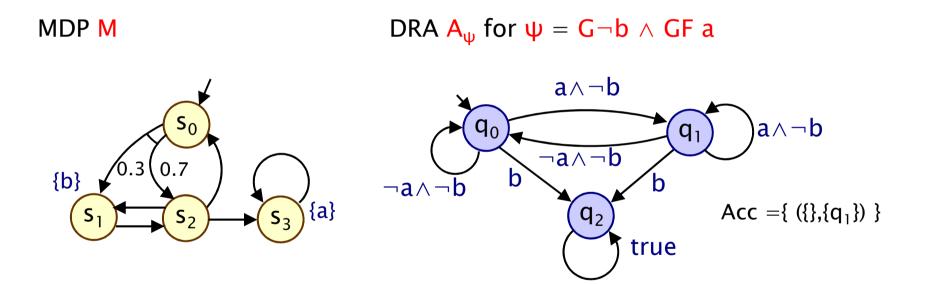
- where $q_s = \delta(q_0, L(s))$
- Hence:

$$p_{max}^{M}(s, A) = p_{max}^{M \otimes A}((s,q_s), F T_{Acc})$$

- where T_{Acc} is the union of all sets T for accepting end components (T,Steps') in D \otimes A
- an accepting end components is such that, for some $1 \le i \le k$:
 - $\cdot \ q \vDash \neg I_i \text{ for all (s,q)} \in T \text{ and } q \vDash k_i \text{ for some (s,q)} \in T$
 - i.e. $T \cap (S \times L_i) = \emptyset$ and $T \cap (S \times K_i) \neq \emptyset$

Example: LTL for MDPs

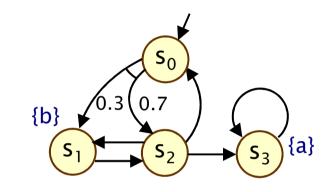
- Model check $P_{<0.8}$ [G $\neg b \land GF a$] for MDP M:
 - need to compute $\underline{p}_{max}(s_0, G \neg b \land GF a)$

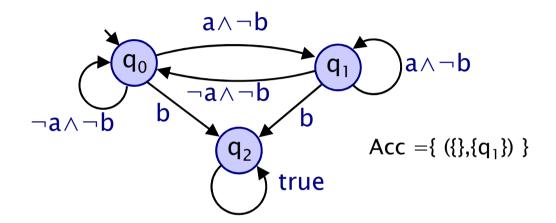


Example: LTL for MDPs

MDP M

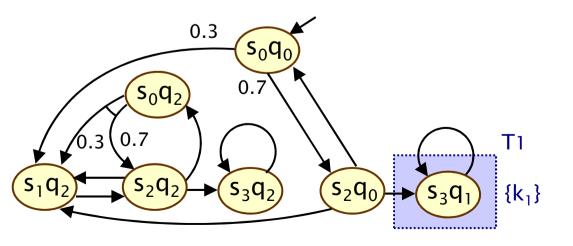
DRA A_{ψ} for $\psi = G \neg b \land GF$ a





Product MDP M \otimes A_u

 $p_{max}^{M}(s_0, \psi) = p_{max}^{M \otimes A \psi}(s_0^{}q_0^{}, F_1^{}) = 0.7$



LTL model checking for MDPs

- + Complexity of model checking LTL formula ψ on MDP M
 - is doubly exponential in $|\psi|$ and polynomial in |M|
 - unlike DTMCs, this cannot be improved upon

PCTL* model checking

- LTL model checking can be adapted to PCTL*, as for DTMCs

Maximal end components

- can optimise LTL model checking using maximal end components (there may be exponentially many ECs)
- Optimal adversaries for LTL formulae
 - e.g. memoryless adversary always exists for $p_{max}(s,\,GF\,a),$ but not for $p_{max}(s,\,FG\,a)$

Summary (LTL model checking)

- Linear temporal logic (LTL)
 - combines path operators; PCTL* subsumes LTL and PCTL
- ω -automata: represent ω -regular languages/properties
 - can translate any LTL formula into a Büchi automaton
 - for deterministic $\omega\textsc{-}automata$, we use Rabin automata
- Long-run properties of DTMCs
 - need bottom strongly connected components (BSCCs)
- LTL model checking for DTMCs
 - construct product of DTMC and Rabin automaton
 - identify accepting BSCCs, compute reachability probability
- LTL model checking for MDPs
 - MDP-DRA product, reachability of accepting end components

PRISM: Recent & new developments

New features:

- 1. parametric model checking
- 2. parameter synthesis
- 3. strategy synthesis
- 4. stochastic multi-player games
- 5. real-time: probabilistic timed automata (PTAs)

Further new additions:

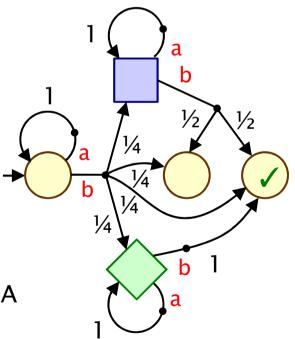
- enhanced statistical model checking (approximations + confidence intervals, acceptance sampling)
- efficient CTMC model checking (fast adaptive uniformisation)
- benchmark suite & testing functionality
- <u>www.prismmodelchecker.org</u>

Beyond MDPs

- Markov decision processes (1½ player games)
 - model control in presence of uncertainty
 - strategy/controller synthesis against environment
 - environment is passive
- Many situations where environment is active
 - multi-agent systems, ...
- Stochastic multiplayer games
 - N players, each with own strategy, can cooperate or compete
 - stochasticity to model uncertainty
 - verification/synthesis expressed in terms of winning strategies

Stochastic multi-player games

- Stochastic multi-player game (SMGs)
 - probability + nondeterminism + multiple players
- A (turn-based) SMG is a tuple (Π , S, $\langle S_i \rangle_{i \in \Pi}$, A, Δ , L):
 - Π is a set of **n** players
 - **S** is a (finite) set of states
 - $-\langle S_i \rangle_{i \in \Pi}$ is a partition of S
 - A is a set of action labels
 - $-\Delta: S \times A \rightarrow Dist(S)$ is a (partial) transition probability function
 - $L: S \rightarrow 2^{AP}$ is a labelling with atomic propositions from AP
- Notation:
 - A(s) denotes available actions in state A



Paths, strategies + probabilities

- A path is an (infinite) sequence of connected states in SMG
 - i.e. $s_0a_0s_1a_1...$ such that $a_i \in A(s_i)$ and $\Delta(s_i,a_i)(s_{i+1}) > 0$ for all i
 - represents a system execution (i.e. one possible behaviour)
 - to reason formally, need a probability space over paths
- A strategy for player $i \in \Pi$ resolves choices in S_i states
 - based on history of execution so far
 - − i.e. a function σ_i : (SA)*S_i → Dist(A)
 - $-\Sigma_i$ denotes the set of all strategies for player i
- A strategy profile is tuple $\sigma = (\sigma_1, ..., \sigma_n)$
 - combining strategies for all n players
 - deterministic if $\boldsymbol{\sigma}$ always gives a Dirac distribution
 - memoryless if $\sigma(s_0 a_0 \dots s_k)$ depends only on s_k

Paths, strategies + probabilities...

For a strategy profile σ:

- the game's behaviour is fully probabilistic
- essentially an (infinite-state) Markov chain
- yields a probability measure Pr_s^o over set of all paths Path_s from s

Allows us to reason about the probability of events

- under a specific strategy profile $\boldsymbol{\sigma}$
- e.g. any (ω -)regular property over states/actions
- Also allows us to define expectation of random variables
 - i.e. measurable functions $X : Path_s \rightarrow \mathbb{R}_{\geq 0}$
 - $E_s^{\sigma}[X] = \int_{Path_s} X dPr_s^{\sigma}$
 - used to define expected costs/rewards...

Rewards

- Rewards (or costs)
 - real-valued quantities assigned to states (and/or transitions)
- Wide range of possible uses:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...
- We use:
 - state rewards: $r : S \rightarrow \mathbb{N}$ (but can generalise to $\mathbb{Q}_{\geq 0}$)
 - expected cumulative reward until a target set T is reached
- Allow for modelling e.g.
 - expected time for algorithm execution
 - expected resource usage (energy, messages sent, ...)

Property specification: rPATL

- New temporal logic rPATL:
 - reward probabilistic alternating temporal logic
- CTL, extended with:
 - coalition operator $\langle \langle C \rangle \rangle$ of ATL
 - probabilistic operator P of PCTL
 - generalised version of reward operator ${\bf R}$ from PRISM

• Example:

- $\langle \langle \{1,2\} \rangle \rangle P_{<0.01}$ [$F^{\leq 10}$ error]
- "players 1 and 2 have a strategy to ensure that the probability of an error occurring within 10 steps is less than 0.1, regardless of the strategies of other players"

rPATL syntax

• Syntax:

$$\begin{split} \varphi &::= \top \mid a \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle C \rangle \rangle P_{\bowtie q}[\psi] \mid \langle \langle C \rangle \rangle R^{r}_{\bowtie x} \ [F\varphi] \\ \psi &::= X \ \varphi \mid \varphi \ U^{\leq k} \ \varphi \mid F^{\leq k} \ \varphi \mid G^{\leq k} \ \varphi \end{split}$$

• where:

- a∈AP is an atomic proposition, C⊆Π is a coalition of players, $\bowtie \in \{\le, <, >, \ge\}, q \in [0,1] \cap \mathbb{Q}, x \in \mathbb{Q}_{>0}, k \in \mathbb{N} \cup \{\infty\}$

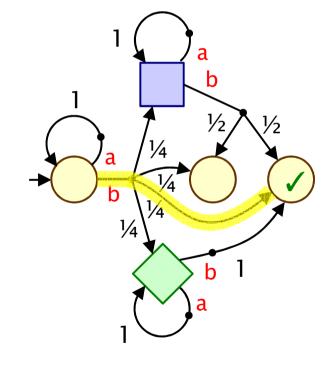
r is a reward structure

- $\langle \langle C \rangle \rangle P_{\bowtie q}[\psi]$
 - "players in coalition C have a strategy to ensure that the probability of path formula ψ being true satisfies \bowtie q, regardless of the strategies of other players"
- $\langle \langle C \rangle \rangle R^{r}_{\bowtie x} [F\varphi]$
 - "players in coalition C have a strategy to ensure that the expected reward r to reach a ϕ -state satisfies $\bowtie x$, regardless of the strategies of other players"

rPATL semantics

- Semantics for most operators is standard
- Just focus on P and R operators...
 - present using reduction to a stochastic 2-player game
 - (as for later model checking algorithms)
- Coalition game G_C for SMG G and coalition $C \subseteq \Pi$
 - 2-player SMG where C and $\Pi \backslash C$ collapse to players 1 and 2
- $\langle \langle C \rangle \rangle P_{\bowtie q}[\Psi]$ is true in state s of G iff:
 - in coalition game G_C :
 - $-\ \exists \sigma_1 {\in} \Sigma_1 \text{ such that } \forall \sigma_2 {\in} \Sigma_2 \text{ . } Pr_s^{\sigma_1,\sigma_2} (\psi) \bowtie q$
- Semantics for R operator defined similarly...

Examples

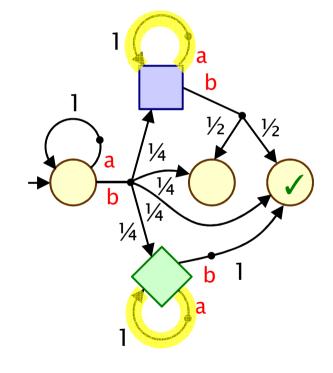


 $\langle \langle \bigcirc \rangle \rangle P_{\geq \frac{1}{4}} [F \checkmark]$ true in initial state

 $\langle \langle \bigcirc \rangle \rangle P_{\geq \frac{1}{3}} [F \checkmark]$

 $\langle \langle \bigcirc, \square \rangle \rangle \mathsf{P}_{\geq^{1/3}} [\mathsf{F} \checkmark]$

Examples

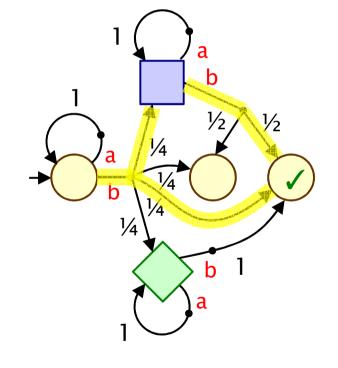


 $\langle \langle \bigcirc \rangle \rangle P_{\geq \frac{1}{4}} [F \checkmark]$ true in initial state

 $\langle \langle \bigcirc \rangle \rangle P_{\geq \frac{1}{3}} [F \checkmark]$ false in initial state

 $\langle \langle \bigcirc, \square \rangle \rangle \mathsf{P}_{\geq^{1/3}} [\mathsf{F} \checkmark]$

Examples



 $\langle \langle \bigcirc \rangle \rangle P_{\geq \frac{1}{4}} [F \checkmark]$ true in initial state

 $\langle \langle \bigcirc \rangle \rangle P_{\geq \frac{1}{3}} [F \checkmark]$ false in initial state

 $\langle \langle \bigcirc, \square \rangle \rangle P_{\geq \frac{1}{3}} [F \checkmark]$ true in initial state

Model checking rPATL

- Basic algorithm: as for any branching-time temporal logic
 - as for CTL, build and traverse the parse tree of the formula
 - compute $Sat(\phi) = \{ s \in S \mid s \models \phi \}$ for each subformula ϕ
- Main task: checking P and R operators
 - reduction to solution of stochastic 2-player game G_C
 - $\text{ e.g. } \langle \langle C \rangle \rangle P_{\geq q}[\psi] \ \Leftrightarrow \ \text{sup}_{\sigma_1 \in \Sigma_1} \text{ inf}_{\sigma_2 \in \Sigma_2} \text{ Pr}_s^{\sigma_1, \sigma_2}(\psi) \geq q$
 - complexity: NP \cap coNP (for subclass), o'wise NEXP \cap coNEXP
 - compared to, e.g. P for Markov decision processes
- In practice though:
 - evaluation of numerical fixed points ("value iteration")
 - up to a desired level of convergence

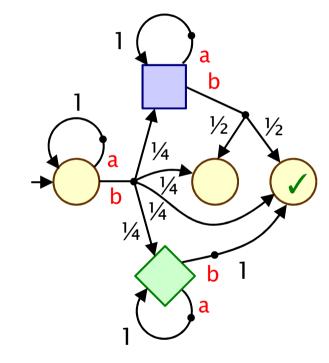
Probabilities for P operator

- E.g. $\langle \langle C \rangle \rangle P_{\geq q}$ [F φ] : max/min reachability probabilities
 - compute $\sup_{\sigma_1 \in \Sigma_1} \inf_{\sigma_2 \in \Sigma_2} \Pr_s^{\sigma_1, \sigma_2}(F \varphi)$ for all states s
 - deterministic memoryless strategies suffice
- Value is:
 - -1 if $s \in Sat(\varphi)$, and otherwise least fixed point of:

$$f(s) = \begin{cases} \max_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s, a)(s') \cdot f(s') \right) & \text{if } s \in S_1 \\ \\ \min_{a \in A(s)} \left(\sum_{s' \in S} \Delta(s, a)(s') \cdot f(s') \right) & \text{if } s \in S_2 \end{cases}$$

- Computation:
 - start from zero, propagate probabilities backwards
 - guaranteed to converge

Example



rPATL: $\langle \langle \bigcirc, \square \rangle \rangle P_{\geq \frac{1}{3}} [F \checkmark]$

Player 1: ○, □ Player 2: ◆

Compute: $\sup_{\sigma_1 \in \Sigma_1} \inf_{\sigma_2 \in \Sigma_2} \Pr_s^{\sigma_1, \sigma_2}(F \checkmark)$

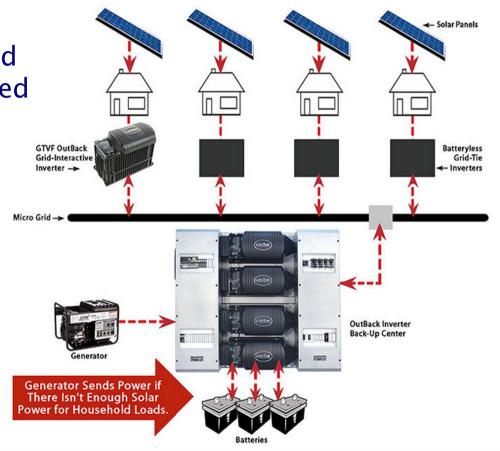
Tool support: PRISM-games

- Prototype model checker for stochastic games
 - integrated into PRISM model checker
 - using new explicit-state model checking engine

- SMGs added to PRISM modelling language
 - guarded command language, based on Reactive modules
 - finite data types, parallel composition, proc. algebra op.s, ...
- rPATL added to PRISM property specification language
 - implemented value iteration based model checking
- Available now:
 - <u>http://www.prismmodelchecker.org/games/</u>

Case study: Smartgrid

- Microgrid: proposed model for future energy markets
 - localised energy management
- Neighbourhoods use and store electricity generated from local sources
 - wind, solar, \dots
- Needs: demand-side management
 - active management of demand by users
 - to avoid peaks

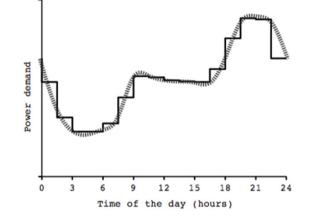


Microgrid demand-side management

- Demand-side management algorithm [Hildmann/Saffre'11]
 - N households, connected to a distribution manager
 - households submit loads for execution
 - load submission probability: daily demand curve
 - load duration: random, between 1 and D steps
 - execution cost/step = number of currently running loads
- Simple algorithm:
 - upon load generation, if cost is below an agreed limit c_{lim} , execute it, otherwise only execute with probability P_{start}
- Analysis of [Hildmann/Saffre'11]
 - define household value as V=loads_executing/execution_cost
 - simulation-based analysis shows reduction in peak demand and total energy cost reduced, with good expected value V
 - (if all households stick to algorithm)

Microgrid demand-side management

- The model
 - SMG with N players (one per household)
 - analyse 3-day period, using piecewise approximation of daily demand curve
 - fix parameters D=4, c_{lim} =1.5
 - add rewards structure for value V
- Built/analysed models
 - for N=2,...,7 households
- Step 1: assume all households follow algorithm of [HS'11] (MDP)
 - obtain optimal value for $\mathrm{P}_{\mathrm{start}}$

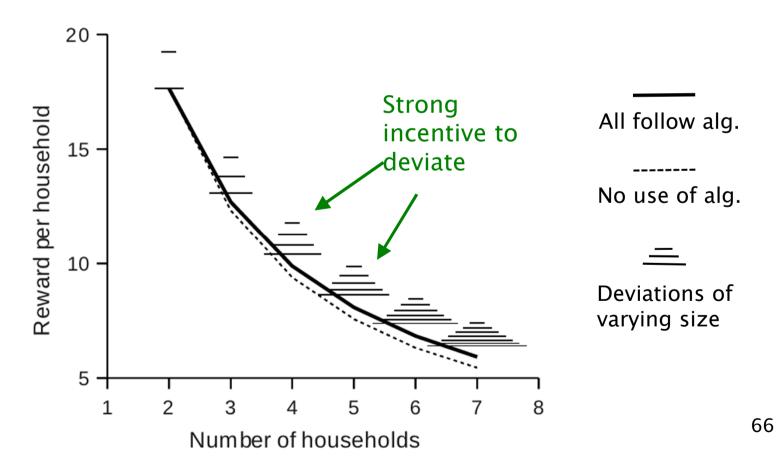


Ν	States	Transitions
)	773,307	2,145,120
6	2,384,369	7,260,756
7	6,241,312	19,678,246

- Step 2: introduce competitive behaviour (SMG)
 - allow coalition C of households to deviate from algorithm

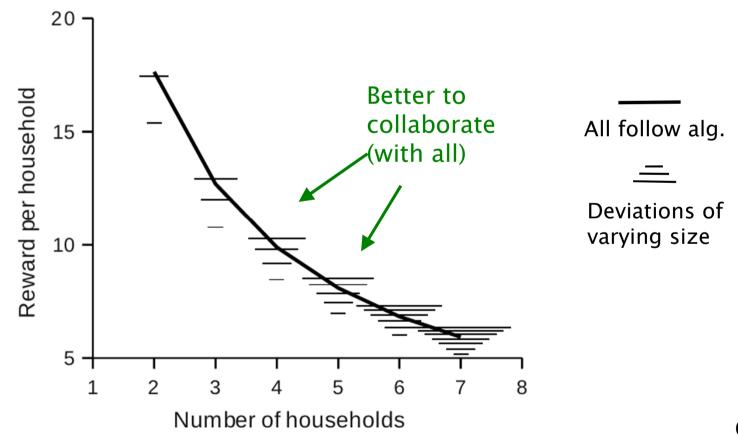
Results: Competitive behaviour

- Expected total value V per household
 - in rPATL: $\langle \langle C \rangle \rangle R^{r_{C_{max=?}}} [F time=max time] / |C|$
 - where $\mathbf{r}_{\mathbf{C}}$ is combined rewards for coalition \mathbf{C}



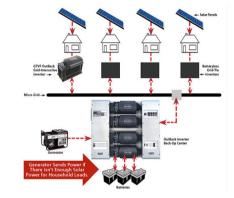
Results: Competitive behaviour

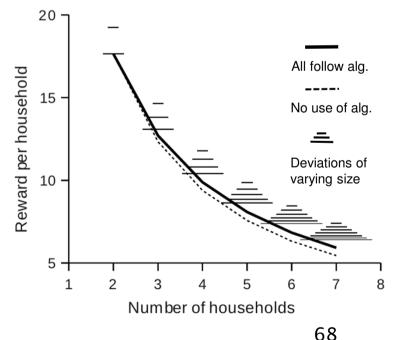
- Algorithm fix: simple punishment mechanism
 - distribution manager can cancel some loads exceeding c_{lim}



Case study: Energy management

- Energy management protocol for Microgrid
 - Microgrid: local energy management
 - randomised demand management protocol [Hildmann/Saffre'11]
 - probability: randomisation, demand model, ...
- Existing analysis
 - simulation-based
 - assumes all clients are unselfish
- Our analysis
 - stochastic multi-player game
 - clients can cheat (and cooperate)
 - exposes protocol weakness
 - propose/verify simple fix

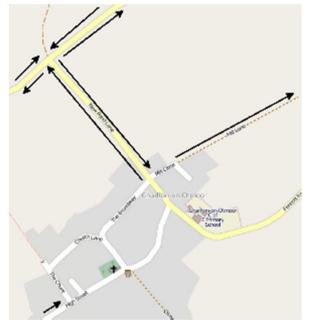




Case study: Autonomous urban driving

Inspired by DARPA challenge

- represent map data as a stochastic game, with environment able to select hazards
- express goals as conjunctions of probabilistic and reward properties
- e.g. "maximise probability of avoiding hazards and minimise time to reach destination"
- Solution (PRISM-games)
 - synthesise a probabilistic strategy to achieve the multi-objective goal



- enable the exploration of trade-offs between subgoals
- Applied to synthesise driving strategies for English villages
 - being developed in PRISM-games

Summary (Games)

- What has been achieved so far
 - extended probabilistic verification to stochastic multi-player games
 - compositional strategy synthesis from multiobjective specifications under development
 - new temporal logic rPATL for property specification
 - rPATL model checking algorithm based on num. fixed points
 - prototype model checker PRISM-games
 - case studies
- Future work
 - more realistic classes of strategy, e.g. partial information
 - new application areas, security, randomised algorithms, ...
- Next: Probabilistic timed automata (PTAs)