
Probabilistic verification and synthesis

Marta Kwiatkowska

Department of Computer Science, University of Oxford

KTH, Stockholm, August 2015

2

Lecture plan

• Course slides and lab session

− http://www.prismmodelchecker.org/courses/kth15/

• 5 sessions: lectures 9-12noon, labs 2.30-5pm

− 1 – Introduction

− 2 – Discrete time Markov chains (DTMCs)

− 3 – Markov decision processes (MDPs)

− 4 – LTL model checking for DTMCs/MDPs & beyond MDPs

− 5 – Probabilistic timed automata (PTAs)

• For extended versions of this material

− and an accompanying list of references

− see: http://www.prismmodelchecker.org/lectures/

3

Probabilistic models

Discrete
time

Continuous
time

NondeterministicFully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)

Probabilistic timed
automata (PTAs)

Simple stochastic
games (SMGs)

Interactive Markov
chains (IMCs)

LTL Model Checking; Beyond MDPs

Part 4

5

Overview (Part 4)

• Linear temporal logic (LTL)

• Strongly connected components

• ω-automata (Büchi, Rabin)

• LTL model checking for DTMCs

• LTL model checking for MDPs

• Beyond MDPs: stochastic multiplayer games

6

Limitations of PCTL

• PCTL, although useful in practice, has limited expressivity

− essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

• One useful approach: extend models with costs/rewards

− see last two lectures

• Another direction: Use more expressive logics. e.g.:

− LTL [Pnu77] – (non-probabilistic) linear-time temporal logic

− PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL

− both allow path operators to be combined

− (in PCTL, P~p […] always contains a single temporal operator)

7

LTL - Linear temporal logic

• LTL syntax (path formulae only)

− ψ ::= true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ

− where a ∈ AP is an atomic proposition

− usual equivalences hold: F φ ≡ true U φ, G φ ≡ ¬(F ¬φ)

• LTL semantics (for a path ω)

− ω ⊨ true always

− ω ⊨ a ⇔ a ∈ L(ω(0))

− ω ⊨ ψ1 ∧ ψ2 ⇔ ω ⊨ ψ1 and ω ⊨ ψ2

− ω ⊨ ¬ψ ⇔ ω ⊭ ψ

− ω ⊨ X ψ ⇔ ω[1…] ⊨ ψ

− ω ⊨ ψ1 U ψ2 ⇔ ∃k≥0 s.t. ω[k…] ⊨ ψ2 ∧∀i<k ω[i…] ⊨ ψ1

where ω(i) is ith state of ω, and ω[i…] is suffix starting at ω(i)

8

LTL examples

• (F tmp_fail1) ∧ (F tmp_fail2)

− “both servers suffer temporary failures at some point”

• GF ready

− “the server always eventually returns to a ready-state”

• FG error

− “an irrecoverable error occurs”

• G (req → X ack)

− “requests are always immediately acknowledged”

9

LTL for DTMCs

• Same idea as PCTL: probabilities of sets of path formulae

− for a state s of a DTMC and an LTL formula ψ:

− Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ }

− all such path sets are measurable [Var85]

• A (probabilistic) LTL specification often comprises
an LTL (path) formula and a probability bound

− e.g. P≥1 [GF ready] – “with probability 1, the server always
eventually returns to a ready-state”

− e.g. P≤0.01 [FG error] – “with probability at most 0.01, an
irrecoverable error occurs”

• PCTL* subsumes both LTL and PCTL

− e.g. P>0.5 [GF crit1] ∧ P>0.5 [GF crit2]

10

Long-run behaviour of DTMCs

k=2:

0.25
1 1

11

0.25

0.5

0.5

0.5

k=0:

0.25
1 1

11

0.25

0.5

0.5

0.5

k=1:

0.25
1 1

11

0.25

0.5

0.5

0.5

k=3:

0.25
1 1

11

0.25

0.5

0.5

0.5

11

Strongly connected components

• Long-run properties of DTMCs rely on an analysis of their
underlying graph structure (i.e. ignoring probabilities)

• Strongly connected set of states T

− for any pair of states s and s’ in T, there is a path from s to s’,
passing only through states in T

• Strongly connected component (SCC)

− a maximally strongly connected set of states
(i.e. no superset of it is also strongly connected)

• Bottom strongly connected component (BSCC)

− an SCC T from which no state outside T is reachable from T

12

Example - (B)SCCs

s0

0.25
1

s1 s2

s3 s4 s5

1

11

0.25

0.5

0.5

0.5

BSCC

BSCCBSCC

SCC

13

Fundamental property of DTMCs

• Fundamental property of (finite) DTMCs…

• With probability 1,
some BSCC will be reached
and all of its states
visited infinitely often

• Formally:

− Prs0 (s0s1s2… | ∃ i≥0, ∃ BSCC T such that
∀ j≥i sj ∈ T and
∀ s∈T sk = s for infinitely many k) = 1

s0

0.25
1

s1 s2

s3 s4 s5

1

11

0.25

0.5

0.5

0.5

14

LTL model checking for DTMCs

• LTL model checking for DTMCs relies on:

− computing the probability Prob(s, ψ) for LTL formula ψ

− reduces to probability of reaching a set of “accepting” BSCCs

− 2 simple cases: GF a and FG a…

• Prob(s, GF a) = Prob(s, F TGFa)

− where TGFa = union of all BSCCs
containing some state satisfying a

• Prob(s, FG a) = Prob(s, F TFGa)

− where TFGa = union of all BSCCs
containing only a-states

• To extend this idea to arbitrary
LTL formula, we use ω-automata…

s0

0.25
1

s1 s2

s3 s4 s5

1

11

0.25

0.5

0.5

0.5

Example:

Prob(s0, GF a)

= Prob(s0, F TGFa)

= Prob(s0, F {s3,s2,s5})

= 2/3 + 1/6 = 5/6

{a}

{a}

15

Overview (Part 3)

• Linear temporal logic (LTL)

• Strongly connected components

• ω-automata (Büchi, Rabin)

• LTL model checking for DTMCs

• LTL model checking for MDPs

• Beyond MDPs: stochastic multiplayer games

16

Reminder – Finite automata

• A regular language over alphabet Σ

− is a set of finite words L ⊆ Σ* such that either:

− L = L(E) for some regular expression E

− L = L(A) for some nondeterministic finite automaton (NFA) A

− L = L(A) for some deterministic finite automaton (DFA) A

• Example:

• NFAs and DFAs have the same expressive power

− we can always determinise an NFA to an equivalent DFA

− (with a possibly exponential blow-up in size)

q0

α

q1 q2

β

β
β

α

NFA A:Regexp: (α+β)*β(α+β)

17

Büchi automata

• ω-automata represent sets of infinite words L ⊆ Σω

− e.g. Büchi automata, Rabin automata, Streett, Muller, …

• A nondeterministic Büchi automaton (NBA) is…

− a tuple A = (Q, Σ, δ, Q0, F) where:

− Q is a finite set of states

− Σ is an alphabet

− δ : Q × Σ → 2Q is a transition function

− Q0 ⊆ Q is a set of initial states

− F ⊆ Q is a set of “accept” states

• NBA acceptance condition

− language L(A) for A contains w ∈ Σω if there is a corresponding
run in A that passes through states in F infinitely often

q0 q1

β

α

α

β

Example:
words w ∈ {α,β}ω

with infinitely many α

18

ω-regular properties

• Consider a model, i.e. an LTS/DTMC/MDP/…

− for example: DTMC D = (S, sinit, P, Lab)

− where labelling Lab uses atomic propositions from set AP

• We can capture properties of these using ω-automata

− let ω ∈ Path(s) be some infinite path in D

− trace(ω) ∈ (2AP)ω denotes the projection of state labels of ω

− i.e. trace(s0s1s2s3…) = Lab(s0)Lab(s1)Lab(s2)Lab(s3)…

− can specify a set of paths of D with an ω-automaton over 2AP

• Let ProbD(s, A) denote the probability…

− from state s in a discrete-time Markov chain D

− of satisfying the property specified by automaton A

− i.e. ProbD(s, A) = PrD
s{ ω ∈ Path(s) | trace(ω) ∈ L(A) }

19

Example

• Nondeterministic Büchi automaton

− for LTL formula FG a, i.e. “eventually always a”

− for a DTMC with atomic propositions AP = {a,b}

• We abbreviate this to just:

q0 q1

¬aa

atrue

q2

true

q0 q1

∅, {b}{a}, {a,b}

{a}, {a,b}∅, {a},
{b}, {a,b}

q2

∅, {a},
{b}, {a,b}

20

Büchi automata + LTL

• Nondeterministic Büchi automata (NBAs)

− define the set of ω-regular languages

• ω-regular languages are more expressive than LTL

− can convert any LTL formula ψ over atomic propositions AP

− into an equivalent NBA Aψ over 2AP

− i.e. ω ⊨ ψ ⇔ trace(ω) ∈ L(Aψ) for any path ω

− for LTL-to-NBA translation, see e.g. [VW94], [DGV99], [BK08]

− worst-case: exponential blow-up from |ψ| to |Aψ|

• But deterministic Büchi automata (DBAs) are less expressive

− e.g. there is no DBA for the LTL formula FG a

− for probabilistic model checking, need deterministic automata

− so we use deterministic Rabin automata (DRAs)

21

Deterministic Rabin automata

• A deterministic Rabin automaton is a tuple (Q, Σ, δ, q0, Acc):

− Q is a finite set of states, q0 ∈ Q is an initial state

− Σ is an alphabet, δ : Q × Σ → Q is a transition function

− Acc = { (Li, Ki) }i=1..k ⊆ 2Q × 2Q is an acceptance condition

• A run of a word on a DRA is accepting iff:

− for some pair (Li, Ki), the states in Li are visited finitely often
and (some of) the states in Ki are visited infinitely often

− or in LTL:

• Example: DRA for FG a

− acceptance condition is
Acc = { ({q0},{q1}) }

)KGFLFG(
iiki1

∧¬
≤≤

∨

q0

¬a

a

a

¬a

q1

22

LTL model checking for DTMCs

• LTL model checking for DTMC D and LTL formula ψ

• 1. Construct DRA Aψ for ψ

• 2. Construct product D ⊗ A of DTMC D and DRA Aψ

• 3. Compute ProbD(s, ψ) from DTMC D ⊗ A

• Running example:

− compute probability of
satisfying LTL formula
ψ = G¬b ∧ GF a on:

s1s0 s2

0.1
{b}

0.3

s4s3 s5

0.6 0.2
0.3

0.5

1

{a}

0.9

0.1

1

1

{a}

{a}

23

Example - DRA

• DRA Aψ for ψ = G¬b ∧ GF a

− acceptance condition is Acc = { ({},{q1}) }

− (i.e. this is actually a deterministic Büchi automaton)

q0 q1

¬a∧¬b

a∧¬b

a∧¬b

¬a∧¬b
q2

true

bb

If G¬b violated
(because we see a b),

end up stuck here

Need to visit here
infinitely often
to satisfy GF a

24

Product DTMC for a DRA

• We construct the product DTMC

− for DTMC D and DRA A, denoted D ⊗ A

− D ⊗ A can be seen as an unfolding of D with states (s,q),
where q records state of automaton A for path fragment so far

− since A is deterministic, D ⊗ A is a also a DTMC

− each path in D has a corresponding (unique) path in D ⊗ A

− the probabilities of paths in D are preserved in D ⊗ A

• Formally, for D = (S,sinit,P,L) and A = (Q,Σ,δ,q0, {(Li,Ki)}i=1..k)

− D ⊗ A is the DTMC (S×Q, (sinit,qinit), P’, L’) where:

− qinit = δ(q0,L(sinit))

−

− li ∈ L’(s,q) if q ∈ Li and ki ∈ L’(s,q) if q ∈ Ki

 =

=
otherwise0

))s(L,q(δq if)s,s(
))q,s(),q,s((' 21221

2211

P
P

25

Example – Product DTMC

Product DTMC D ⊗ Aψ

s0q0

s1s0 s2

0.1
{b}

0.3

s4s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9

0.1

1

1

{a}

{a}

DTMC D

q0 q1

¬a∧¬b

a∧¬b

a∧¬b

¬a∧¬b
q2

true

bb

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

s0 is initial
state of DTMC D

s0 satisfies neither a or b
so we stay in q0 in DRA Aψ

26

Example – Product DTMC

s1q2

Product DTMC D ⊗ Aψ

0.1

0.3

0.6

s0q0

s3q1

s1s0 s2

0.1
{b}

0.3

s4s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9

0.1

1

1

{a}

{a}

DTMC D

q0 q1

¬a∧¬b

a∧¬b

a∧¬b

¬a∧¬b
q2

true

bb

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

s1 satisfies b so
we move to q2 in Aψ

s3 satisfies a but not b
so we move to q1 in Aψ

27

Example – Product DTMC

Product DTMC D ⊗ Aψ

s1s0 s2

0.1
{b}

0.3

s4s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9

0.1

1

1

{a}

{a}

DTMC D

q0 q1

¬a∧¬b

a∧¬b

a∧¬b

¬a∧¬b
q2

true

bb

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

s2q2s1q2

s3q2

0.1

0.3

0.6
0.2 0.3

0.5

1

0.9

0.1

1

1

s4q2

s0q0

{k1}

s5q2s3q1

1

1

s4q0

2 copies of s3/s4, one after
seeing a b and one no b’s

label states
satisfying

acceptance pair
(L1,K1)

28

Product DTMC for a DRA

• For DTMC D and DRA A

− where qs = δ(q0,L(s))

• Hence:

− where TAcc is the union of all accepting BSCCs in D⊗A

− an accepting BSCC T of D⊗A is such that, for some 1≤i≤k,
no states in T satisfy li and some state in T satisfies ki

• Reduces to computing BSCCs and reachability probabilities

ProbD(s, A) = ProbD⊗A((s,qs), F TAcc)

ProbD(s, A) = ProbD⊗A((s,qs), ∨1≤i≤k (FG ¬li ∧ GF ki)

29

Example: LTL for DTMCs

• Compute Prob(s0, G¬b ∧ GF a) for DTMC D:

s1s0 s2

0.1
{b}

0.3

s4s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9

0.1

1

1

{a}

{a}

DTMC D

q0 q1

¬a∧¬b

a∧¬b

a∧¬b

¬a∧¬b
q2

true

bb

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

30

Example: LTL for DTMCs

s2q2s1q2

s3q2

Product DTMC D ⊗ Aψ

0.1

0.3

0.6
0.2 0.3

0.5

1

0.9

0.1

1

1

s4q2

s0q0

{k1}

s5q2s3q1

1

1

s4q0

s1s0 s2

0.1
{b}

0.3

s4s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9

0.1

1

1

{a}

{a}

DTMC D

q0 q1

¬a∧¬b

a∧¬b

a∧¬b

¬a∧¬b
q2

true

bb

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

31

Example: LTL for DTMCs

s2q2s1q2

s3q2

Product DTMC D ⊗ Aψ

0.1

0.3

0.6
0.2 0.3

0.5

1

0.9

0.1

1

1

s4q2

s0q0

{k1}

s5q2s3q1

1

1

s4q0

s1s0 s2

0.1
{b}

0.3

s4s3 s5

0.6 0.2 0.3

0.5

1

{a}

0.9

0.1

1

1

{a}

{a}

DTMC D

q0 q1

¬a∧¬b

a∧¬b

a∧¬b

¬a∧¬b
q2

true

bb

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

ProbD(s0, ψ) = ProbD⊗Aψ (s0q0, F T1) = 3/4

T1 T2

T3

32

Complexity of LTL model checking

• Complexity of model checking LTL formula ψ on DTMC D

− is doubly exponential in |ψ| and polynomial in |D|

− (for the algorithm presented in these lectures)

• Double exponential blow-up comes from use of DRAs

− size of NBA can be exponential in |ψ|

− and DRA can be exponentially bigger than NBA

− in practice, this does not occur and ψ is small anyway

• Polynomial-time operations required on product model

− BSCC computation – linear in (product) model size

− probabilistic reachability – cubic in (product) model size

• In total: O(poly(|D|,|Aψ|))

• Complexity can be reduced to single exponential in |ψ|

− see e.g. [CY88,CY95]

33

PCTL* model checking

• PCTL* syntax:

− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ]

− ψ ::= φ | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ

• Example:

− P>p [GF (send → P>0 [F ack])]

• PCTL* model checking algorithm

− bottom-up traversal of parse tree for formula (like PCTL)

− to model check P~p [ψ]:

• replace maximal state subformulae with atomic propositions

• (state subformulae already model checked recursively)

• modified formula ψ is now an LTL formula

• which can be model checked as for LTL

34

Overview (Part 4)

• Linear temporal logic (LTL)

• Strongly connected components

• ω-automata (Büchi, Rabin)

• LTL model checking for DTMCs

• LTL model checking for MDPs

• Beyond MDPs: stochastic multiplayer games

35

End components in MDPs

• End components of MDPs
are the analogue of BSCCs in DTMCs

• An end component is a
strongly connected sub-MDP

• A sub-MDP comprises a subset
of states and a subset of the
actions/distributions available
in those states, which is closed
under probabilistic branching

s0

s1 s2

s5s
4

s3

s7 s8s6

0.6

0.3

0.3

0.7

0.10.9

0.1

Note:
● action labels omitted
● probabilities omitted where =1

36

Recall - end components in MDPs

• End components of MDPs
are the analogue of BSCCs in DTMCs

• For every end component, there
is an adversary which, with
probability 1, forces the MDP
to remain in the end component,
and visit all its states infinitely often

• Under every adversary σ, with
probability 1 some end component  
will be reached and all of its
states  visited infinitely often
(union of ECs reached with prob 1)

s0

s1 s2

s5
s4s3

s7 s8s6

0.6

0.3

0.3

0.7

0.10.9

0.1

37

Long-run properties of MDPs

• Maximum probabilities

− pmax(s, GF a) = pmax(s, F TGFa)

• where TGFa is the union of sets T for all end components
(T,Steps’) with T ∩ Sat(a) ≠ ∅

− pmax(s, FG a) = pmax(s, F TFGa)

• where TFGa is the union of sets T for all end components
(T,Steps’) with T ⊆ Sat(a)

• Minimum probabilities

− need to compute from maximum probabilities…

− pmin(s, GF a) = 1- pmax(s, FG¬a)

− pmin(s, FG a) = 1- pmax(s, GF¬a)

38

Example

• Model check: P<0.8 [GF b] for s0

• Compute pmax(GF b)

− pmax(GF b) = pmax(s, F TGFb)

− TGFb is the union of sets T
for all end components
with T ∩ Sat(b) ≠ ∅

− Sat(b) = { s4, s6 }

− TGFb = T1∪T2∪T3 = { s1, s3 s4, s6 }

− pmax(s, F TGFb) = 0.75

− pmax(GF b) = 0.75

• Result: s0 ⊨ P<0.8 [GF b]

s0

s1 s2

s5
s4s3

s7 s8s6

0.6

0.3

0.3

0.7

0.10.9

0.1

T1

T2

T3

T4

{b}

{b}

39

Automata-based properties for MDPs

• For an MDP M and automaton A over alphabet 2AP

− consider probability of “satisfying” language L(A) ⊆ (2AP)ω

− ProbM,adv(s, P) = Prs
M,adv { ω ∈ PathM,adv(s) | trace(ω) ∈ L(A) }

− pmax
M(s, A) = supadv∈Adv ProbM,adv(s, A)

− pmin
M(s, A) = infadv∈Adv ProbM,adv(s, A)

• Might need minimum or maximum probabilities

− e.g. s ⊨ P≥0.99 [ψgood] ⇔ pmin
M (s, ψgood) ≥ 0.99

− e.g. s ⊨ P≤0.05 [ψbad] ⇔ pmax
M (s, ψbad) ≤ 0.05

• But, ψ-regular properties are closed under negation

− as are the automata that represent them

− so can always consider maximum probabilities…

− pmax
M(s, ψbad) or 1 - pmax

M(s, ¬ψgood)

40

LTL model checking for MDPs

• Model check LTL specification P~p [ψ] against MDP M

• 1. Convert problem to one needing maximum probabilities

− e.g. convert P>p [ψ] to P<1-p [¬ψ]

• 2. Generate a DRA for ψ (or ¬ψ)

− build nondeterministic Büchi automaton (NBA) for ψ [VW94]

− convert the NBA to a DRA [Saf88]

• 3. Construct product MDP M⊗A

• 4. Identify accepting end components (ECs) of M⊗A

• 5. Compute max. probability of reaching accepting ECs

− from all states of the D⊗A

• 6. Compare probability for (s, qs) against p for each s

41

Product MDP for a DRA

• For an MDP M = (S, sinit, Steps, L)

• and a (total) DRA A = (Q, Σ, δ, q0, Acc)

− where Acc = { (Li, Ki) | 1≤i≤k }

• The product MDP M ⊗ A is:

− the MDP (S×Q, (sinit,qinit), Steps’, L’) where:

qinit = δ(q0,L(sinit))

Steps’(s,q) = { µq | µ ∈ Step(s) }

li ∈ L’(s,q) if q ∈ Li and ki ∈ L’(s,q) if q ∈ Ki

(i.e. state sets of acceptance condition used as labels)

 =

=
otherwise0

))s(L,q(δq' if)'s(µ
)'q,'s(µq

42

Product MDP for a DRA

• For MDP M and DRA A

− where qs = δ(q0,L(s))

• Hence:

− where TAcc is the union of all sets T for accepting end
components (T,Steps’) in D⊗A

− an accepting end components is such that, for some 1≤i≤k:

• q ⊨ ¬li for all (s,q) ∈ T and q ⊨ ki for some (s,q) ∈ T

• i.e. T ∩ (S × Li) = ∅ and T ∩ (S × Ki) ≠ ∅

pmax
M(s, A) = pmax

M⊗A((s,qs), F TAcc)

pmax
M(s, A) = pmax

M⊗A((s,qs), ∨1≤i≤k (FG ¬li ∧ GF ki)

43

Example: LTL for MDPs

• Model check P<0.8 [G ¬b ∧ GF a] for MDP M:

− need to compute pmax(s0, G ¬b ∧ GF a)

MDP M

q0 q1

¬a∧¬b

a∧¬b

a∧¬b

¬a∧¬b
q2

true

bb

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

s0

s2s1 s3

0.3 0.7
{b}

{a}

44

Example: LTL for MDPs

Product MDP M ⊗ Aψ

MDP M

q0 q1

¬a∧¬b

a∧¬b

a∧¬b

¬a∧¬b
q2

true

bb

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

pmax
M(s0, ψ) = pmax

M⊗Aψ (s0q0, F T1) = 0.7

s0

s2s1 s3

0.3 0.7
{b}

{a}

s0q2

s1q2 s3q2 s2q0 s3q1

0.3

0.7

s0q0

0.3 0.7

s2q2 {k1}

T1

45

LTL model checking for MDPs

• Complexity of model checking LTL formula ψ on MDP M

− is doubly exponential in |ψ| and polynomial in |M|

− unlike DTMCs, this cannot be improved upon

• PCTL* model checking

− LTL model checking can be adapted to PCTL*, as for DTMCs

• Maximal end components

− can optimise LTL model checking using maximal end
components (there may be exponentially many ECs)

• Optimal adversaries for LTL formulae

− e.g. memoryless adversary always exists for pmax(s, GF a),
but not for pmax(s, FG a)

46

Summary (LTL model checking)

• Linear temporal logic (LTL)

− combines path operators; PCTL* subsumes LTL and PCTL

• ω-automata: represent ω-regular languages/properties

− can translate any LTL formula into a Büchi automaton

− for deterministic ω-automata, we use Rabin automata

• Long-run properties of DTMCs

− need bottom strongly connected components (BSCCs)

• LTL model checking for DTMCs

− construct product of DTMC and Rabin automaton

− identify accepting BSCCs, compute reachability probability

• LTL model checking for MDPs

− MDP-DRA product, reachability of accepting end components

47

PRISM: Recent & new developments

• New features:

1. parametric model checking

2. parameter synthesis

3. strategy synthesis

4. stochastic multi-player games

5. real-time: probabilistic timed automata (PTAs)

• Further new additions:

− enhanced statistical model checking
(approximations + confidence intervals, acceptance sampling)

− efficient CTMC model checking (fast adaptive uniformisation)

− benchmark suite & testing functionality

− www.prismmodelchecker.org

− Beyond PRISM…

48

Beyond MDPs

• Markov decision processes (1½ player games)

− model control in presence of uncertainty

− strategy/controller synthesis against environment

− environment is passive

• Many situations where environment is active

− multi-agent systems, …

• Stochastic multiplayer games

− N players, each with own strategy, can cooperate or compete

− stochasticity to model uncertainty

− verification/synthesis expressed in terms of winning
strategies

49

Stochastic multi-player games

• Stochastic multi-player game (SMGs)

− probability + nondeterminism + multiple players

• A (turn-based) SMG is a tuple (Π, S, ⟨Si⟩i∈Π, A, ∆, L):

− Π is a set of n players

− S is a (finite) set of states

− ⟨Si⟩i∈Π is a partition of S

− A is a set of action labels

− ∆ : S × A → Dist(S) is a (partial)

transition probability function

− L : S → 2AP is a labelling with

atomic propositions from AP

• Notation:

− A(s) denotes available actions in state A

b

a ¼

¼
¼

½

¼

✓

1

1
½

1
a

b

1

a

b

50

Paths, strategies + probabilities

• A path is an (infinite) sequence of connected states in SMG

− i.e. s0a0s1a1… such that ai∈A(si) and ∆(si,ai)(si+1)>0 for all i

− represents a system execution (i.e. one possible behaviour)

− to reason formally, need a probability space over paths

• A strategy for player i ∈ Π resolves choices in Si states

− based on history of execution so far

− i.e. a function σi : (SA)*Si → Dist(A)

− Σi denotes the set of all strategies for player i

• A strategy profile is tuple σ=(σ1,…,σn)

− combining strategies for all n players

− deterministic if σ always gives a Dirac distribution

− memoryless if σ(s0a0…sk) depends only on sk

51

Paths, strategies + probabilities…

• For a strategy profile σ:

− the game’s behaviour is fully probabilistic

− essentially an (infinite-state) Markov chain

− yields a probability measure Prs
σ

over set of all paths Paths from s

• Allows us to reason about the probability of events

− under a specific strategy profile σ

− e.g. any (ω-)regular property over states/actions

• Also allows us to define expectation of random variables

− i.e. measurable functions X : Paths → ℝ≥0

− Es
σ [X] = ∫Paths

X dPrs
σ

− used to define expected costs/rewards…

s1 s2s

52

Rewards

• Rewards (or costs)

− real-valued quantities assigned to states (and/or transitions)

• Wide range of possible uses:

− elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, …

• We use:

− state rewards: r : S → ℕ (but can generalise to ℚ≥0)

− expected cumulative reward until a target set T is reached

• Allow for modelling e.g.

− expected time for algorithm execution

− expected resource usage (energy, messages sent, …)

53

Property specification: rPATL

• New temporal logic rPATL:

− reward probabilistic alternating temporal logic

• CTL, extended with:

− coalition operator ⟨⟨C⟩⟩ of ATL

− probabilistic operator P of PCTL

− generalised version of reward operator R from PRISM

• Example:

− ⟨⟨{1,2}⟩⟩ P<0.01 [F
≤10 error]

− “players 1 and 2 have a strategy to ensure that the probability
of an error occurring within 10 steps is less than 0.1,
regardless of the strategies of other players”

54

rPATL syntax

• Syntax:

φ ::= ⊤ | a | ¬φ | φ ∧ φ | ⟨⟨C⟩⟩P⋈q[ψ] | ⟨⟨C⟩⟩Rr
⋈x [Fφ]

ψ ::= X φ | φ U≤k φ | F≤k φ | G≤k φ

• where:

− a∈AP is an atomic proposition, C⊆Π is a coalition of players,

⋈∈{≤,<,>,≥}, q∈[0,1]∩ℚ, x∈ℚ≥0, k ∈ ℕ∪{∞}

r is a reward structure

• ⟨⟨C⟩⟩P⋈q[ψ]

− “players in coalition C have a strategy to ensure that the
probability of path formula ψ being true satisfies ⋈ q,
regardless of the strategies of other players”

• ⟨⟨C⟩⟩Rr
⋈x [Fφ]

− “players in coalition C have a strategy to ensure that the
expected reward r to reach a φ-state satisfies ⋈ x, regardless
of the strategies of other players”

55

rPATL semantics

• Semantics for most operators is standard

• Just focus on P and R operators…

− present using reduction to a stochastic 2-player game

− (as for later model checking algorithms)

• Coalition game GC for SMG G and coalition C⊆Π

− 2-player SMG where C and Π\C collapse to players 1 and 2

• ⟨⟨C⟩⟩P⋈q[ψ] is true in state s of G iff:

− in coalition game GC:

− ∃σ1∈Σ1 such that ∀σ2∈Σ2 . Prs
σ1,σ2 (ψ) ⋈ q

• Semantics for R operator defined similarly…

56

Examples

b

a ¼

¼
¼

½

¼

✓

1

1
½

1
a

b

1

a

b

⟨⟨ ⟩⟩P≥¼[F ✓]

true in initial state

⟨⟨ ⟩⟩P≥⅓ [F ✓]

⟨⟨ , ⟩⟩P≥⅓ [F ✓]

57

Examples

b

a ¼

¼
¼

½

¼

✓

1

1
½

1
a

b

1

a

b

⟨⟨ ⟩⟩P≥¼[F ✓]

true in initial state

⟨⟨ ⟩⟩P≥⅓ [F ✓]

⟨⟨ , ⟩⟩P≥⅓ [F ✓]

false in initial state

58

Examples

b

a ¼

¼
¼

½

¼

✓

1

1
½

1
a

b

1

a

b

⟨⟨ ⟩⟩P≥¼[F ✓]

true in initial state

⟨⟨ ⟩⟩P≥⅓ [F ✓]

false in initial state

⟨⟨ , ⟩⟩P≥⅓ [F ✓]

true in initial state

59

Model checking rPATL

• Basic algorithm: as for any branching-time temporal logic

− as for CTL, build and traverse the parse tree of the formula

− compute Sat(φ) = { s∈S | s⊨φ } for each subformula φ

• Main task: checking P and R operators

− reduction to solution of stochastic 2-player game GC

− e.g. ⟨⟨C⟩⟩P≥q[ψ] ⇔ supσ1∈Σ1
infσ2∈Σ2

Prs
σ1,σ2 (ψ) ≥q

− complexity: NP ∩ coNP (for subclass), o’wise NEXP ∩ coNEXP

− compared to, e.g. P for Markov decision processes

• In practice though:

− evaluation of numerical fixed points (“value iteration”)

− up to a desired level of convergence

60

Probabilities for P operator

• E.g. ⟨⟨C⟩⟩P≥q[F φ] : max/min reachability probabilities

− compute supσ1∈Σ1
infσ2∈Σ2

Prs
σ1,σ2 (F φ) for all states s

− deterministic memoryless strategies suffice

• Value is:

− 1 if s ∈ Sat(φ), and otherwise least fixed point of:

• Computation:

− start from zero, propagate probabilities backwards

− guaranteed to converge

f(s) =

maxa∈A(s) ∆(s,a)(s') ⋅ f(s')
s'∈S

∑

 if s ∈ S1

mina∈A(s) ∆(s,a)(s') ⋅ f(s')
s'∈S

∑

 if s ∈ S2

61

Example

b

a ¼

¼
¼

½

¼

1

1
½

1
a

b

1

a

b

Compute: supσ1∈Σ1
infσ2∈Σ2

Prs
σ1,σ2 (F ✓)

Player 1: , Player 2:

✓

rPATL: ⟨⟨ , ⟩⟩P≥⅓ [F ✓]

62

Tool support: PRISM-games

• Prototype model checker for stochastic games

− integrated into PRISM model checker

− using new explicit-state model checking engine

• SMGs added to PRISM modelling language

− guarded command language, based on Reactive modules

− finite data types, parallel composition, proc. algebra op.s, …

• rPATL added to PRISM property specification language

− implemented value iteration based model checking

• Available now:

− http://www.prismmodelchecker.org/games/

63

Case study: Smartgrid

• Microgrid: proposed model for future energy markets

− localised energy management

• Neighbourhoods use and
store electricity generated
from local sources

− wind, solar, …

• Needs: demand-side
management

− active management
of demand by users

− to avoid peaks

64

Microgrid demand-side management

• Demand-side management algorithm [Hildmann/Saffre’11]

− N households, connected to a distribution manager

− households submit loads for execution

− load submission probability: daily demand curve

− load duration: random, between 1 and D steps

− execution cost/step = number of currently running loads

• Simple algorithm:

− upon load generation, if cost is below an agreed limit clim,
execute it, otherwise only execute with probability Pstart

• Analysis of [Hildmann/Saffre’11]

− define household value as V=loads_executing/execution_cost

− simulation-based analysis shows reduction in peak demand
and total energy cost reduced, with good expected value V

− (if all households stick to algorithm)

65

Microgrid demand-side management

• The model

− SMG with N players (one per household)

− analyse 3-day period, using piecewise
approximation of daily demand curve

− fix parameters D=4, clim=1.5

− add rewards structure for value V

• Built/analysed models

− for N=2,…,7 households

• Step 1: assume all households
follow algorithm of [HS’11] (MDP)

− obtain optimal value for Pstart

• Step 2: introduce competitive behaviour (SMG)

− allow coalition C of households to deviate from algorithm

N States Transitions

5 743,904 2,145,120

6 2,384,369 7,260,756

7 6,241,312 19,678,246

66

Results: Competitive behaviour

• Expected total value V per household

− in rPATL: ⟨⟨C⟩⟩RrC
max=? [F time=max time] / |C|

− where rC is combined rewards for coalition C

All follow alg.

No use of alg.

Deviations of
varying size

Strong
incentive to
deviate

67

Results: Competitive behaviour

• Algorithm fix: simple punishment mechanism

− distribution manager can cancel some loads exceeding clim

All follow alg.

Deviations of
varying size

Better to
collaborate
(with all)

68

Case study: Energy management

• Energy management protocol for Microgrid

− Microgrid: local energy management

− randomised demand management protocol
[Hildmann/Saffre'11]

− probability: randomisation, demand model, …

• Existing analysis

− simulation-based

− assumes all clients are unselfish

• Our analysis

− stochastic multi-player game

− clients can cheat (and cooperate)

− exposes protocol weakness

− propose/verify simple fix

All follow alg.

No use of alg.

Deviations of

varying size

69

Case study: Autonomous urban driving

• Inspired by DARPA challenge

− represent map data as a stochastic
game, with environment able to
select hazards

− express goals as conjunctions of
probabilistic and reward properties

− e.g. “maximise probability of
avoiding hazards and minimise time
to reach destination”

• Solution (PRISM-games)

− synthesise a probabilistic strategy
to achieve the multi-objective goal

− enable the exploration of trade-offs between subgoals

• Applied to synthesise driving strategies for English villages

− being developed in PRISM-games

70

Summary (Games)

• What has been achieved so far

− extended probabilistic verification to stochastic multi-player
games

− compositional strategy synthesis from multiobjective
specifications under development

− new temporal logic rPATL for property specification

− rPATL model checking algorithm based on num. fixed points

− prototype model checker PRISM-games

− case studies

• Future work

− more realistic classes of strategy, e.g. partial information

− new application areas, security, randomised algorithms, …

• Next: Probabilistic timed automata (PTAs)

