

Probabilistic verification and synthesis

Marta Kwiatkowska

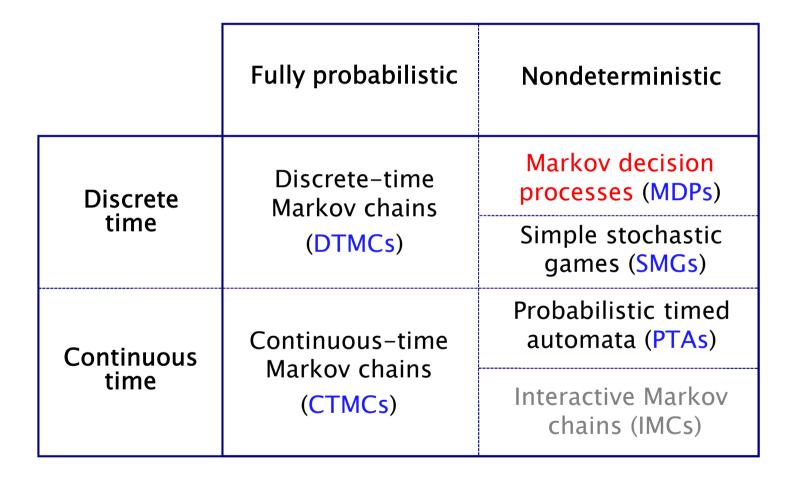
Department of Computer Science, University of Oxford

KTH, Stockholm, August 2015

Lecture plan

- Course slides and lab session
 - http://www.prismmodelchecker.org/courses/kth15/
- 5 sessions: lectures 9–12noon, labs 2.30–5pm
 - 1 Introduction
 - 2 Discrete time Markov chains (DTMCs)
 - 3 Markov decision processes (MDPs)
 - 4 LTL model checking for DTMCs/MDPs
 - 5 Probabilistic timed automata (PTAs)
- For extended versions of this material
 - and an accompanying list of references
 - see: http://www.prismmodelchecker.org/lectures/

Probabilistic models



Part 3

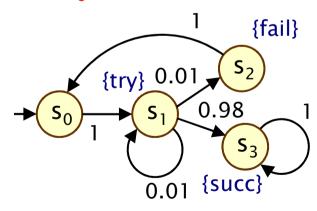
Markov decision processes

Overview (Part 2)

- Introduction
- Model checking for Markov decision processes (MDPs)
 - MDPs: definition
 - Paths, strategies & probability spaces
 - PCTL model checking
 - Costs and rewards
 - Case study: Firewire root contention
- Strategy synthesis for MDPs
 - Properties and objectives
 - Verification vs synthesis
 - Case study: Dynamic power management
- Summary

Recap: Discrete-time Markov chains

- Discrete-time Markov chains (DTMCs)
 - state-transition systems augmented with probabilities
- Formally: DTMC D = (S, s_{init}, P, L) where:
 - S is a set of states and $s_{init} \in S$ is the initial state
 - $-P: S \times S \rightarrow [0,1]$ is the transition probability matrix
 - $-L:S \rightarrow 2^{AP}$ labels states with atomic propositions
 - define a probability space Pr_s over paths Path_s
- Properties of DTMCs
 - can be captured by the logic PCTL
 - e.g. send → $P_{>0.95}$ [F deliver]
 - key question: what is the probability of reaching states T ⊆ S from state s?
 - reduces to graph analysis + linear equation system

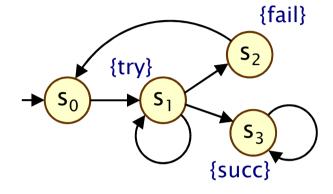


Nondeterminism

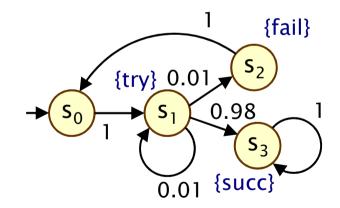
- Some aspects of a system may not be probabilistic and should not be modelled probabilistically; for example:
- Concurrency scheduling of parallel components
 - e.g. randomised distributed algorithms multiple probabilistic processes operating asynchronously
- Underspecification unknown model parameters
 - e.g. a probabilistic communication protocol designed for message propagation delays of between d_{min} and d_{max}
- Unknown environments
 - e.g. probabilistic security protocols unknown adversary

Probability vs. nondeterminism

- (S,s₀,R,L) where R ⊆ S×S
- choice is nondeterministic



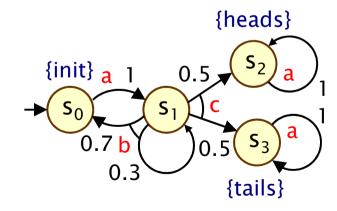
- Discrete-time Markov chain
 - (S,s₀,P,L) where P : S×S→[0,1]
 - choice is probabilistic



How to combine?

Markov decision processes

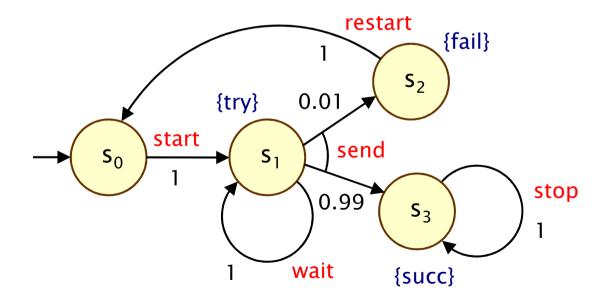
- Markov decision processes (MDPs)
 - extension of DTMCs which allow nondeterministic choice
- Like DTMCs:
 - discrete set of states representing possible configurations of the system being modelled
 - transitions between states occur in discrete time-steps
- Probabilities and nondeterminism
 - in each state, a nondeterministic choice between several discrete probability distributions over successor states



Simple MDP example

A simple communication protocol

- after one step, process starts trying to send a message
- then, a nondeterministic choice between: (a) waiting a step because the channel is unready; (b) sending the message
- if the latter, with probability 0.99 send successfully and stop
- and with probability 0.01, message sending fails, restart



Markov decision processes

- Formally, an MDP M is a tuple $(S, s_{init}, \alpha, \delta, L)$ where:
 - S is a set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - α is an alphabet of action labels
 - $-\delta \subseteq S \times \alpha \times Dist(S)$ is the transition probability relation, where Dist(S) is the set of all discrete probability distributions over S
 - $-L:S \rightarrow 2^{AP}$ is a labelling with atomic propositions
- Notes:
 - we also abuse notation and use δ as a function
 - − i.e. δ : S → $2^{\alpha \times Dist(S)}$ where δ(s) = { (a,μ) | (s,a,μ) ∈ δ }
 - we assume δ (s) is always non-empty, i.e. no deadlocks
 - MDPs, here, are identical to probabilistic automata [Segala]
 - usually, MDPs take the form: $\delta : S \times \alpha \rightarrow Dist(S)$

{heads}

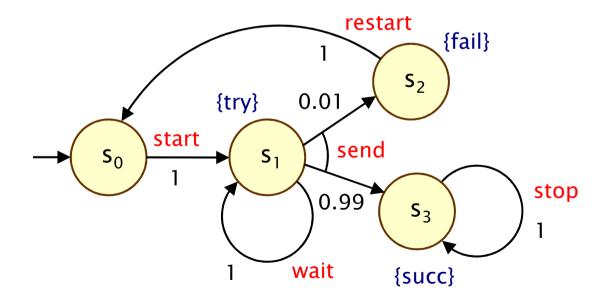
{tails}

{init} a 1

Simple MDP example

A simple communication protocol

- after one step, process starts trying to send a message
- then, a nondeterministic choice between: (a) waiting a step because the channel is unready; (b) sending the message
- if the latter, with probability 0.99 send successfully and stop
- and with probability 0.01, message sending fails, restart



Markov decision processes

- Formally, an MDP M is a tuple $(S, s_{init}, \alpha, \delta, L)$ where:
 - S is a set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - α is an alphabet of action labels
 - $-\delta \subseteq S \times \alpha \times Dist(S)$ is the transition probability relation, where Dist(S) is the set of all discrete probability distributions over S
 - $-L:S \rightarrow 2^{AP}$ is a labelling with atomic propositions
- Notes:
 - we also abuse notation and use δ as a function
 - − i.e. δ : S → $2^{\alpha \times Dist(S)}$ where δ(s) = { (a,μ) | (s,a,μ) ∈ δ }
 - we assume δ (s) is always non-empty, i.e. no deadlocks
 - MDPs, here, are identical to probabilistic automata [Segala]
 - usually, MDPs take the form: $\delta : S \times \alpha \rightarrow Dist(S)$

{heads}

{tails}

{init} a 1

Simple MDP example 2

```
AP = {init,heads,tails}
              M = (S, s_{init}, Steps, L)
                                                       L(s_0) = \{init\},\
                                                       L(s_1) = \emptyset,
              S = \{s_0, s_1, s_2, s_3\}
                                                       L(s_2)=\{\text{heads}\},\
               s_{init} = s_0
                                                       L(s_3)=\{tails\}
Steps(s_0) = { (a, [s_1 \mapsto 1]) }
Steps(s_1) = { (b, [s_0 \mapsto 0.7, s_1 \mapsto 0.3]), (c, [s_2 \mapsto 0.5, s_3 \mapsto 0.5]) }
                                                                                         {heads}
Steps(s_2) = { (a, [s_2 \mapsto 1]) }
Steps(s_3) = { (a, [s_3 \mapsto 1]) }
                                                                                 0.5
                                            {init}
                                                                                   0.5
                                                           0.7 b
                                                                                           {tails}
```

Example – Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

PRISM code:

module M1

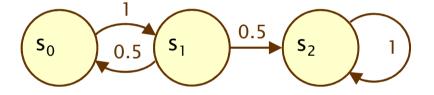
s:[0..2] init 0;

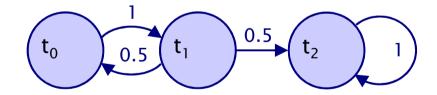
$$[] s=0 -> (s'=1);$$

$$[] s=1 -> 0.5:(s'=0) + 0.5:(s'=2);$$

$$[] s=2 -> (s'=2);$$

endmodule



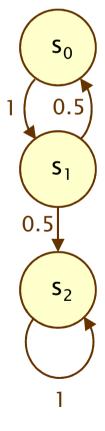


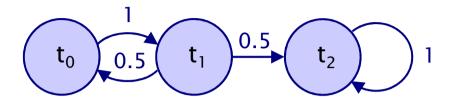
module M2 = M1 [s=t] endmodule

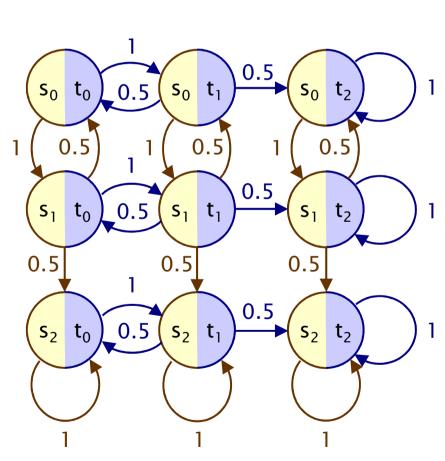
Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

Action labels omitted here

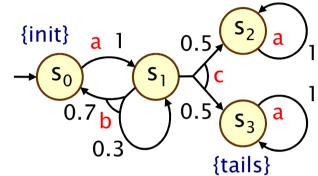






Paths and strategies

- A (finite or infinite) path through an MDP
 - is a sequence (s₀...s_n) of (connected) states
 - represents an execution of the system
 - resolves both the probabilistic and nondeterministic choices



{heads}

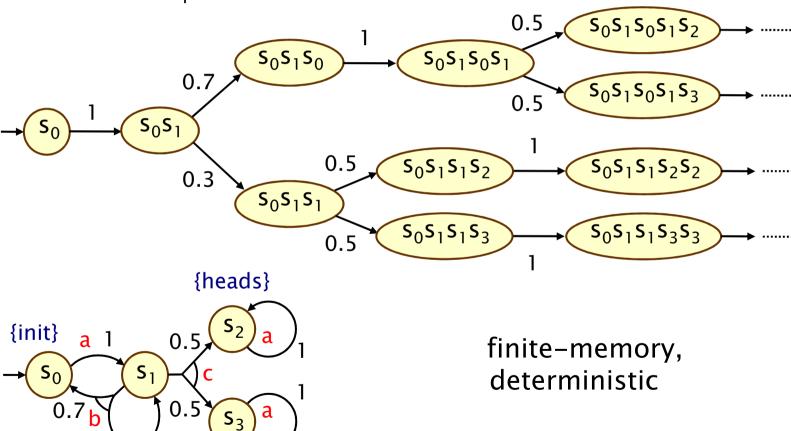
- A strategy σ (aka. "adversary" or "policy") of an MDP
 - is a resolution of nondeterminism only
 - is (formally) a mapping from finite paths to distributions on action-distribution pairs
 - induces a fully probabilistic model
 - i.e. an (infinite-state) Markov chain over finite paths
 - on which we can define a probability space over infinite paths

Classification of strategies

- Strategies are classified according to
- randomisation:
 - σ is deterministic (pure) if $\sigma(s_0...s_n)$ is a point distribution, and randomised otherwise
- memory:
 - σ is memoryless (simple) if $\sigma(s_0...s_n) = \sigma(s_n)$ for all $s_0...s_n$
 - σ is finite memory if there are finitely many modes such as $\sigma(s_0...s_n)$ depends only on s_n and the current mode, which is updated each time an action is performed
 - otherwise, σ is infinite memory
- A strategy σ induces, for each state s in the MDP:
 - a set of infinite paths $Path^{\sigma}(s)$
 - a probability space Pr_s^{σ} over $Path_s^{\sigma}$ (s)

Example strategy

Fragment of induced Markov chain for strategy which picks
 b then c in s₁



{tails}

Induced DTMCs

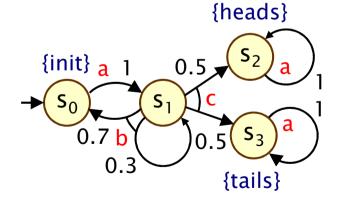
- Strategy of for MDP induces an infinite-state DTMC Do
- $D^{\sigma} = (Path_{fin}^{\sigma}(s), s, P_{s}^{\sigma})$ where:
 - states of the DTMC are the finite paths of σ starting in state s
 - initial state is s (the path starting in s of length 0)
 - $-\mathbf{P}^{\sigma}_{s}(\omega,\omega')=\mu(s')$ if $\omega'=\omega(a,\mu)s'$ and $\sigma(\omega)=(a,\mu)$
 - $-\mathbf{P}^{\sigma}_{s}(\omega,\omega')=0$ otherwise
- 1-to-1 correspondence between Path $\sigma(s)$ and paths of D σ
- This gives us a probability measure Pr^{σ}_{s} over $Path^{\sigma}(s)$
 - from probability measure over paths of D^{σ}

MDPs and probabilities

- Prob $\sigma(s, \psi) = Pr^{\sigma}_{s} \{ \omega \in Path^{\sigma}(s) \mid \omega \models \psi \}$
 - for some path formula Ψ
 - e.g. Prob $^{\sigma}$ (s, F tails)
- MDP provides best-/worst-case analysis
 - based on lower/upper bounds on probabilities
 - over all possible adversaries

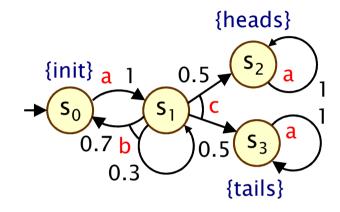
$$p_{\min}(s, \psi) = \inf_{\sigma \in Adv} Prob^{\sigma}(s, \psi)$$

$$p_{max}(s, \psi) = \sup_{\sigma \in Adv} Prob^{\sigma}(s, \psi)$$

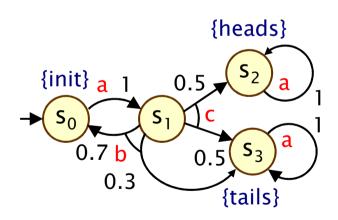


Examples

- Prob $^{\sigma 2}$ (s₀, F tails) = 0.5
 - (where σ_i picks b i-1 times then c)
- ...
- $p_{max}(s_0, F \text{ tails}) = 0.5$
- $p_{min}(s_0, F \text{ tails}) = 0$

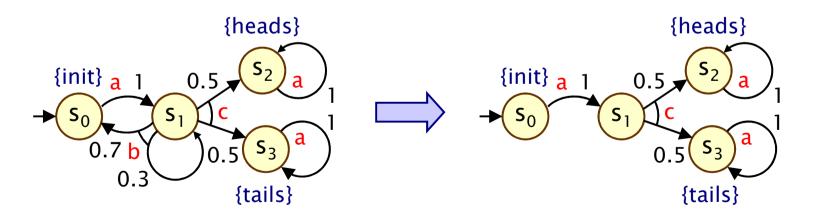


- Prob^{σ 1}(s₀, F tails) = 0.5
- Prob $^{\sigma 2}$ (s₀, F tails) = 0.3+0.7·0.5 = 0.65
- Prob^{σ 3}(s₀, F tails) = 0.3+0.7·0.3+0.7·0.5 = 0.755
- ...
- $p_{max}(s_0, F \text{ tails}) = 1$
- $p_{min}(s_0, F \text{ tails}) = 0.5$



Memoryless strategies

- Memoryless strategies always pick same choice in a state
 - also known as: positional, Markov, simple
 - formally, $\sigma(s_0(a_0,\mu_0)s_1...s_n)$ depends only on s_n
 - can write as a mapping from states, i.e. $\sigma(s)$ for each $s \in S$
 - induced DTMC can be mapped to a |S|-state DTMC
- From previous example:
 - adversary σ_1 (picks c in s_1) is memoryless; σ_2 is not



PCTL

- Temporal logic for properties of MDPs (and DTMCs)
 - extension of (non-probabilistic) temporal logic CTL
 - key addition is probabilistic operator P
 - quantitative extension of CTL's A and E operators
- PCTL syntax:
 - $\varphi ::= true \mid a \mid \varphi \land \varphi \mid \neg \varphi \mid P_{\neg p} [\psi]$ (state formulas)
 - $\psi ::= X \varphi | \varphi U^{\leq k} \varphi | \varphi U \varphi$ (path formulas)
 - where a is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
 - Example: send $\rightarrow P_{>0.95}$ [true U $^{\leq 10}$ deliver]

PCTL semantics for MDPs

- PCTL formulas interpreted over states of an MDP
 - $-s \models \phi$ denotes ϕ is "true in state s" or "satisfied in state s"
- Semantics of (non-probabilistic) state formulas:
 - for a state s of the MDP $(S, s_{init}, \alpha, \delta, L)$:

$$-s \models a$$

$$-s \models a \Leftrightarrow a \in L(s)$$

$$-s \models \varphi_1 \land \varphi_2$$

$$-s \models \varphi_1 \land \varphi_2 \Leftrightarrow s \models \varphi_1 \text{ and } s \models \varphi_2$$

$$-s \models \neg \Phi$$

$$-s \models \neg \varphi \Leftrightarrow s \models \varphi \text{ is false}$$

- Semantics of path formulas:
 - for a path $\omega = s_0(a_0, \mu_0)s_1(a_1, \mu_1)s_2...$ in the MDP:

$$-\omega \models X \varphi$$

$$-\omega \models X \varphi \Leftrightarrow s_1 \models \varphi$$

$$- \omega \models \varphi_1 U^{\leq k} \varphi_2$$

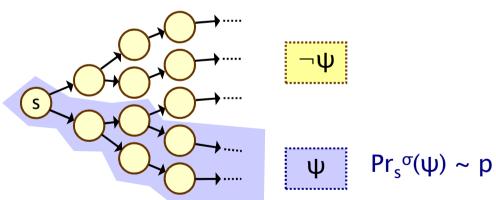
$$- \ \omega \vDash \varphi_1 \ U^{\leq k} \ \varphi_2 \quad \Leftrightarrow \quad \exists i \leq k \ such \ that \ s_i \vDash \varphi_2 \ and \ \forall j < i, \ s_j \vDash \varphi_1$$

$$-\omega \models \varphi_1 \cup \varphi_2$$

$$-\omega \models \varphi_1 \cup \varphi_2 \quad \Leftrightarrow \exists k \geq 0 \text{ such that } \omega \models \varphi_1 \cup \varphi_2$$

PCTL semantics for MDPs

- Semantics of the probabilistic operator P
 - can only define probabilities for a specific strategy σ
 - $-s \models P_{\sim p}$ [ψ] means "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ for all strategies σ "
 - formally $s \models P_{p} [\psi] \Leftrightarrow Pr_{s}^{\sigma}(\psi) \sim p$ for all strategies σ
 - where we use $Pr_s^{\sigma}(\psi)$ to denote $Pr_s^{\sigma}\{ \omega \in Path_s^{\sigma} \mid \omega \models \psi \}$



- Some equivalences:
 - $F \varphi \equiv \Diamond \varphi \equiv \text{true } U \varphi \quad \text{(eventually, "future")}$
 - $G \varphi \equiv \Box \varphi \equiv \neg (F \neg \varphi)$ (always, "globally")

Minimum and maximum probabilities

Letting:

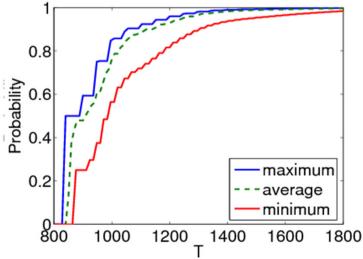
- $Pr_s^{max}(\psi) = sup_{\sigma} Pr_s^{\sigma}(\psi)$
- $\operatorname{Pr}_{s}^{\min}(\psi) = \inf_{\sigma} \operatorname{Pr}_{s}^{\sigma}(\psi)$

• We have:

- if ~ ∈ {≥,>}, then s ⊨ $P_{\sim p}$ [ψ] \Leftrightarrow Pr_s^{min} (ψ) ~ p
- if ~ ∈ {<,≤}, then s ⊨ $P_{\sim p}$ [ψ] \Leftrightarrow Pr_s^{max} (ψ) ~ p
- Model checking $P_{\sim p}[\psi]$ reduces to the computation over all strategies of either:
 - the minimum probability of ψ holding
 - the maximum probability of ψ holding
- Crucial result for model checking PCTL on MDPs
 - memoryless strategies suffice, i.e. there are always memoryless strategies σ_{min} and σ_{max} for which:
 - $Pr_s^{\sigma_{min}}(\psi) = Pr_s^{min}(\psi) \text{ and } Pr_s^{\sigma_{max}}(\psi) = Pr_s^{min}(\psi)$

Quantitative properties

- For PCTL properties with P as the outermost operator
 - quantitative form (two types): $P_{min=?}$ [ψ] and $P_{max=?}$ [ψ]
 - i.e. "what is the minimum/maximum probability (over all adversaries) that path formula ψ is true?"
 - corresponds to an analysis of best-case or worst-case behaviour of the system
 - model checking is no harder since compute the values of $Pr_s^{min}(\psi)$ or $Pr_s^{max}(\psi)$ anyway
 - useful to spot patterns/trends
- Example: CSMA/CD protocol
 - "min/max probability that a message is sent within the deadline"



Some real PCTL examples

Byzantine agreement protocol

- $-P_{min=?}$ [F (agreement ∧ rounds ≤ 2)]
- "what is the minimum probability that agreement is reached within two rounds?"

CSMA/CD communication protocol

- P_{max=?} [F collisions=k]
- "what is the maximum probability of k collisions?"

Self-stabilisation protocols

- $-P_{min=?}$ [$F^{\leq t}$ stable]
- "what is the minimum probability of reaching a stable state within k steps?"

Overview (Part 2)

- Introduction
- Model checking for Markov decision processes (MDPs)
 - MDPs: definition
 - Paths, strategies & probability spaces
 - PCTL model checking
 - Costs and rewards
 - Case study: Firewire root contention
- Strategy synthesis for MDPs
 - Properties and objectives
 - Verification vs synthesis
 - Case study: Dynamic power management
- Summary

PCTL model checking for MDPs

- Algorithm for PCTL model checking [BdA95]
 - inputs: MDP M=(S,s_{init}, α , δ ,L), PCTL formula ϕ
 - output: Sat(ϕ) = { s ∈ S | s $\models \phi$ } = set of states satisfying ϕ
- Basic algorithm same as PCTL model checking for DTMCs
 - proceeds by induction on parse tree of φ
 - non-probabilistic operators (true, a, \neg , \land) straightforward
- Only need to consider $P_{\sim p}$ [ψ] formulas
 - reduces to computation of $Pr_s^{min}(\psi)$ or $Pr_s^{max}(\psi)$ for all $s \in S$
 - dependent on whether $\sim \in \{\geq, >\}$ or $\sim \in \{<, \leq\}$
 - these slides cover the case $Pr_s^{min}(\phi_1 \cup \phi_2)$, i.e. $\sim \in \{\geq, >\}$
 - case for maximum probabilities is very similar
 - next (X ϕ) and bounded until (ϕ_1 U^{$\leq k$} ϕ_2) are straightforward extensions of the DTMC case

PCTL until for MDPs

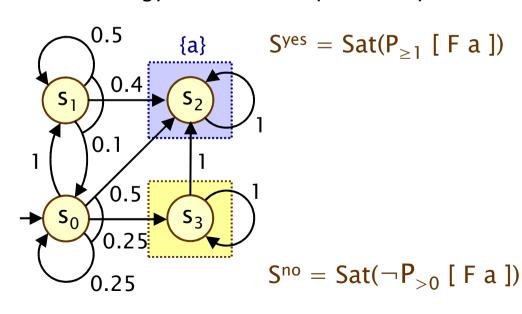
- Computation of probabilities $Pr_s^{min}(\varphi_1 \cup \varphi_2)$ for all $s \in S$
- First identify all states where the probability is 1 or 0
 - "precomputation" algorithms, yielding sets Syes, Sno
- Then compute (min) probabilities for remaining states (S?)
 - either: solve linear programming problem
 - or: approximate with an iterative solution method
 - or: use policy iteration

Example: $P_{\geq p}$ [F a] = $P_{\geq p}$ [true U a] = $P_{\geq p}$ [true U a]

PCTL until - Precomputation

- Identify all states where $Pr_s^{min}(\phi_1 \cup \phi_2)$ is 1 or 0
 - $-S^{yes} = Sat(P_{>1} [\varphi_1 U \varphi_2]), S^{no} = Sat(\neg P_{>0} [\varphi_1 U \varphi_2])$
- Two graph-based precomputation algorithms:
 - algorithm Prob1A computes Syes
 - for all strategies the probability of satisfying $\phi_1 \cup \phi_2$ is 1
 - algorithm Prob0E computes S^{no}
 - there exists a strategy for which the probability is 0

Example: $P_{\geq p}$ [F a]



Method 1 – Linear programming

• Probabilities $Pr_s^{min}(\varphi_1 \cup \varphi_2)$ for remaining states in the set $S^? = S \setminus (S^{yes} \cup S^{no})$ can be obtained as the unique solution of the following linear programming (LP) problem:

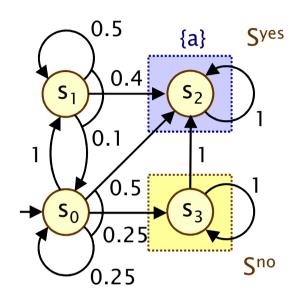
maximize $\sum_{s \in S^?} x_s$ subject to the constraints:

$$x_s \leq \sum_{s' \in S^?} \mu(s') \cdot x_{s'} + \sum_{s' \in S^{yes}} \mu(s')$$

for all $s \in S^{?}$ and for all $(a, \mu) \in \delta(s)$

- Simple case of a more general problem known as the stochastic shortest path problem [BT91]
- This can be solved with standard techniques
 - e.g. Simplex, ellipsoid method, branch-and-cut

Example – PCTL until (LP)



Let
$$x_i = Pr_{s_i}^{min}(F a)$$

 $S^{yes}: x_2=1, S^{no}: x_3=0$
For $S^? = \{x_0, x_1\}:$

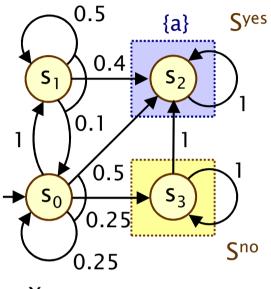
Maximise x_0+x_1 subject to constraints:

$$x_0 \le x_1$$

$$x_0 \le 0.25 \cdot x_0 + 0.5$$

$$x_1 \le 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$$

Example - PCTL until (LP)



Let
$$x_i = Pr_{s_i}^{min}(F a)$$

Syes:
$$x_2 = 1$$
, S^{no} : $x_3 = 0$

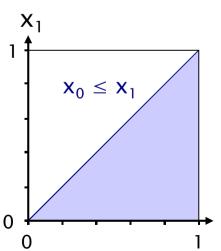
For
$$S^? = \{x_0, x_1\}$$
:

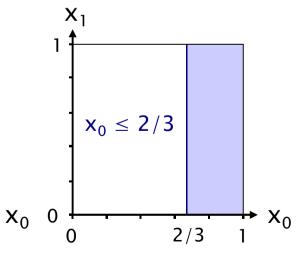
Maximise x_0+x_1 subject to constraints:

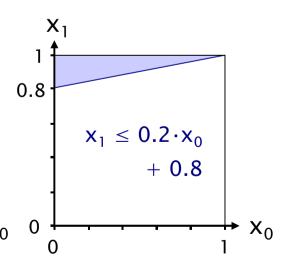
•
$$X_0 \le X_1$$

•
$$x_0 \le 2/3$$

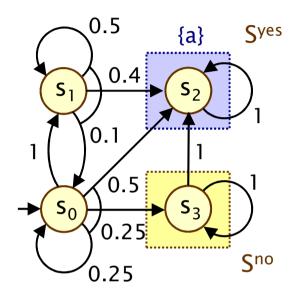
•
$$x_1 \le 0.2 \cdot x_0 + 0.8$$







Example - PCTL until (LP)



Let
$$x_i = Pr_{s_i}^{min}(F a)$$

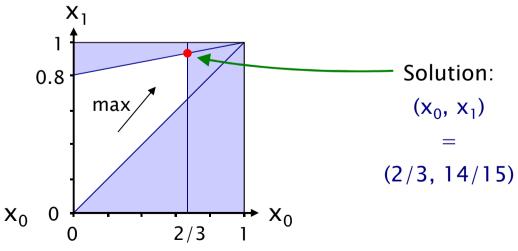
 $S^{yes}: x_2=1, S^{no}: x_3=0$
For $S^? = \{x_0, x_1\}:$

Maximise x_0+x_1 subject to constraints:

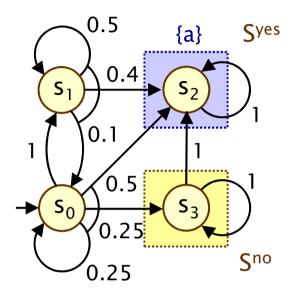
•
$$X_0 \le X_1$$

•
$$x_0 \le 2/3$$

•
$$x_1 \le 0.2 \cdot x_0 + 0.8$$



Example – PCTL until (LP)



Let
$$x_i = Pr_{s_i}^{min}(F a)$$

 $S^{yes}: x_2=1, S^{no}: x_3=0$

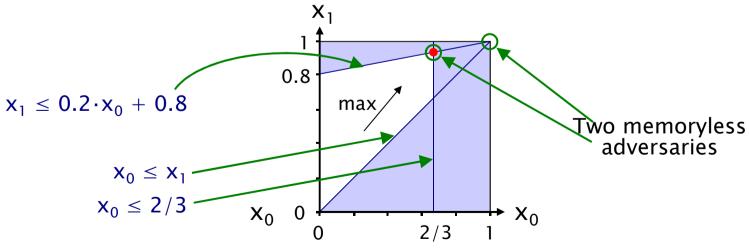
For
$$S^? = \{x_0, x_1\}$$
:

Maximise x_0+x_1 subject to constraints:

•
$$X_0 \le X_1$$

•
$$x_0 \le 2/3$$

•
$$x_1 \le 0.2 \cdot x_0 + 0.8$$



Method 2 - Value iteration

- For probabilities $Pr_s^{min}(\phi_1 \cup \phi_2)$ it can be shown that:
 - $Pr_s^{min}(\varphi_1 \cup \varphi_2) = Iim_{n\to\infty} x_s^{(n)}$ where:

$$x_s^{(n)} = \begin{cases} & 1 & \text{if } s \in S^{yes} \\ & 0 & \text{if } s \in S^{no} \\ & 0 & \text{if } s \in S^? \text{ and } n = 0 \end{cases}$$

$$min_{(a,\mu)\in Steps(s)} \left(\sum_{s'\in S} \mu(s') \cdot x_{s'}^{(n-1)} \right) \text{ if } s \in S^? \text{ and } n > 0$$

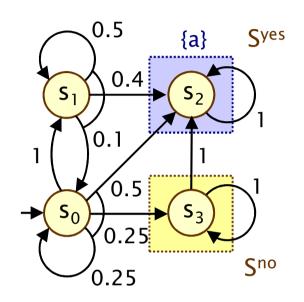
- This forms the basis for an (approximate) iterative solution
 - iterations terminated when solution converges sufficiently

Example - PCTL until (value iteration)



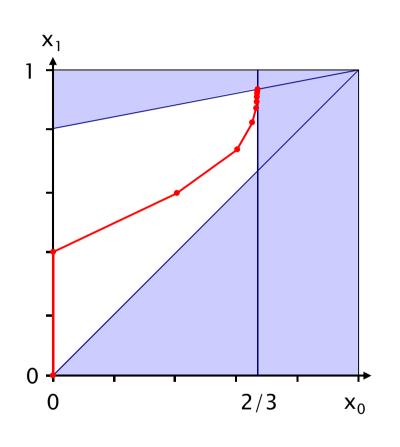
```
Compute: Pr_{si}^{min}(F a)
S^{yes} = \{x_2\}, S^{no} = \{x_3\}, S^? = \{x_0, x_1\}
            [ X_0^{(n)}, X_1^{(n)}, X_2^{(n)}, X_3^{(n)} ]
       n=0: [0, 0, 1, 0]
  n=1: [min(0,0.25·0+0.5),
            0.1 \cdot 0 + 0.5 \cdot 0 + 0.4, 1, 0
             = [0, 0.4, 1, 0]
n=2: [ min(0.4,0.25·0+0.5),
            0.1 \cdot 0 + 0.5 \cdot 0.4 + 0.4, 1, 0
            = [0.4, 0.6, 1, 0]
              n=3: ...
```

Example - PCTL until (value iteration)



```
[X_0^{(n)}, X_1^{(n)}, X_2^{(n)}, X_3^{(n)}]
        [0.000000, 0.000000, 1, 0]
n=0:
n=1:
        [0.000000, 0.400000, 1, 0]
        [ 0.400000, 0.600000, 1, 0 ]
n=2:
n=3:
        [0.600000, 0.740000, 1, 0]
n=4:
        [0.650000, 0.830000, 1, 0]
n=5:
        [0.662500, 0.880000, 1, 0]
        [0.665625, 0.906250, 1, 0]
n=6:
n=7:
        [ 0.666406, 0.919688, 1, 0 ]
n=8:
        [0.666602, 0.926484, 1, 0]
n=9:
        [0.666650, 0.929902, 1, 0]
n = 20:
        [ 0.666667, 0.933332, 1, 0 ]
        [ 0.666667, 0.933332, 1, 0 ]
n = 21:
           \approx [2/3, 14/15, 1, 0]
```

Example - Value iteration + LP



```
[x_0^{(n)},x_1^{(n)},x_2^{(n)},x_3^{(n)}]
        [0.000000, 0.000000, 1, 0]
n=0:
n=1:
        [0.000000, 0.400000, 1, 0]
        [ 0.400000, 0.600000, 1, 0 ]
n=2:
n=3:
        [0.600000, 0.740000, 1, 0]
n=4:
        [0.650000, 0.830000, 1, 0]
n=5:
        [0.662500, 0.880000, 1, 0]
        [0.665625, 0.906250, 1, 0]
n=6:
n=7:
        [0.666406, 0.919688, 1, 0]
n=8:
        [0.666602, 0.926484, 1, 0]
n=9:
        [0.666650, 0.929902, 1, 0]
n=20:
        [ 0.666667, 0.933332, 1, 0 ]
        [ 0.666667, 0.933332, 1, 0 ]
n = 21:
           \approx [2/3, 14/15, 1, 0]
```

Method 3 - Policy iteration

- Value iteration:
 - iterates over (vectors of) probabilities
- Policy iteration:
 - iterates over strategies ("policies")
- 1. Start with an arbitrary (memoryless) strategy σ
- 2. Compute the reachability probabilities Pr^{σ} (F a) for σ
- 3. Improve the strategy in each state
- 4. Repeat 2/3 until no change in strategy
- Termination:
 - finite number of memoryless strategies
 - improvement in (minimum) probabilities each time

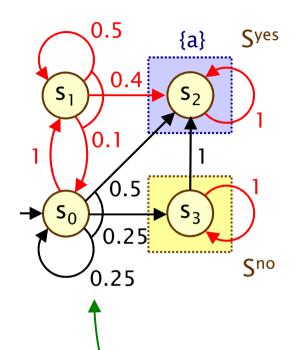
Method 3 - Policy iteration

- 1. Start with an arbitrary (memoryless) strategy σ
 - pick an element of $\delta(s)$ for each state $s \in S$
- 2. Compute the reachability probabilities $Pr^{\sigma}(F a)$ for σ
 - probabilistic reachability on a DTMC
 - i.e. solve linear equation system
- 3. Improve the strategy in each state

$$\sigma'(s) = \operatorname{argmin} \left\{ \sum_{s' \in S} \mu(s') \cdot \operatorname{Pr}_{s'}^{\sigma}(Fa) \mid (a, \mu) \in \delta(s) \right\}$$

4. Repeat 2/3 until no change in strategy

Example – Policy iteration



Arbitrary strategy **o**:

Compute: $\underline{Pr}^{\sigma}(F a)$

Let
$$x_i = Pr_{s_i}^{\sigma}(F a)$$

$$x_2=1$$
, $x_3=0$ and:

•
$$x_0 = x_1$$

$$\cdot x_1 = 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$$

Solution:

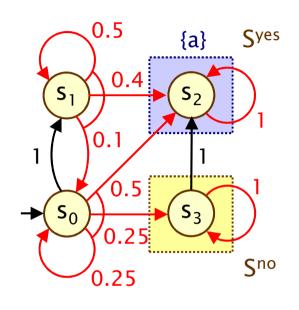
$$Pr^{\sigma}(F a) = [1, 1, 1, 0]$$

Refine σ in state s_0 :

$$min\{1(1), 0.5(1)+0.25(0)+0.25(1)\}$$

$$= min\{1, 0.75\} = 0.75$$

Example - Policy iteration



Refined strategy o':

Compute: $\underline{Pr}^{\sigma'}(F a)$

Let
$$x_i = Pr_{s_i}^{\sigma'}(F a)$$

$$x_2=1$$
, $x_3=0$ and:

•
$$x_0 = 0.25 \cdot x_0 + 0.5$$

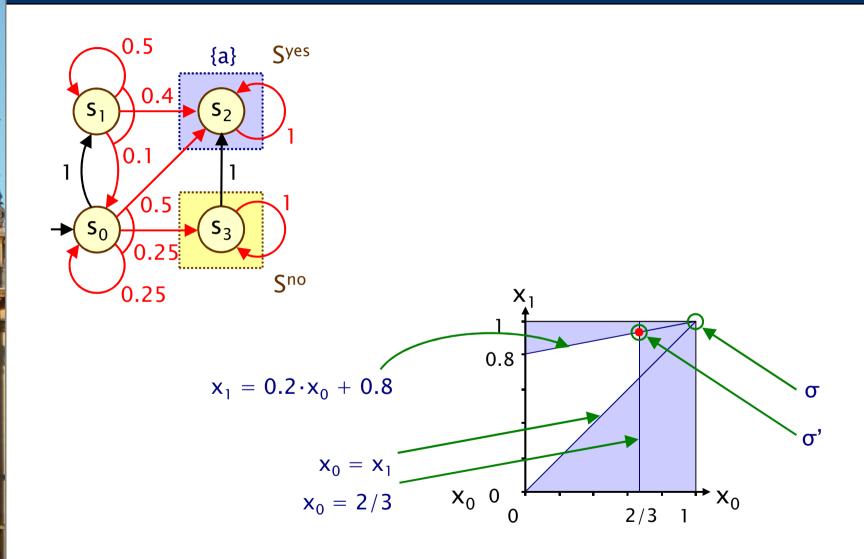
•
$$x_1 = 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$$

Solution:

$$Pr^{\sigma'}(F a) = [2/3, 14/15, 1, 0]$$

This is optimal

Example - Policy iteration



PCTL model checking – Summary

- Computation of set Sat(Φ) for MDP M and PCTL formula Φ
 - recursive descent of parse tree
 - combination of graph algorithms, numerical computation
- Probabilistic operator P:
 - $X \Phi$: one matrix-vector multiplication, $O(|S|^2)$
 - $-\Phi_1 U^{\leq k} \Phi_2$: k matrix-vector multiplications, $O(k|S|^2)$
 - Φ₁ U Φ₂ : linear programming problem, polynomial in |S| (assuming use of linear programming)
- Complexity:
 - linear in $|\Phi|$ and polynomial in |S|
 - S is states in MDP, assume $|\delta(s)|$ is constant

Costs and rewards for MDPs

- We can augment MDPs with rewards (or, conversely, costs)
 - real-valued quantities assigned to states and/or transitions
 - these can have a wide range of possible interpretations
- Some examples:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit
- Extend logic PCTL with R operator, for "expected reward"
 - as for PCTL, either R_{r} [...], $R_{min=?}$ [...] or $R_{max=?}$ [...]
- Some examples:
 - $R_{min=?} [I^{=90}], R_{max=?} [C^{\le 60}], R_{max=?} [F "end"]$
 - "the minimum expected queue size after exactly 90 seconds"
 - "the maximum expected power consumption over one hour"
 - the maximum expected time for the algorithm to terminate

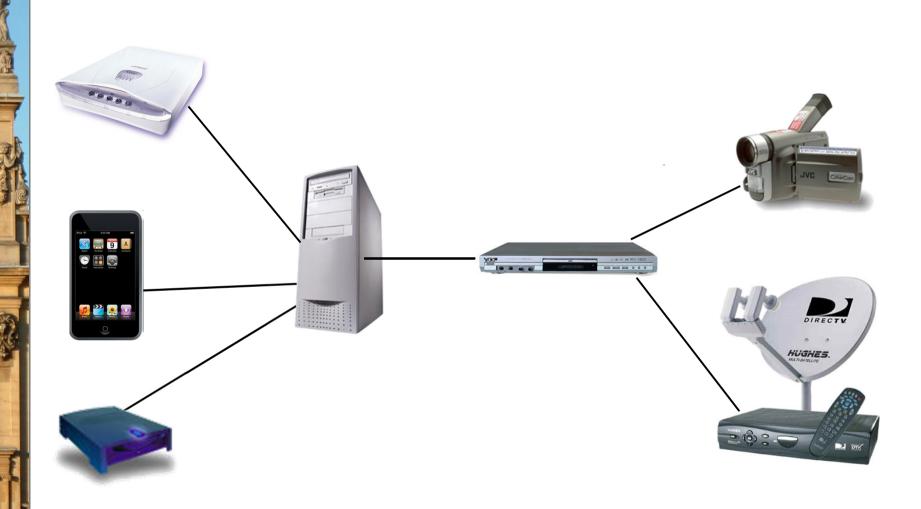
Case study: FireWire root contention

• FireWire (IEEE 1394)

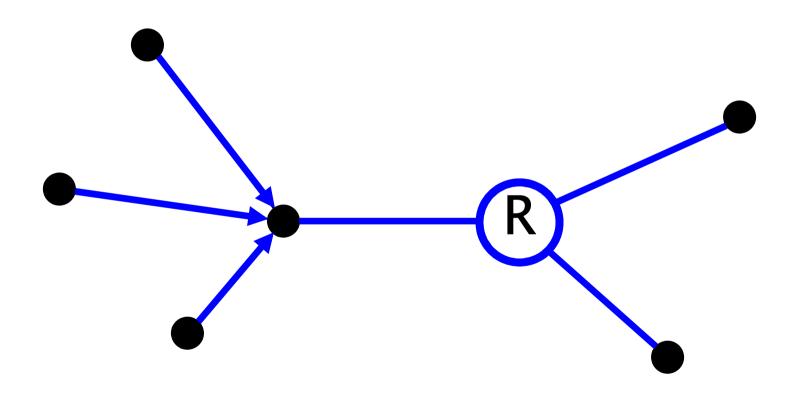
- high-performance serial bus for networking multimedia devices; originally by Apple
- "hot-pluggable" add/remove devices at any time

- leader election algorithm, when nodes join/leave
- symmetric, distributed protocol
- uses randomisation (electronic coin tossing) and timing delays
- nodes send messages: "be my parent"
- root contention: when nodes contend leadership
- random choice: "fast"/"slow" delay before retry

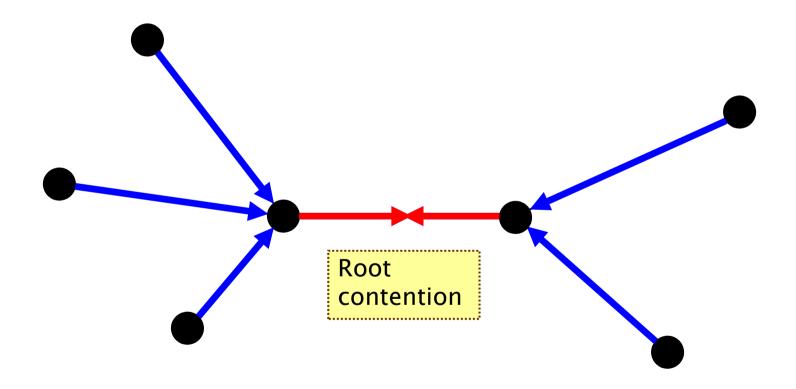
FireWire example



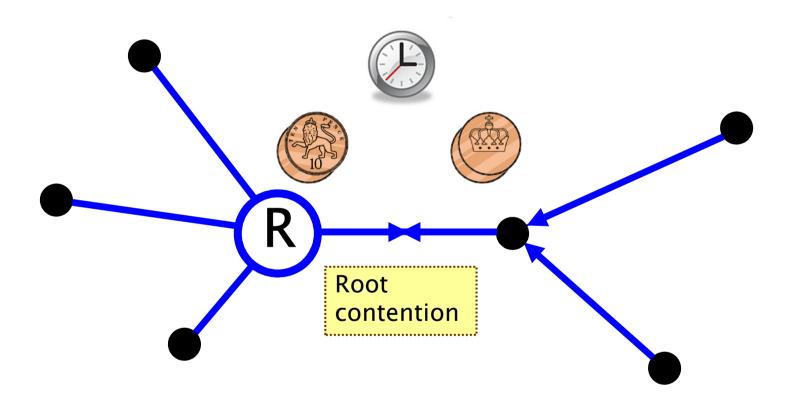
FireWire leader election



FireWire root contention



FireWire root contention



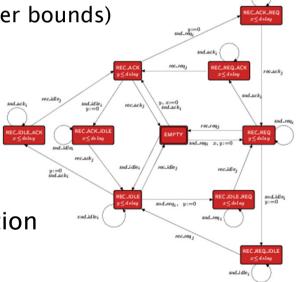
FireWire analysis

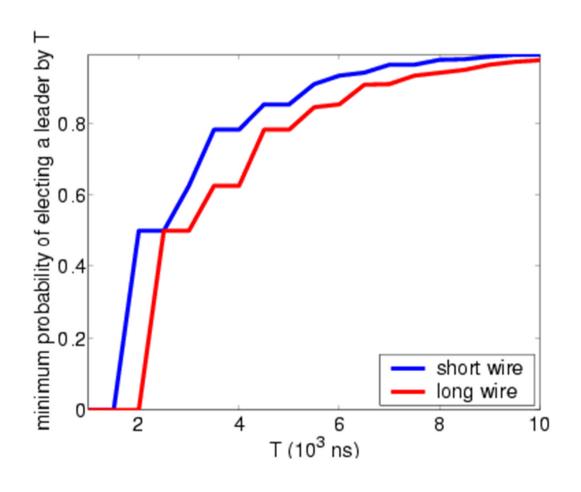
Probabilistic model checking

- model constructed and analysed using PRISM
- timing delays taken from IEEE standard
- model includes:
 - · concurrency: messages between nodes and wires
 - underspecification of delays (upper/lower bounds)
- max. model size: 170 million states

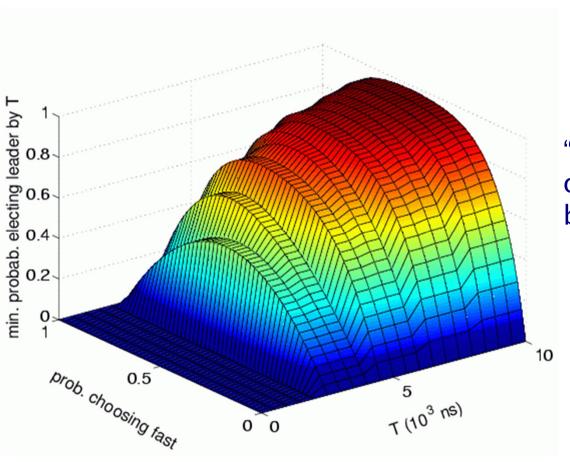
Analysis:

- verified that root contention always resolved with probability 1
- investigated time taken for leader election
- and the effect of using biased coin
 - · based on a conjecture by Stoelinga





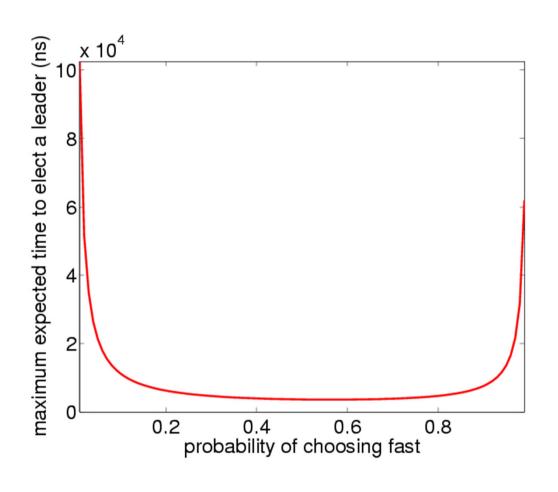
"minimum probability of electing leader by time T"



"minimum probability of electing leader by time T"

(short wire length)

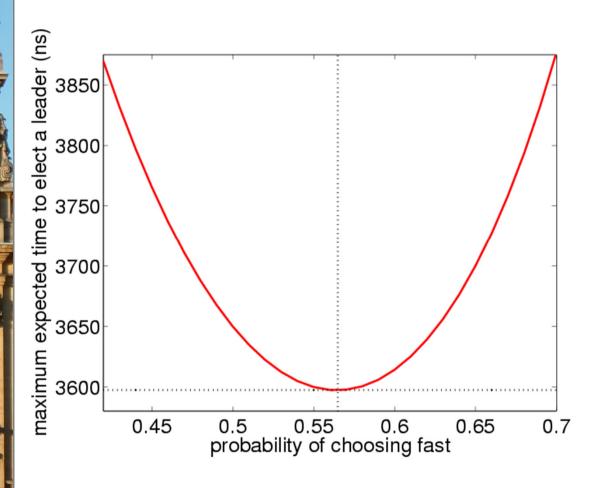
Using a biased coin



"maximum expected time to elect a leader"

(short wire length)

Using a biased coin



"maximum expected time to elect a leader"

(short wire length)

Using a biased coin is beneficial!

Overview (Part 2)

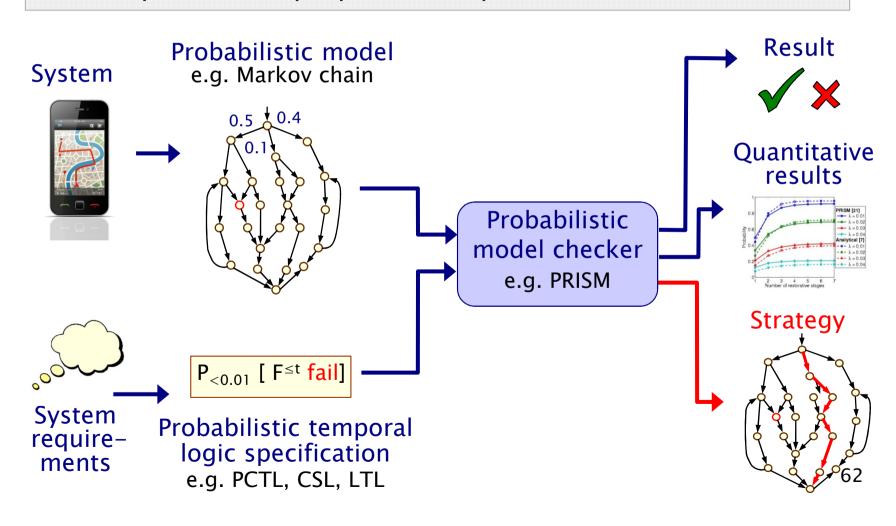
- Introduction
- Model checking for Markov decision processes (MDPs)
 - MDPs: definition
 - Paths, strategies & probability spaces
 - PCTL model checking
 - Costs and rewards
 - Case study: Firewire root contention
- Strategy synthesis for MDPs
 - Properties and objectives
 - Verification vs synthesis
 - Case study: Dynamic power management
- Summary

From verification to synthesis

- Shift towards quantitative model synthesis from specification
 - begin with simpler problems: strategy synthesis, template-based synthesis, etc
 - advantage: correct-by-construction
- Here consider the problem of strategy (controller) synthesis
 - i.e. "can we construct a strategy to guarantee that a given quantitative property is satisfied?"
 - instead of "does the model satisfy a given quantitative property?"
 - also parameter synthesis: "find optimal value for parameter to satisfy quantitative objective"
- Many application domains
 - robotics (controller synthesis from LTL/PCTL)
 - dynamic power management (optimal policy synthesis)

Quantitative (probabilistic) verification

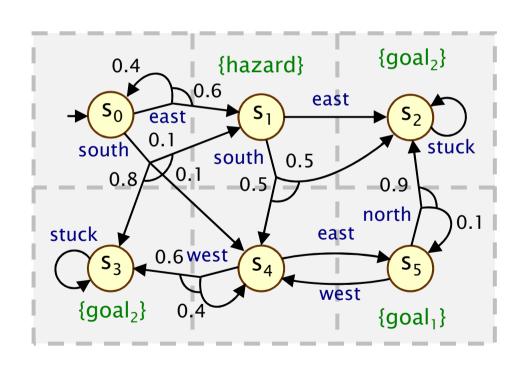
Automatic verification and strategy synthesis from quantitative properties for probabilistic models



Running example

Example MDP

- robot moving through terrain divided into 3 x 2 grid



States:

 $s_0, s_1, s_2, s_3, s_4, s_5$

Actions:

north, east, south, west, stuck

Labels
(atomic propositions):
hazard, goal₁, goal₂

Properties and objectives



- where b is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$, and $r \in \mathbb{R}_{>0}$
- $Fb \equiv true Ub$
- We refer to ϕ as property, ψ and ρ as objectives
 - (branching time more challenging for synthesis)

Properties and objectives

- Semantics of the probabilistic operator P
 - can only define probabilities for a specific strategy σ
 - $-s ⊨ P_{-p}$ [ψ] means "the probability, from state s, that ψ is true for an outgoing path satisfies ~p for all strategies σ"
 - formally $s \models P_{\sim p} [\psi] \Leftrightarrow Pr_s^{\sigma}(\psi) \sim p$ for all strategies σ
 - where we use $Pr_s^{\sigma}(\psi)$ to denote $Pr_s^{\sigma}\{\omega \in Path_s^{\sigma} \mid \omega \models \psi\}$
- R_{-r} [·] means "the expected value of · satisfies ~r"
- Some examples:
 - $-P_{\geq 0.4}$ [F "goal"] "probability of reaching goal is at least 0.4"
 - R_{<5} [C^{\leq 60}] "expected power consumption over one hour is below 5"
 - $-R_{\leq 10}$ [F "end"] "expected time to termination is at most 10"

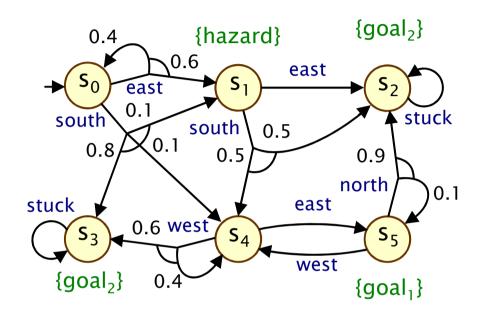
Verification and strategy synthesis

- The verification problem is:
 - Given an MDP M and a property φ, does M satisfy φ under any possible strategy σ?
- The synthesis problem is dual:
 - Given an MDP M and a property ϕ , find, if it exists, a strategy σ such that M satisfies ϕ under σ
- Verification and strategy synthesis is achieved using <u>the same techniques</u>, namely computing <u>optimal values</u> for probability objectives:
 - $\operatorname{Pr}_{s}^{\min}(\psi) = \inf_{\sigma} \operatorname{Pr}_{s}^{\sigma}(\psi)$
 - $Pr_s^{max}(\psi) = sup_{\sigma} Pr_s^{\sigma}(\psi)$
 - and similarly for expectations

Computing reachability for MDPs

- Computation of probabilities $Pr_s^{max}(F b)$ for all $s \in S$
- Step 1: pre-compute all states where probability is 1 or 0
 - graph-based algorithms, yielding sets Syes, Sno
- Step 2: compute probabilities for remaining states (S?)
 - (i) solve linear programming problem
 - (i) approximate with value iteration
 - (iii) solve with policy (strategy) iteration
- 1. Precomputation:
 - algorithm Prob1E computes Syes
 - there exists a strategy for which the probability of "F b" is 1
 - algorithm Prob0A computes Sno
 - for all strategies, the probability of satisfying "F b" is 0

Example - Reachability



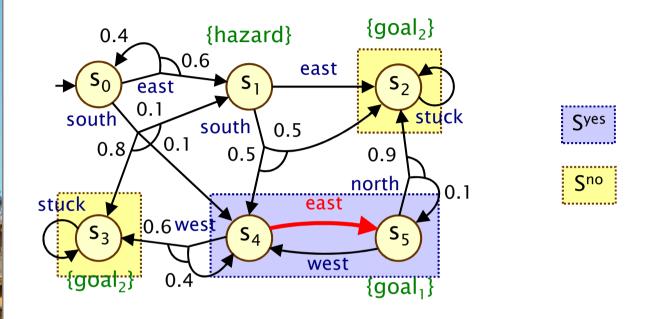
Example:

 $P_{\geq 0.4}$ [F goal₁]

So compute:

Pr_s^{max}(F goal₁)

Example - Precomputation



Example:

 $P_{\geq 0.4}$ [F goal₁]

So compute:

Pr_s^{max}(F goal₁)

Reachability for MDPs

- 2. Numerical computation
 - compute probabilities Pr_s^{max}(F b)
 - for remaining states in $S^? = S \setminus (S^{yes} \cup S^{no})$
 - obtained as the unique solution of the linear programming (LP) problem:

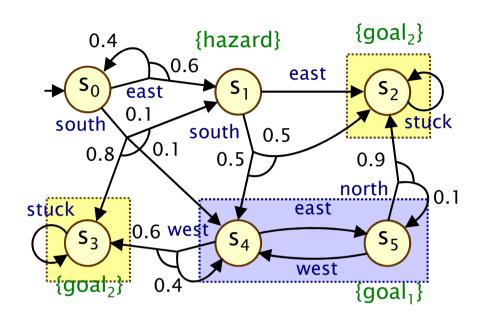
minimize $\sum_{s \in S^2} x_s$ subject to the constraints:

$$X_{s} \ge \sum_{s' \in S^{?}} \delta(s, a)(s') \cdot X_{s'} + \sum_{s' \in S^{yes}} \delta(s, a)(s')$$

for all $s \in S^{?}$ and for all $a \in A(s)$

- This can be solved with standard techniques
 - e.g. Simplex, ellipsoid method, branch-and-cut

Example - Reachability (LP)



Example:

 $P_{\geq 0.4}$ [F goal₁]

So compute:

Pr_s^{max}(F goal₁)

Let
$$x_i = Pr_{s_i}^{max}(F goal_1)$$

$$S^{yes}: x_4 = x_5 = 1$$

$$S^{no}: x_2 = x_3 = 0$$

For
$$S^? = \{x_0, x_1\}$$
:

Minimise $x_0 + x_1$ subject to:

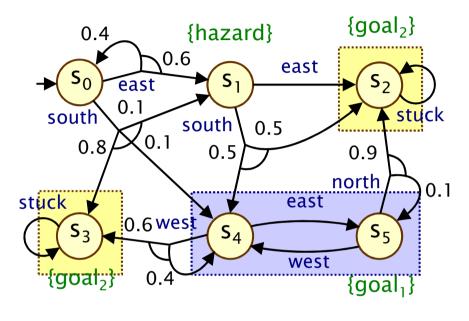
•
$$x_0 \ge 0.4 \cdot x_0 + 0.6 \cdot x_1$$
 (east)

•
$$x_0 \ge 0.1 \cdot x_1 + 0.1$$
 (south)

•
$$x_1 \ge 0.5$$
 (south)

•
$$x_1 \ge 0$$
 (east)

Example – Reachability (LP)



Let
$$x_i = Pr_{s_i}^{max}(F goal_1)$$

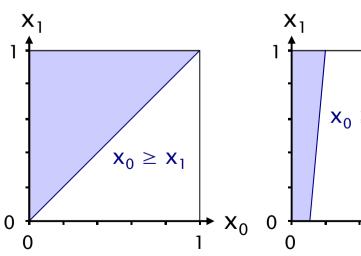
$$S^{yes}: x_4 = x_5 = 1$$

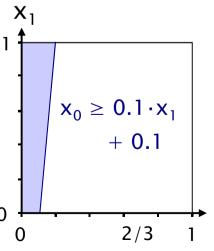
$$S^{no}: x_2 = x_3 = 0$$

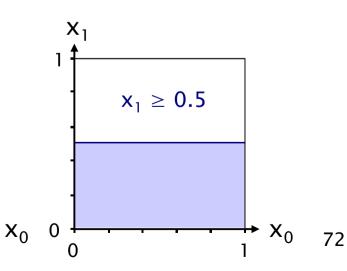
For
$$S^? = \{x_0, x_1\}$$
:

Minimise x_0+x_1 subject to:

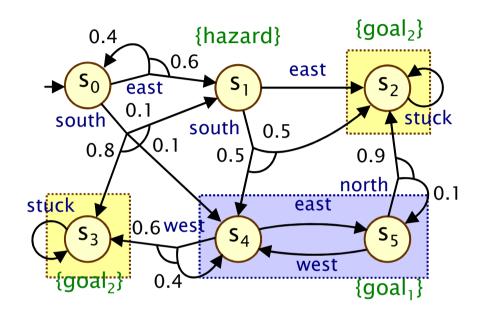
- $X_0 \ge X_1$ (east)
- $x_0 \ge 0.1 \cdot x_1 + 0.1$ (south)
- $x_1 \ge 0.5$ (south)







Example – Reachability (LP)



Let
$$x_i = Pr_{s_i}^{max}(F goal_1)$$

$$S^{yes}: x_4 = x_5 = 1$$

$$S^{no}: x_2 = x_3 = 0$$

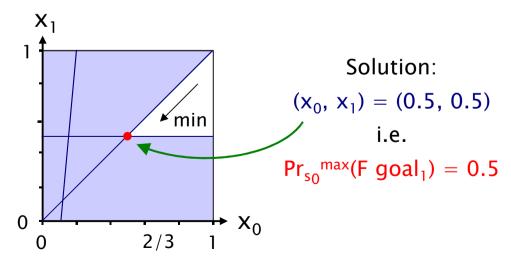
For
$$S^? = \{x_0, x_1\}$$
:

Minimise x_0+x_1 subject to:

•
$$X_0 \ge X_1$$

•
$$x_0 \ge 0.1 \cdot x_1 + 0.1$$

•
$$x_1 \ge 0.5$$



Reachability for MDPs

- 2. Numerical computation (alternative method)
 - value iteration
 - it can be shown that: $Pr_s^{max}(F b) = \lim_{n\to\infty} x_s^{(n)}$ where:

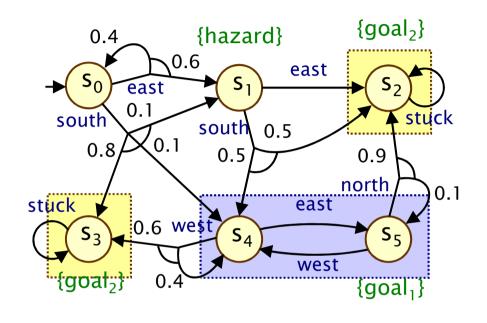
$$X_{s}^{(n)} = \begin{cases} 1 & \text{if } s \in S^{\text{yes}} \\ 0 & \text{if } s \in S^{\text{no}} \end{cases}$$

$$X_{s}^{(n)} = \begin{cases} 0 & \text{if } s \in S^{\text{no}} \\ 0 & \text{if } s \in S^{\text{no}} \end{cases}$$

$$\max \left\{ \sum_{s' \in S} \delta(s, a)(s') \cdot X_{s'}^{(n-1)} \mid a \in A(s) \right\} \text{ if } s \in S^{\text{no}} \text{ and } n > 0$$

- Approximate iterative solution technique
 - iterations terminated when solution converges sufficiently

Example - Reachability (val. iter.)



Compute: Pr_s^{max}(F goal₁)

$$S^{yes}: x_4 = x_5 = 1$$

$$S^{no}: x_2 = x_3 = 0$$

$$S^? = \{x_0, x_1\}$$

$$[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}, x_4^{(n)}, x_5^{(n)}]$$

$$n=0 \colon \quad [0, 0, 0, 0, 1, 1]$$

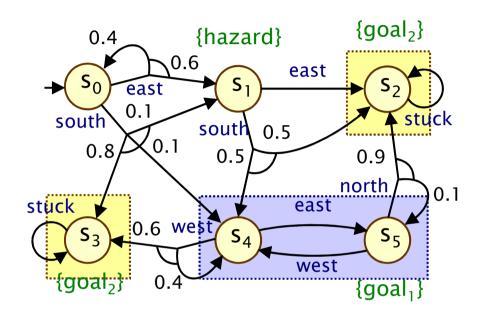
$$n=1 \colon \quad [\max(0.6 \cdot 0 + 0.4 \cdot 0, 0.1 \cdot 0 + 0.1 \cdot 1 + 0.8 \cdot 0), \max(0, 0.5), 0, 0, 1, 1]$$

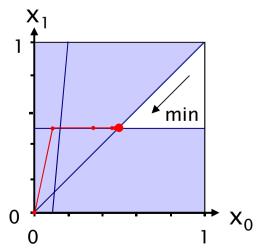
$$= [0.1, 0.5, 0, 0, 1, 1]$$

$$n=2 \colon \quad [\max(0.6 \cdot 0.5 + 0.4 \cdot 0.1, 0.1 \cdot 0.5 + 0.1 \cdot 1 + 0.8 \cdot 0), \max(0, 0.5), 0, 0, 1, 1]$$

$$= [0.34, 0.5, 0, 0, 1, 1]$$

Example - Reachability (val. iter.)





```
[X_0^{(n)}, X_1^{(n)}, X_2^{(n)}, X_3^{(n)}, X_4^{(n)}, X_5^{(n)}]
                [0, 0, 0, 0, 1, 1]
       n=0:
     n=1:
              [0.1, 0.5, 0, 0, 1, 1]
    n=2:
              [0.34, 0.5, 0, 0, 1, 1]
   n=3: [0.436, 0.5, 0, 0, 1, 1]
   n=4: [0.4744, 0.5, 0, 0, 1, 1]
  n=5:
           [0.48976, 0.5, 0, 0, 1, 1]
 n=6:
           [0.495904, 0.5, 0, 0, 1, 1]
n=7:
          [0.4983616, 0.5, 0, 0, 1, 1]
n=8:
          [0.49934464, 0.5, 0, 0, 1, 1]
n = 16:
          [0.49999957, 0.5, 0, 0, 1, 1]
n = 17:
         [0.49999982, 0.5, 0, 0, 1, 1]
            \approx [0.5 0.5, 0, 0, 1, 1]
                                    76
```

Memoryless strategies

- Memoryless strategies suffice for probabilistic reachability
 - i.e. there exist memoryless strategies σ_{min} & σ_{max} such that:
 - $Prob^{\sigma_{min}}(s,\,F\;a)=p_{min}(s,\,F\;a)\;$ for all states $s\in S$
 - $Prob^{\sigma_{max}}(s, F a) = p_{max}(s, F a)$ for all states $s \in S$
- Construct strategies from optimal solution:

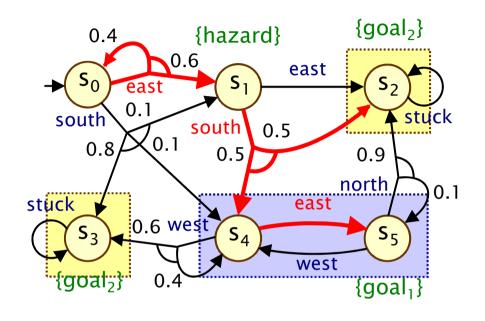
$$\sigma_{min}(s) = argmin \left\{ \sum_{s' \in S} \mu(s') \cdot p_{min}(s', Fa) \mid (a, \mu) \in Steps(s) \right\}$$

$$\sigma_{\text{max}}(s) = \text{argmax} \left\{ \sum_{s' \in S} \mu(s') \cdot p_{\text{max}}(s', Fa) \mid (a, \mu) \in \text{Steps}(s) \right\}$$

Strategy synthesis

- Compute optimal probabilities $Pr_s^{max}(F b)$ for all $s \in S$
- To compute the optimal strategy σ^* , choose the locally optimal action in each state
 - in general depends on the method used to compute the optimal probabilities
- For reachability
 - memoryless strategies suffice
- For step-bounded reachability
 - need finite-memory strategies
 - typically requires backward computation for a fixed number of steps

Example - Strategy



Optimal strategy:

s₀: east

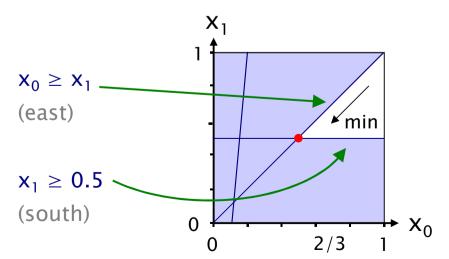
 s_1 : south

s₂: -

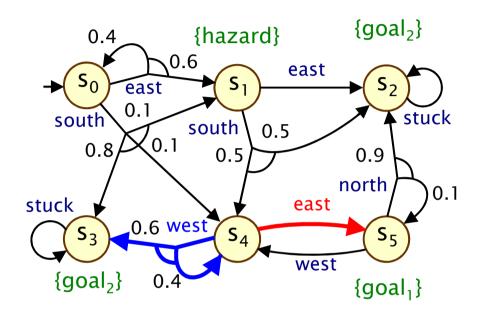
s₃: -

s₄: east

 S_5 : -



Example - Bounded reachability



Example:

$$P_{\text{max}=?}$$
 [$F^{\leq 3}$ goal₂]

So compute:

$$Pr_s^{max}(F^{\leq 3} goal_2) = 0.99$$

Optimal strategy is finite-memory:

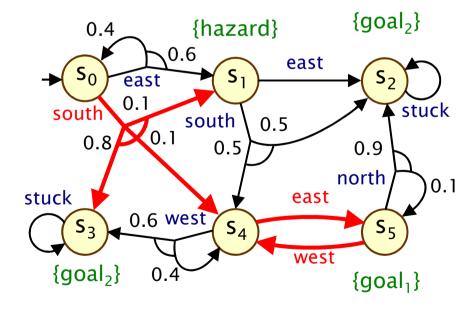
s₄ (after 1 step): east

s₄ (after 2 steps): west

- Reduce to the problem of reachability on the product of MDP M and an omega-automaton representing ψ
 - for example, deterministic Rabin automaton (DRA)
- Need only consider computation of maximum probabilities $Pr_s^{max}(\psi)$
 - since $Pr_s^{min}(\psi) = 1 Pr_s^{max}(\neg \psi)$
- To compute the optimal strategy σ*
 - find memoryless deterministic strategy on the product
 - convert to finite-memory strategy with one mode for each state of the DRA for $\boldsymbol{\psi}$

Example – LTL

- $P_{\geq 0.05}$ [(G \neg hazard) \wedge (GF goal₁)]
 - avoid hazard and visit goal₁ infinitely often
- $Pr_{s_0}^{max}((G \neg hazard) \land (GF goal_1)) = 0.1$



Optimal strategy: (in this instance, memoryless)

 s_0 : south

 s_1 : -

 s_2 : -

S₃: -

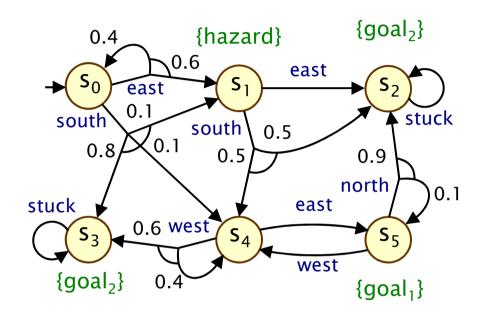
s₄: east

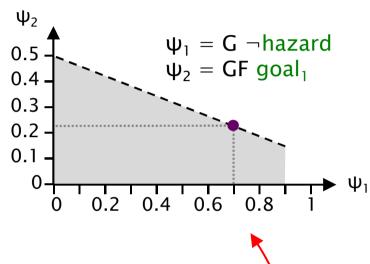
s₅: west

Multi-objective strategy synthesis

- Consider conjunctions of probabilistic LTL formulas $P_{\sim p}$ [ψ]
 - require all conjuncts to be satisfied
- Reduce to a multi-objective reachability problem on the product of MDP M and the omega-automata representing the conjuncts
 - convert (by negation) to formulas with upper probability bounds (\geq , >), then to DRA
 - need to consider all combinations of objectives
- The problem can be solved using LP methods [TACAS07] or via approximations to Pareto curve [ATVA12]
 - strategies may be finite memory and randomised
- Continue as for single-objectives to compute the strategy σ^*
 - find memoryless deterministic strategy on the product
 - convert to finite-memory strategy

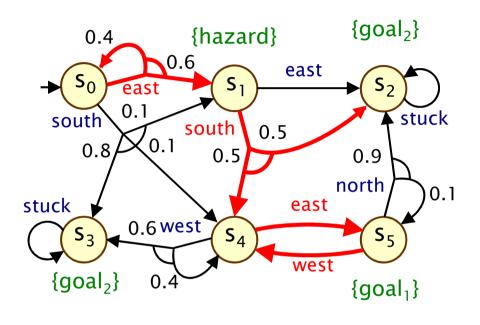
Example - Multi-objective

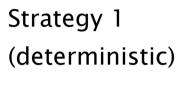




- · Multi-objective formula
 - $-P_{\geq 0.7}$ [G \neg hazard] $\wedge P_{\geq 0.2}$ [GF goal₁] ? True (achievable)
- Numerical query
 - $-P_{max=?}$ [GF goal₁] such that $P_{\geq 0.7}$ [G \neg hazard] ? ~0.2278
- Pareto query
 - for $P_{max=?}$ [$G \neg hazard$] $\land P_{max=?}$ [$GF goal_1$]?

Example – Multi-objective strategies





s₀: east

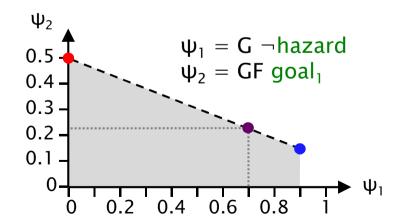
 s_1 : south

S₂: -

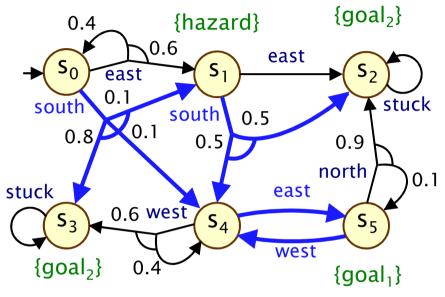
S₃: -

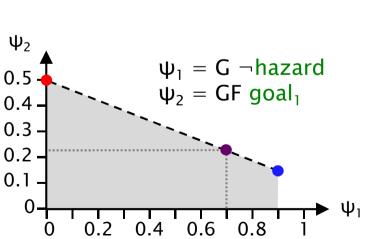
s₄: east

s₅: west



Example - Multi-objective strategies





Strategy 2 (deterministic)

 s_0 : south

 s_1 : south

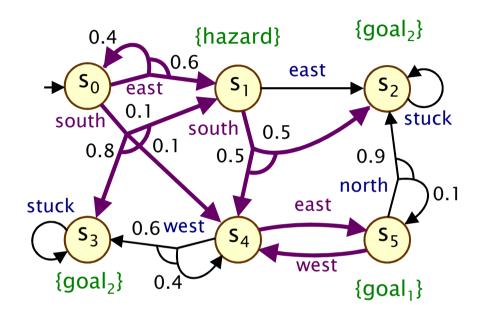
 S_2 : -

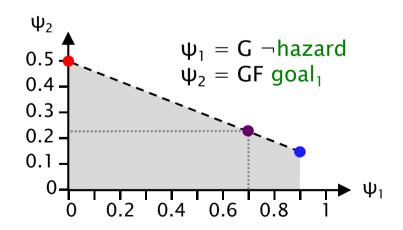
S₃: -

s₄: east

 s_5 : west

Example – Multi-objective strategies





Optimal strategy: (randomised)

 s_0 : 0.3226: east

0.6774 : south

 s_1 : 1.0 : south

 S_2 : -

s₃: -

s₄: 1.0: east

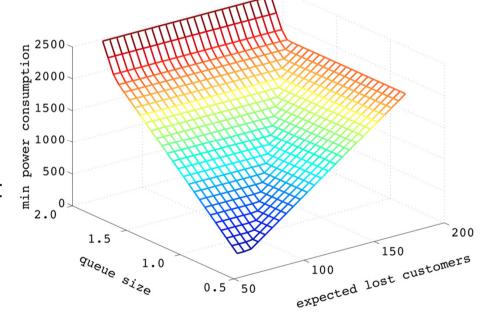
 $s_5 : 1.0 : west$

Case study: Dynamic power management

- Synthesis of dynamic power management schemes
 - for an IBM TravelStar VP disk drive
 - 5 different power modes: active, idle, idlelp, stby, sleep
 - power manager controller bases decisions on current power mode, disk request queue, etc.

Build controllers that

- minimise energy consumption, subject to constraints on e.g.
- probability that a request waits more than K steps
- expected number of lost disk requests



See: lab and http://www.prismmodelchecker.org/files/tacas11/

PRISM: Recent & new developments

New features:

- 1. parametric model checking
- 2. parameter synthesis
- 3. strategy synthesis
- 4. stochastic multi-player games
- 5. real-time: probabilistic timed automata (PTAs)

Further new additions:

- enhanced statistical model checking
 (approximations + confidence intervals, acceptance sampling)
- efficient CTMC model checking (fast adaptive uniformisation)
- benchmark suite & testing functionality
- www.prismmodelchecker.org
- Beyond PRISM...

Summary (Part 2)

- Markov decision processes (MDPs)
 - extend DTMCs with nondeterminism
 - to model concurrency, underspecification, ...
- Property specifications
 - PCTL: exactly same syntax as for DTMCs
 - but quantify over all strategies
- Model checking algorithms
 - covered three basic techniques for MDPs: linear programming, value iteration, or policy iteration
- Strategy synthesis
 - can reuse model checking algorithms