

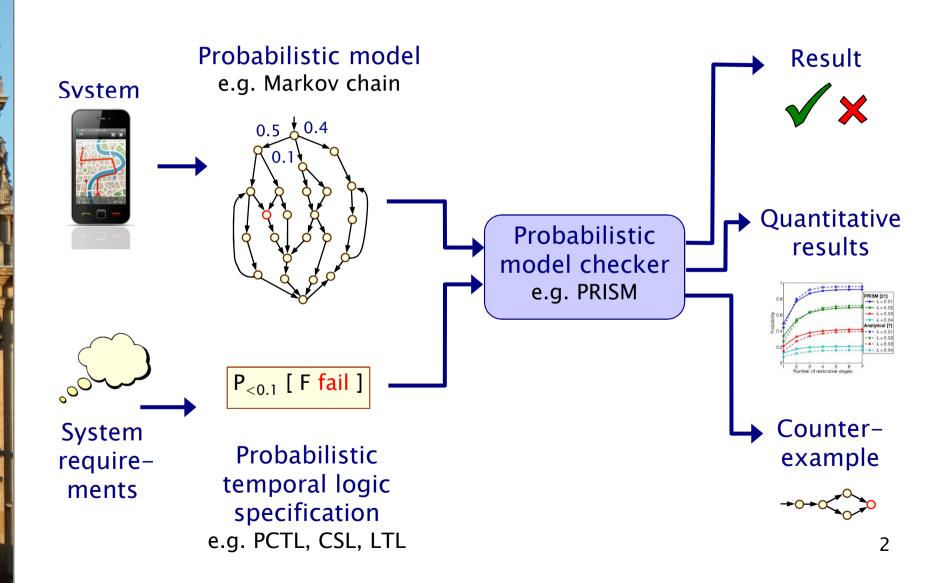
Probabilistic verification and synthesis

Marta Kwiatkowska

Department of Computer Science, University of Oxford

KTH, Stockholm, August 2015

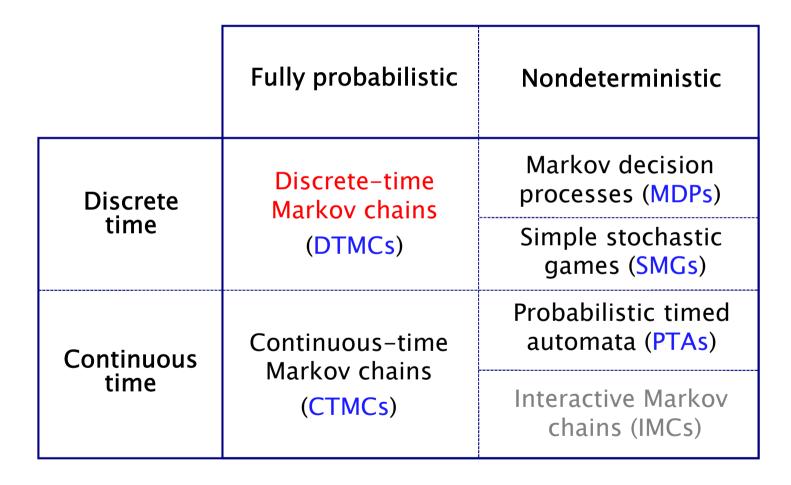
Probabilistic model checking



Lecture plan

- Course slides and lab session
 - http://www.prismmodelchecker.org/courses/kth15/
- 5 sessions: lectures 9–12noon, labs 2.30–5pm
 - 1 Introduction
 - 2 Discrete time Markov chains (DTMCs)
 - 3 Markov decision processes (MDPs)
 - 4 LTL model checking for DTMCs/MDPs
 - 5 Probabilistic timed automata (PTAs)
- For extended versions of this material
 - and an accompanying list of references
 - see: http://www.prismmodelchecker.org/lectures/

Probabilistic models



Part 2

Discrete-time Markov chains

Overview (Part 1)

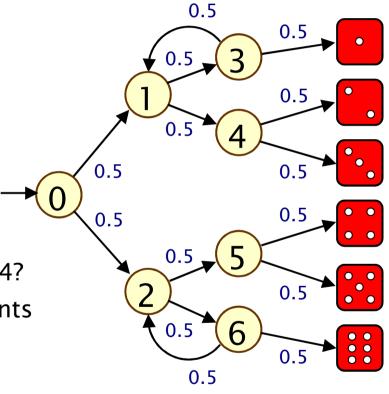
- Probability basics
- Model checking for discrete-time Markov chains (DTMCs)
 - DTMCs: definition, paths & probability spaces
 - PCTL model checking
 - Costs and rewards
- A glimpse of model checking for continuous-time Markov chains (CTMCs)
- Case studies
 - Bluetooth device discovery
 - Power management
- PRISM developments: parametric model checking
- Summary

Probability example

- algorithm due to Knuth/Yao:
- start at 0, toss a coin
- upper branch when H
- lower branch when T
- repeat until value chosen

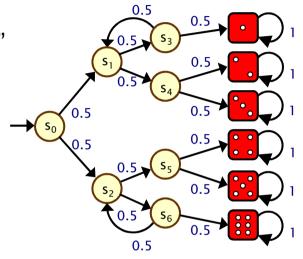
- e.g. probability of obtaining a 4?
- obtain as disjoint union of events
- THH, TTTHH, TTTTTHH, ...
- Pr("eventually 4")

$$= (1/2)^3 + (1/2)^5 + (1/2)^7 + ... = 1/6$$



Example...

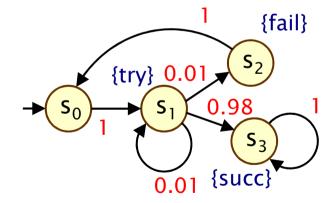
- Other properties?
 - "what is the probability of termination?"
- e.g. efficiency?
 - "what is the probability of needing more than 4 coin tosses?"
 - "on average, how many coin tosses are needed?"



- Probabilistic model checking provides a framework for these kinds of properties...
 - modelling languages
 - property specification languages
 - model checking algorithms, techniques and tools

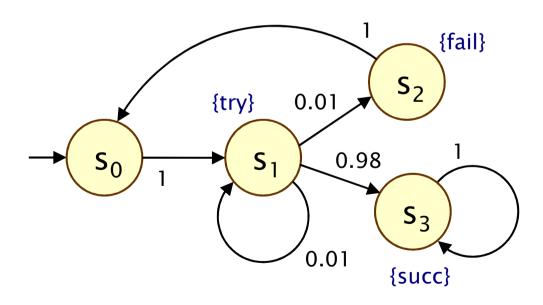
Discrete-time Markov chains

- Discrete-time Markov chains (DTMCs)
 - state-transition systems augmented with probabilities
- States
 - discrete set of states representing possible configurations of the system being modelled
- Transitions
 - transitions between states occur in discrete time-steps
- Probabilities
 - probability of making transitions between states is given by discrete probability distributions



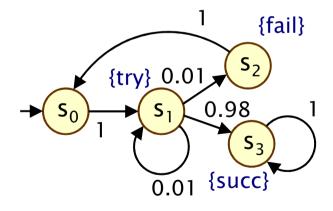
Simple DTMC example

- Modelling a very simple communication protocol
 - after one step, process starts trying to send a message
 - with probability 0.01, channel unready so wait a step
 - with probability 0.98, send message successfully and stop
 - with probability 0.01, message sending fails, restart



Discrete-time Markov chains

- Formally, a DTMC D is a tuple (S,s_{init},P,L) where:
 - S is a finite set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - P: S × S → [0,1] is the transition probability matrix where $\Sigma_{s' \in S}$ P(s,s') = 1 for all s ∈ S
 - L : $S \rightarrow 2^{AP}$ is function labelling states with atomic propositions
- Note: no deadlock states
 - i.e. every state has at least one outgoing transition
 - can add self loops to represent final/terminating states



Simple DTMC example

$$D = (S, s_{init}, P, L)$$

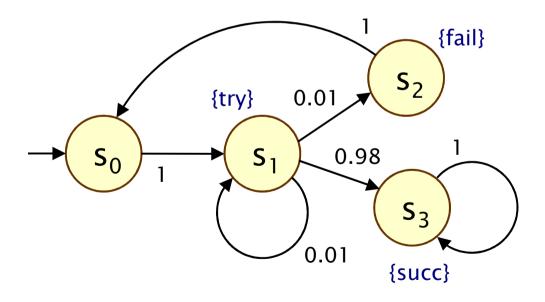
$$S = {s_0, s_1, s_2, s_3}$$

 $s_{init} = s_0$

AP = {try, fail, succ}

$$L(s_0) = \emptyset$$
,
 $L(s_1) = \{try\}$,
 $L(s_2) = \{fail\}$,
 $L(s_3) = \{succ\}$

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



Some more terminology

- P is a stochastic matrix, meaning it satisifes:
 - P(s,s') \in [0,1] for all s,s' \in S and $\Sigma_{s'\in S}$ P(s,s') = 1 for all s \in S
- A sub-stochastic matrix satisfies:
 - P(s,s') ∈ [0,1] for all s,s' ∈ S and $\Sigma_{s'\in S}$ P(s,s') ≤ 1 for all s ∈ S
- An absorbing state is a state s for which:
 - P(s,s) = 1 and P(s,s') = 0 for all $s \neq s'$
 - the transition from s to itself is sometimes called a self-loop
- Note: Since we assume P is stochastic...
 - every state has at least one outgoing transition
 - i.e. no deadlocks (in model checking terminology)

DTMCs: An alternative definition

- Alternative definition... a DTMC is:
 - a family of random variables $\{X(k) \mid k=0,1,2,...\}$
 - where X(k) are observations at discrete time-steps
 - i.e. X(k) is the state of the system at time-step k
 - which satisfies...
- The Markov property ("memorylessness")
 - $Pr(X(k)=s_k \mid X(k-1)=s_{k-1}, ..., X(0)=s_0)$ = $Pr(X(k)=s_k \mid X(k-1)=s_{k-1})$
 - for a given current state, future states are independent of past
- This allows us to adopt the "state-based" view presented so far (which is better suited to this context)

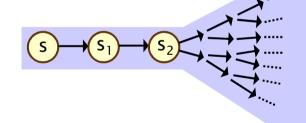
Other assumptions made here

- We consider time-homogenous DTMCs
 - transition probabilities are independent of time
 - $P(s_{k-1},s_k) = Pr(X(k)=s_k \mid X(k-1)=s_{k-1})$
 - otherwise: time-inhomogenous
- We will (mostly) assume that the state space S is finite
 - in general, S can be any countable set
- Initial state $s_{init} \in S$ can be generalised...
 - to an initial probability distribution s_{init} : S → [0,1]
- Focus on path-based properties
 - rather than steady-state

Paths and probabilities

- A (finite or infinite) path through a DTMC
 - is a sequence of states $s_0s_1s_2s_3...$ such that $P(s_i,s_{i+1}) > 0 \ \forall i$
 - represents an execution (i.e. one possible behaviour) of the system which the DTMC is modelling
- To reason (quantitatively) about this system
 - need to define a probability space over paths
- Intuitively:
 - sample space: Path(s) = set of all infinite paths from a state s

- basic events: cylinder sets (or "cones")
- cylinder set $C(\omega)$, for a finite path ω
 - = set of infinite paths with the common finite prefix ω
- for example: C(ss₁s₂)



Probability spaces

- Let Ω be an arbitrary non-empty set
- A σ -algebra (or σ -field) on Ω is a family Σ of subsets of Ω closed under complementation and countable union, i.e.:
 - if A ∈ Σ, the complement Ω \ A is in Σ
 - if A_i ∈ Σ for i ∈ \mathbb{N} , the union $\cup_i A_i$ is in Σ
 - the empty set \varnothing is in Σ
- Theorem: For any family F of subsets of Ω , there exists a unique smallest σ -algebra on Ω containing F
- Probability space (Ω, Σ, Pr)
 - $-\Omega$ is the sample space
 - Σ is the set of events: σ -algebra on Ω
 - Pr : Σ → [0,1] is the probability measure:
 - $Pr(\Omega) = 1$ and $Pr(\cup_i A_i) = \Sigma_i Pr(A_i)$ for countable disjoint A_i

Probability space over paths

- Sample space Ω = Path(s)
 set of infinite paths with initial state s
- Event set $\Sigma_{Path(s)}$
 - the cylinder set $C(\omega) = \{ \omega' \in Path(s) \mid \omega \text{ is prefix of } \omega' \}$
 - $\Sigma_{Path(s)}$ is the least $\sigma\text{-algebra}$ on Path(s) containing $C(\omega)$ for all finite paths ω starting in s
- Probability measure Pr_s
 - define probability $P_s(\omega)$ for finite path $\omega = ss_1...s_n$ as:
 - $P_s(\omega) = 1$ if ω has length one (i.e. $\omega = s$)
 - $P_s(\omega) = P(s,s_1) \cdot ... \cdot P(s_{n-1},s_n)$ otherwise
 - · define $Pr_s(C(\omega)) = P_s(\omega)$ for all finite paths · ω
 - Pr_s extends uniquely to a probability measure $Pr_s: \Sigma_{Path(s)} \rightarrow [0,1]$
- See [KSK76] for further details

Probability space - Example

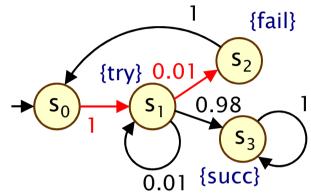
Paths where sending fails the first time

$$-\omega = s_0 s_1 s_2$$

$$- C(\omega) = all paths starting s_0 s_1 s_2...$$

$$- P_{s0}(\omega) = P(s_0,s_1) \cdot P(s_1,s_2)$$
$$= 1 \cdot 0.01 = 0.01$$

$$- Pr_{s0}(C(\omega)) = P_{s0}(\omega) = 0.01$$



· Paths which are eventually successful and with no failures

$$- C(s_0s_1s_3) \cup C(s_0s_1s_1s_3) \cup C(s_0s_1s_1s_1s_3) \cup ...$$

$$- \text{Pr}_{s0}(\text{C}(s_0s_1s_3) \cup \text{C}(s_0s_1s_1s_3) \cup \text{C}(s_0s_1s_1s_1s_3) \cup ...)$$

$$= P_{s0}(s_0s_1s_3) + P_{s0}(s_0s_1s_1s_3) + P_{s0}(s_0s_1s_1s_1s_3) + \dots$$

$$= 1.0.98 + 1.0.01.0.98 + 1.0.01.0.01.0.98 + ...$$

$$= 0.9898989898...$$

$$= 98/99$$

Reachability

- Key property: probabilistic reachability
 - probability of a path reaching a state in some target set $T \subseteq S$
 - e.g. "probability of the algorithm terminating successfully?"
 - e.g. "probability that an error occurs during execution?"
- Dual of reachability: invariance
 - probability of remaining within some class of states
 - Pr("remain in set of states T") = 1 Pr("reach set $S \ T$ ")
 - e.g. "probability that an error never occurs"
- We will also consider other variants of reachability
 - time-bounded, constrained ("until"), …

Reachability probabilities

- Formally: $ProbReach(s, T) = Pr_s(Reach(s, T))$
 - where Reach(s, T) = { $s_0 s_1 s_2 ... \in Path(s) | s_i in T for some i }$
- Is Reach(s, T) measurable for any T ⊆ S? Yes...
 - Reach(s, T) is the union of all basic cylinders $Cyl(s_0s_1...s_n)$ where $s_0s_1...s_n$ in Reach_{fin}(s, T)
 - Reach_{fin}(s, T) contains all finite paths $s_0s_1...s_n$ such that: $s_0=s, s_0,...,s_{n-1} \notin T, s_n \in T$ (reaches T first time)
 - set of such finite paths $s_0 s_1 ... s_n$ is countable
- Probability
 - in fact, the above is a disjoint union
 - so probability obtained by simply summing...

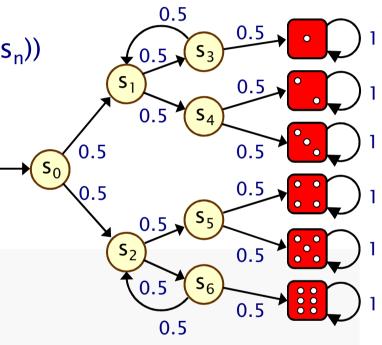
Computing reachability probabilities

Compute as (infinite) sum...

• $\Sigma_{s_0,...,s_n \in Reachfin(s, T)} Pr_{s_0}(Cyl(s_0,...,s_n))$

$$= \sum_{s_0,...,s_n \in Reachfin(s, T)} P(s_0,...,s_n)$$

- Example:
 - ProbReach(s₀, {4})



Computing reachability probabilities

Compute as (infinite) sum...

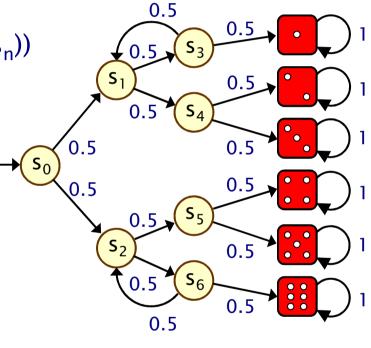
•
$$\Sigma_{s_0,...,s_n \in Reachfin(s, T)} Pr_{s_0}(Cyl(s_0,...,s_n))$$

$$= \sum_{s_0,...,s_n \in Reachfin(s, T)} P(s_0,...,s_n)$$

- Example:
 - ProbReach(s₀, {4})
 - = $Pr_{s0}(Reach(s_0, \{4\}))$
 - Finite path fragments:
 - $s_0(s_2s_6)^ns_2s_54 \text{ for } n \ge 0$

$$- P_{s0}(s_0s_2s_54) + P_{s0}(s_0s_2s_6s_2s_54) + P_{s0}(s_0s_2s_6s_2s_6s_2s_54) + ...$$

$$= (1/2)^3 + (1/2)^5 + (1/2)^7 + ... = 1/6$$



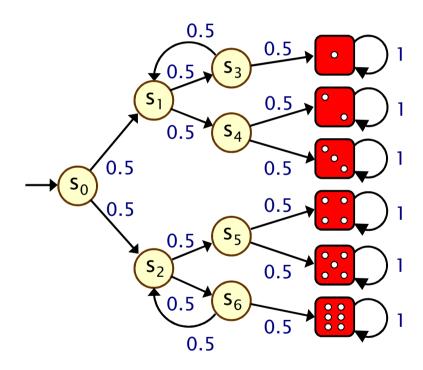
- Alternative: derive a linear equation system
 - solve for all states simultaneously
 - i.e. compute vector <u>ProbReach</u>(T)
- Let x_s denote ProbReach(s, T)

Solve:

$$x_{s} = \begin{cases} 1 & \text{if } s \in T \\ 0 & \text{if T is not reachable from s} \\ \sum_{s' \in S} P(s, s') \cdot x_{s'} & \text{otherwise} \end{cases}$$

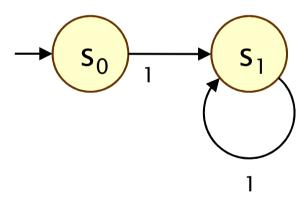
Example

Compute ProbReach(s₀, {4})



Unique solutions

- Why the need to identify states that cannot reach T?
- Consider this simple DTMC:
 - compute probability of reaching {s₀} from s₁



- linear equation system: $x_{s_0} = 1$, $x_{s_1} = x_{s_1}$
- multiple solutions: $(x_{s_0}, x_{s_1}) = (1,p)$ for any $p \in [0,1]$

Bounded reachability probabilities

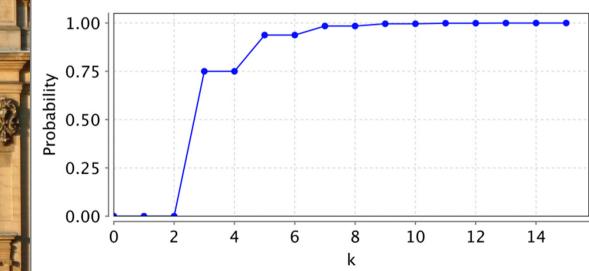
- Probability of reaching T from s within k steps
- Formally: $ProbReach \le k(s, T) = Pr_s(Reach \le k(s, T))$ where:
 - Reach≤k(s, T) = { $s_0s_1s_2 ... \in Path(s) | s_i in T for some i ≤ k }$
- ProbReach $\leq k(T) = x^{(k+1)}$ from the previous fixed point
 - which gives us...

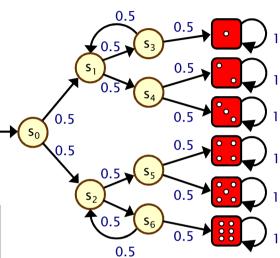
$$ProbReach^{\leq k}(s,\ T) \ = \left\{ \begin{array}{ccc} 1 & \text{if } s \in T \\ 0 & \text{if } k = 0 \& s \notin T \\ \sum_{s' \in S} P(s,s') \cdot ProbReach^{\leq k-1}(s',\ T) & \text{if } k > 0 \& s \notin T \end{array} \right.$$

(Bounded) reachability

• ProbReach(s_0 , {1,2,3,4,5,6}) = 1

• ProbReach $\leq k$ (s₀, {1,2,3,4,5,6}) = ...



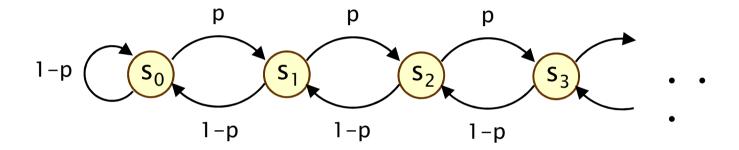


Qualitative properties

- Quantitative properties:
 - "what is the probability of event A?"
- Qualititative properties:
 - "the probability of event A is 1" ("almost surely A")
 - or: "the probability of event A is > 0" ("possibly A")
- For finite DTMCs, qualititative properties do not depend on the transition probabilities – only need underlying graph
 - e.g. to determine "is target set T reached with probability 1?"
 (see DTMC model checking later)

Aside: Infinite Markov chains

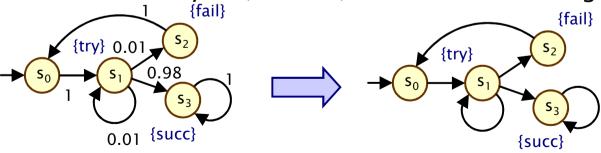
Infinite-state random walk



- Value of probability p does affect qualitative properties
 - ProbReach(s, $\{s_0\}$) = 1 if p \leq 0.5
 - ProbReach(s, $\{s_0\}$) < 1 if p > 0.5

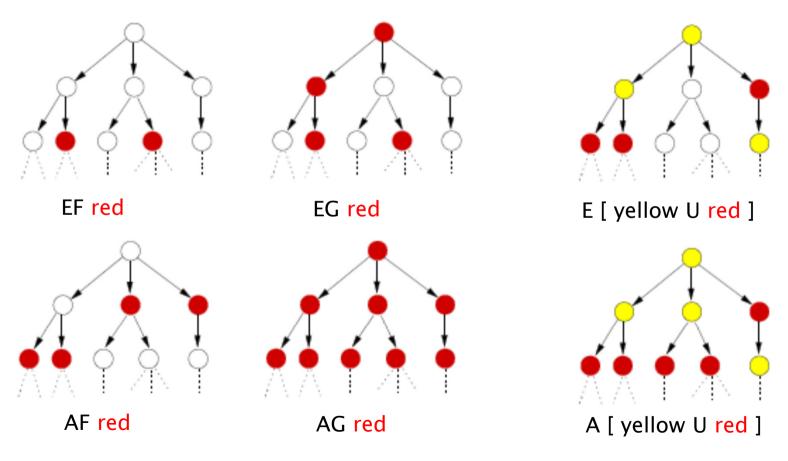
Temporal logic

- Temporal logic
 - formal language for specifying and reasoning about how the behaviour of a system changes over time
 - defined over paths, i.e. sequences of states $s_0s_1s_2s_3...$ such that $P(s_i,s_{i+1}) > 0 \ \forall i$
- Logics used in this course are probabilistic extensions of temporal logics devised for non-probabilistic systems (CTL, LTL)
 - So we revert briefly to (labelled) state-transition diagrams



CTL semantics

- Intuitive semantics:
 - of quantifiers (A/E) and temporal operators (F/G/U)



PCTL

- Temporal logic for describing properties of DTMCs
 - PCTL = Probabilistic Computation Tree Logic [HJ94]
 - essentially the same as the logic pCTL of [ASB+95]
- Extension of (non-probabilistic) temporal logic CTL
 - key addition is probabilistic operator P
 - quantitative extension of CTL's A and E operators
- Example
 - send → $P_{>0.95}$ [true $U^{\leq 10}$ deliver]
 - "if a message is sent, then the probability of it being delivered within 10 steps is at least 0.95"

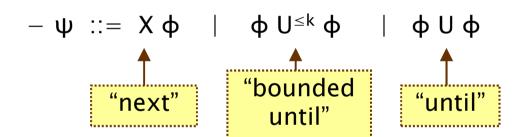
PCTL syntax

PCTL syntax:

ψ is true with probability ~p

 $- \varphi ::= true | a | \varphi \wedge \varphi | \neg \varphi | P_{\sim p} [\psi]$

(state formulas)



(path formulas)

- define F ϕ = true U ϕ (eventually), G ϕ = \neg (F $\neg \phi$) (globally)
- where a is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
- A PCTL formula is always a state formula
 - path formulas only occur inside the P operator

PCTL semantics for DTMCs

- PCTL formulas interpreted over states of a DTMC
 - $-s \models \phi$ denotes ϕ is "true in state s" or "satisfied in state s"
- Semantics of (non-probabilistic) state formulas:
 - for a state s of the DTMC (S,s_{init},P,L):

$$-s \models a$$

$$-s \models a \Leftrightarrow a \in L(s)$$

$$-s \models \varphi_1 \land \varphi_2$$

$$-s \models \varphi_1 \land \varphi_2 \qquad \Leftrightarrow s \models \varphi_1 \text{ and } s \models \varphi_2$$

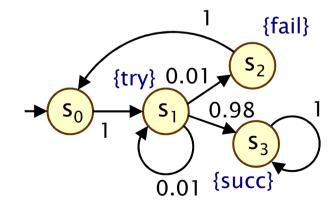
$$-s \models \neg \Phi$$

$$-s \models \neg \varphi \Leftrightarrow s \models \varphi \text{ is false}$$

Examples

$$- s_3 \models succ$$

$$-s_1 \models try \land \neg fail$$



PCTL semantics for DTMCs

- Semantics of path formulas:
 - for a path $\omega = s_0 s_1 s_2 ...$ in the DTMC:

$$-\omega \models X \varphi \Leftrightarrow s_1 \models \varphi$$

$$- \omega \vDash \varphi_1 \ U^{\leq k} \ \varphi_2 \quad \Leftrightarrow \quad \exists i \leq k \ such \ that \ s_i \vDash \varphi_2 \ and \ \forall j < i, \ s_j \vDash \varphi_1$$

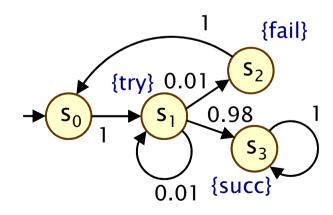
$$-\omega \models \varphi_1 \cup \varphi_2 \quad \Leftrightarrow \exists k \geq 0 \text{ such that } \omega \models \varphi_1 \cup \varphi_2$$

- Some examples of satisfying paths:
 - X succ
 {try} {succ} {succ} {succ}

$$S_1 \rightarrow S_3 \rightarrow S_3 \rightarrow \cdots$$

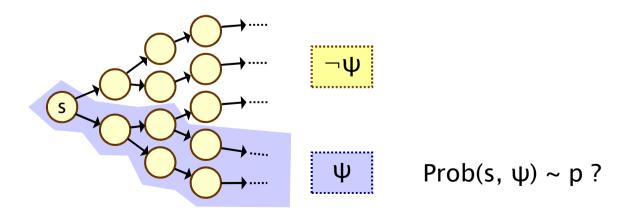
− ¬fail U succ

$$S_0 \rightarrow S_1 \rightarrow S_3 \rightarrow S_3 \rightarrow \cdots$$



PCTL semantics for DTMCs

- Semantics of the probabilistic operator P
 - informal definition: $s \models P_{\sim p} [\psi]$ means that "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ "
 - example: $s \models P_{<0.25}$ [X fail] \Leftrightarrow "the probability of atomic proposition fail being true in the next state of outgoing paths from s is less than 0.25"
 - formally: $s \models P_{p} [\psi] \Leftrightarrow Prob(s, \psi) \sim p$
 - where: Prob(s, ψ) = Pr_s { $\omega \in Path(s) \mid \omega \models \psi$ }
 - (sets of paths satisfying ψ are always measurable [Var85])



More PCTL...

Usual temporal logic equivalences:

$$-$$
 false $≡ ¬$ true

$$- \ \varphi_1 \lor \ \varphi_2 \equiv \neg (\neg \varphi_1 \land \neg \varphi_2)$$

$$- \ \varphi_1 \rightarrow \varphi_2 \equiv \neg \varphi_1 \lor \varphi_2$$

$$- F \varphi \equiv \Diamond \varphi \equiv \text{true } U \varphi$$

$$- G \varphi \equiv \Box \varphi \equiv \neg (F \neg \varphi)$$

– bounded variants: $F^{\leq k}$ Φ, $G^{\leq k}$ Φ

(false)

(disjunction)

(implication)

(eventually, "future")

(always, "globally")

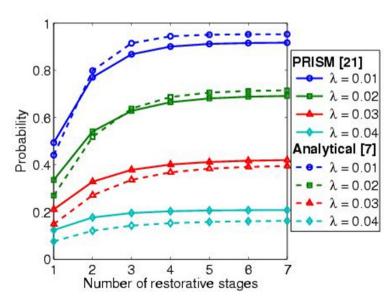
Negation and probabilities

$$-\text{ e.g. }\neg P_{>p}\ [\ \varphi_1\ U\ \varphi_2\] \equiv P_{\leq p}\ [\varphi_1\ U\ \varphi_2\]$$

$$-$$
 e.g. $P_{>p}$ [$G \varphi$] $\equiv P_{<1-p}$ [$F \neg \varphi$]

Quantitative properties

- Consider a PCTL formula $P_{\sim p}$ [ψ]
 - if the probability is unknown, how to choose the bound p?
- When the outermost operator of a PTCL formula is P
 - we allow the form $P_{=2}$ [ψ]
 - "what is the probability that path formula ψ is true?"
- Model checking is no harder: compute the values anyway
- Useful to spot patterns, trends
- Example
 - $-P_{=?}$ [F err/total>0.1]
 - "what is the probability that 10% of the NAND gate outputs are erroneous?"



Reachability and invariance

- Derived temporal operators, like CTL...
- Probabilistic reachability: P_{~p} [F φ]
 - the probability of reaching a state satisfying φ
 - $F \varphi \equiv true U \varphi$
 - "φ is eventually true"
 - bounded version: $F^{≤k}$ Φ ≡ true $U^{≤k}$ Φ
- Probabilistic invariance: P_{¬p} [G φ]
 - the probability of φ always remaining true
 - $G \varphi \equiv \neg(F \neg \varphi) \equiv \neg(true U \neg \varphi)$
 - "φ is always true"
 - bounded version: $G^{\leq k}$ φ ≡ ¬($F^{\leq k}$ ¬φ)

strictly speaking, G \(\phi \) cannot be derived from the PCTL syntax in this way since there is no negation of path formulae

Qualitative vs. quantitative properties

- P operator of PCTL can be seen as a quantitative analogue of the CTL operators A (for all) and E (there exists)
- Qualitative PCTL properties
 - $-P_{\sim p}$ [ψ] where p is either 0 or 1
- Quantitative PCTL properties
 - $-P_{\sim p}$ [ψ] where p is in the range (0,1)
- $P_{>0}$ [F ϕ] is identical to EF ϕ
 - there exists a finite path to a ϕ -state
- $P_{>1}$ [F ϕ] is (similar to but) weaker than AF ϕ
 - a φ-state is reached "almost surely"
 - see next slide...

Example: Qualitative/quantitative

Toss a coin repeatedly until "tails" is thrown

Is "tails" always eventually thrown?

- CTL: AF "tails"

– Result: false

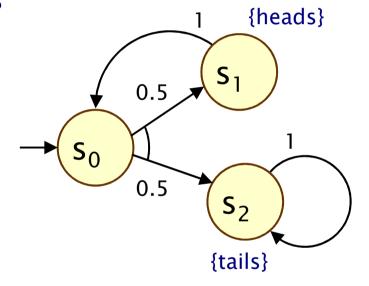
– Counterexample: s₀s₁s₀s₁s₀s₁...

 Does the probability of eventually throwing "tails" equal one?

- PCTL: P_{>1} [F "tails"]

– Result: true

- Infinite path $s_0s_1s_0s_1s_0s_1...$ has zero probability



Overview (Part 1)

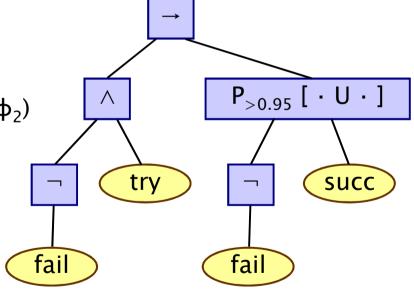
- Probability basics
- Model checking for discrete-time Markov chains (DTMCs)
 - DTMCs: definition, paths & probability spaces
 - PCTL model checking
 - Costs and rewards
- A glimpse of model checking for continuous-time Markov chains (CTMCs)
- Case studies
 - Bluetooth device discovery
 - Power management
- PRISM developments: parametric model checking
- Summary

PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,HJ94,CY95]
 - inputs: DTMC D= (S, s_{init}, P, L) , PCTL formula ϕ
 - output: $Sat(\phi) = \{ s \in S \mid s \models \phi \} = set \text{ of states satisfying } \phi$
- What does it mean for a DTMC D to satisfy a formula φ?
 - sometimes, want to check that $s \models \varphi \forall s \in S$, i.e. $Sat(\varphi) = S$
 - sometimes, just want to know if $s_{init} = \phi$, i.e. if $s_{init} \in Sat(\phi)$
- Sometimes, focus on quantitative results
 - e.g. compute result of P=? [F error]
 - e.g. compute result of P=? [$F^{\leq k}$ error] for $0 \leq k \leq 100$

PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of φ
 - example: $\phi = (\neg fail \land try) \rightarrow P_{>0.95}$ [¬fail U succ]
- For the non-probabilistic operators:
 - Sat(true) = S
 - Sat(a) = { s \in S | a \in L(s) }
 - $\operatorname{Sat}(\neg \varphi) = \operatorname{S} \setminus \operatorname{Sat}(\varphi)$
 - $-\operatorname{Sat}(\varphi_1 \wedge \varphi_2) = \operatorname{Sat}(\varphi_1) \cap \operatorname{Sat}(\varphi_2)$
- For the $P_{\sim p}$ [ψ] operator
 - need to compute the probabilities Prob(s, ψ) for all states s ∈ S
 - focus here on "until" case: $Ψ = Φ_1 U Φ_2$

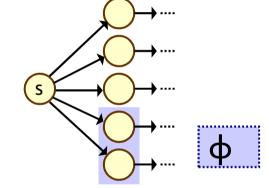


Probability computation

- Three temporal operators to consider:
- Next: P_{~p}[X ♠]
- Bounded until: $P_{\sim p}[\phi_1 U^{\leq k} \phi_2]$ (omitted)
 - adaptation of bounded reachability for DTMCs
- Until: $P_{\sim p}[\varphi_1 \cup \varphi_2]$
 - adaptation of reachability for DTMCs
 - graph-based "precomputation" algorithms
 - techniques for solving large linear equation systems

PCTL next for DTMCs

- $\operatorname{Sat}(P_{\sim p}[X \varphi]) = \{ s \in S \mid \operatorname{Prob}(s, X \varphi) \sim p \}$
- need to compute $Prob(s, X \varphi)$ for all $s \in S$
- Sum outgoing probabilities for transitions to φ-states
 - Prob(s, X φ) = $\Sigma_{s' \in Sat(\varphi)}$ P(s,s')

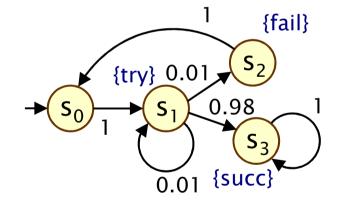


- Compute vector Prob(X φ) of probabilities for all states s
 - $\underline{\mathsf{Prob}}(\mathsf{X} \; \boldsymbol{\varphi}) = \mathbf{P} \cdot \underline{\boldsymbol{\varphi}}$
 - where $\underline{\phi}$ is a 0-1 vector over S with $\underline{\phi}(s) = 1$ iff $s = \overline{\phi}$
 - computation requires a single matrix-vector multiplication

PCTL next - Example

- Model check: P_{≥0.9} [X (¬try ∨ succ)]
 - Sat $(\neg try \lor succ) = (S \setminus Sat(try)) \cup Sat(succ)$ = $(\{s_0, s_1, s_2, s_3\} \setminus \{s_1\}) \cup \{s_3\} = \{s_0, s_2, s_3\}$
 - Prob(X (\neg try \lor succ)) = P \cdot (\neg try \lor succ) = ...

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.99 \\ 1 \\ 1 \end{bmatrix}$$



- Results:
 - $\text{Prob}(X (\neg try \lor succ)) = [0, 0.99, 1, 1]$
 - Sat($P_{\geq 0.9}$ [X ($\neg try \lor succ$)]) = {s₁, s₂, s₃}

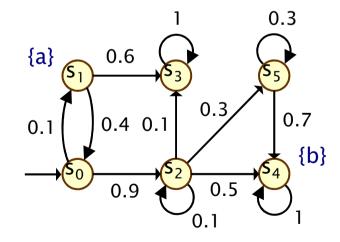
PCTL until for DTMCs

- Computation of probabilities Prob(s, $\phi_1 \cup \phi_2$) for all $s \in S$
- First, identify all states where the probability is 1 or 0

$$- S^{yes} = Sat(P_{>1} [\varphi_1 U \varphi_2])$$

$$- S^{no} = Sat(P_{<0} [\varphi_1 U \varphi_2])$$

- Then solve linear equation system for remaining states
- Running example:



Precomputation

- We refer to the first phase (identifying sets Syes and Sno) as "precomputation"
 - two algorithms: Prob0 (for S^{no}) and Prob1 (for S^{yes})
 - algorithms work on underlying graph (probabilities irrelevant)
- Important for several reasons
 - ensures unique solution to linear equation system
 - · only need Prob0 for uniqueness, Prob1 is optional
 - reduces the set of states for which probabilities must be computed numerically
 - gives exact results for the states in Syes and Sno (no round-off)
 - for model checking of qualitative properties $(P_{\sim p}[\cdot])$ where p is 0 or 1), no further computation required

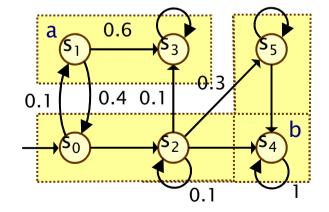
Precomputation – Prob0

- Prob0 algorithm to compute $S^{no} = Sat(P_{\leq 0} [\varphi_1 \cup \varphi_2])$:
 - first compute Sat($P_{>0}$ [$\varphi_1 \cup \varphi_2$]) \equiv Sat($E[\varphi_1 \cup \varphi_2]$)
 - i.e. find all states which can, with non-zero probability, reach a ϕ_2 -state without leaving ϕ_1 -states
 - i.e. find all states from which there is a finite path through ϕ_1 -states to a ϕ_2 -state: simple graph-based computation
 - subtract the resulting set from S

$$S^{no} = Sat(P_{\leq p} [\neg a U_{0.3}^b])$$

Example:

$$P_{>0.8} [\neg a \ U \ b]$$



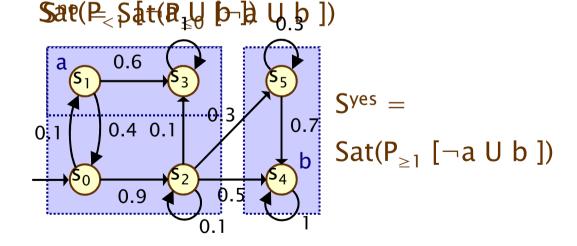
$$\hat{at}(B)_0 [\neg a \cup b]$$

Precomputation – Prob1

- Prob1 algorithm to compute $S^{yes} = Sat(P_{\geq 1} [\varphi_1 U \varphi_2])$:
 - first compute Sat($P_{<1}$ [φ_1 U φ_2]), reusing S^{no}
 - this is equivalent to the set of states which have a non-zero probability of reaching S^{no} , passing only through ϕ_1 -states
 - again, this is a simple graph-based computation
 - subtract the resulting set from S

Example:

 $P_{>0.8} [\neg a U b]$



PCTL until – linear equations

- Probabilities Prob(s, ϕ_1 U ϕ_2) can now be obtained as the unique solution of the following set of linear equations
 - essentially the same as for probabilistic reachability

$$Prob(s,\,\varphi_1\,U\,\varphi_2) \ = \ \begin{cases} 1 & \text{if } s \in S^{yes} \\ 0 & \text{if } s \in S^{no} \\ \sum_{s' \in S} P(s,s') \cdot Prob(s',\,\varphi_1\,U\,\varphi_2) & \text{otherwise} \end{cases}$$

• Can also be reduced to a system in $|S^?|$ unknowns instead of |S| where $S^? = S \setminus (S^{yes} \cup S^{no})$

PCTL until – linear equations

- Example: $P_{>0.8}$ [$\neg a \cup b$] $S^{no} =$
- Let $x_i = Prob(s_i, \neg a \cup b)$

Sat(
$$P_{\leq 0}$$
 [¬a U b])

 $a = 0.6$
 0.1
 0.4
 0.1
 0.3
 0.7
 0.4
 0.1
 0.7
 0.9
 0.5
 0.5
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9
 0.9

$$x_1 = x_3 = 0$$

$$x_4 = x_5 = 1$$

$$x_2 = 0.1x_2 + 0.1x_3 + 0.3x_5 + 0.5x_4 = 8/9$$

$$x_0 = 0.1x_1 + 0.9x_2 = 0.8$$

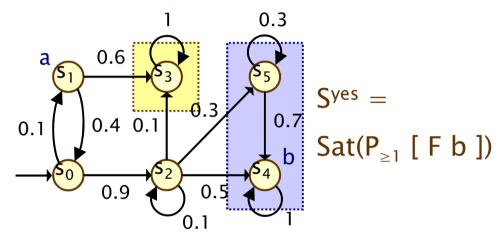
$$\underline{\text{Prob}}(\neg a \cup b) = \underline{x} = [0.8, 0, 8/9, 0, 1, 1]$$

$$Sat(P_{>0.8} [\neg a \cup b]) = \{ s_2, s_4, s_5 \}$$

PCTL Until – Example 2

- Example: $P_{>0.5}$ [$G \neg b$] $S^{no} = Sat(P_{\leq 0}$ [F b])
- Prob(s_i , $G \neg b$) $= 1 - Prob(s_i, \neg(G \neg b))$ $= 1 - Prob(s_i, F b)$
- Let $x_i = Prob(s_i, Fb)$

$$S^{no} = Sat(P_{< 0} [F b])$$



$$x_3 = 0$$
 and $x_4 = x_5 = 1$

$$x_2 = 0.1x_2 + 0.1x_3 + 0.3x_5 + 0.5x_4 = 8/9$$

$$x_1 = 0.6x_3 + 0.4x_0 = 0.4x_0$$

$$x_0 = 0.1x_1 + 0.9x_2 = \frac{5}{6}$$
 and $x_1 = \frac{1}{3}$

$$\underline{\text{Prob}}(G \neg b) = \underline{1} - \underline{x} = [1/6, 2/3, 1/9, 1, 0, 0]$$

$$Sat(P_{>0.5} [G \neg b]) = \{s_1, s_3\}$$

Linear equation systems

- size of system (number of variables) typically O(|S|)
- state space S gets very large in practice
- Two main classes of solution methods:
 - direct methods compute exact solutions in fixed number of steps, e.g. Gaussian elimination, L/U decomposition
 - iterative methods, e.g. Power, Jacobi, Gauss-Seidel, ...
 - the latter are preferred in practice due to scalability

• General form:
$$\mathbf{A} \cdot \mathbf{\underline{x}} = \mathbf{\underline{b}}$$

General form:
$$\mathbf{A} \cdot \underline{\mathbf{x}} = \underline{\mathbf{b}}$$
 $|S|-1$
- indexed over integers, $\sum_{j=0}^{|S|-1} \mathbf{A}(i,j) \cdot \underline{x}(j) = \underline{b}(i)$
- i.e. assume $\mathbf{S} = \{\ 0,1,...,|\mathbf{S}|-1\ \}$

PCTL model checking – Summary

- Computation of set Sat(Φ) for DTMC D and PCTL formula Φ
 - recursive descent of parse tree
 - combination of graph algorithms, numerical computation
- Probabilistic operator P:
 - $X \Phi$: one matrix-vector multiplication, $O(|S|^2)$
 - $-\Phi_1 U^{\leq k} \Phi_2$: k matrix-vector multiplications, $O(k|S|^2)$
 - $-\Phi_1 \cup \Phi_2$: linear equation system, at most |S| variables, $O(|S|^3)$
- Complexity:
 - linear in $|\Phi|$ and polynomial in |S|

Limitations of PCTL

- PCTL, although useful in practice, has limited expressivity
 - essentially: probability of reaching states in X, passing only through states in Y (and within k time-steps)
- More expressive logics can be used, for example:
 - LTL [Pnu77] (non-probabilistic) linear-time temporal logic
 - PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL
 - both allow path operators to be combined
 - (in PCTL, $P_{\sim p}$ [...] always contains a single temporal operator)
 - supported by PRISM
 - (not covered in this lecture)
- Another direction: extend DTMCs with costs and rewards...

Costs and rewards

- We augment DTMCs with rewards (or, conversely, costs)
 - real-valued quantities assigned to states and/or transitions
 - these can have a wide range of possible interpretations
- Some examples:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...
- Costs? or rewards?
 - mathematically, no distinction between rewards and costs
 - when interpreted, we assume that it is desirable to minimise costs and to maximise rewards
 - we will consistently use the terminology "rewards" regardless

Reward-based properties

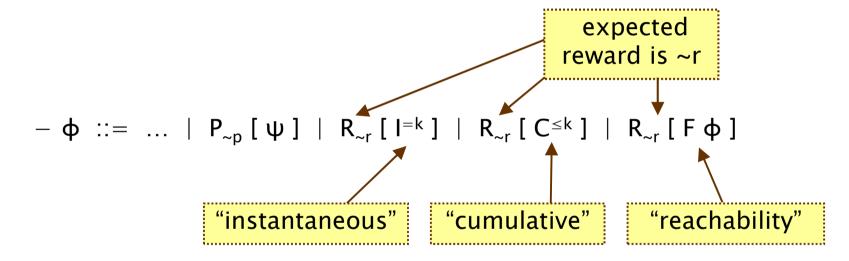
- Properties of DTMCs augmented with rewards
 - allow a wide range of quantitative measures of the system
 - basic notion: expected value of rewards
 - formal property specifications will be in an extension of PCTL
- More precisely, we use two distinct classes of property...
- Instantaneous properties
 - the expected value of the reward at some time point
- Cumulative properties
 - the expected cumulated reward over some period

DTMC reward structures

- For a DTMC (S, s_{init} , P,L), a reward structure is a pair (ρ , ι)
 - $-\underline{\rho}:S\to\mathbb{R}_{\geq 0}$ is the state reward function (vector)
 - ι : S × S → $\mathbb{R}_{\geq 0}$ is the transition reward function (matrix)
- Example (for use with instantaneous properties)
 - "size of message queue": $\underline{\rho}$ maps each state to the number of jobs in the queue in that state, ι is not used
- Examples (for use with cumulative properties)
 - "time-steps": $\underline{\rho}$ returns 1 for all states and ι is zero (equivalently, $\underline{\rho}$ is zero and ι returns 1 for all transitions)
 - "number of messages lost": $\underline{\rho}$ is zero and ι maps transitions corresponding to a message loss to 1
 - "power consumption": $\underline{\rho}$ is defined as the per-time-step energy consumption in each state and ι as the energy cost of each transition

PCTL and rewards

- Extend PCTL to incorporate reward-based properties
 - add an R operator, which is similar to the existing P operator



- where $r \in \mathbb{R}_{\geq 0}$, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
- R_{r} [•] means "the expected value of satisfies ~r"

Types of reward formulas

- Instantaneous: R_{~r} [I^{=k}]
 - "the expected value of the state reward at time-step k is ~r"
 - e.g. "the expected queue size after exactly 90 seconds"
- Cumulative: $R_{r} [C^{\leq k}]$
 - "the expected reward cumulated up to time-step k is ~r"
 - e.g. "the expected power consumption over one hour"
- Reachability: R_{~r} [F φ]
 - "the expected reward cumulated before reaching a state satisfying φ is ~r"
 - e.g. "the expected time for the algorithm to terminate"

Reward formula semantics

- Formal semantics of the three reward operators
 - based on random variables over (infinite) paths
- Recall:

$$-s \models P_{\sim p} [\psi] \Leftrightarrow Pr_s \{ \omega \in Path(s) \mid \omega \models \psi \} \sim p$$

• For a state s in the DTMC (see [KNP07a] for full definition):

$$-s \models R_{\sim r} [I^{=k}] \Leftrightarrow Exp(s, X_{l=k}) \sim r$$

$$- s \models R_{\sim r} [C^{\leq k}] \Leftrightarrow Exp(s, X_{C \leq k}) \sim r$$

$$- s \models R_{\sim r} [F \Phi] \Leftrightarrow Exp(s, X_{F\Phi}) \sim r$$

where: Exp(s, X) denotes the expectation of the random variable

X : Path(s) $\rightarrow \mathbb{R}_{\geq 0}$ with respect to the probability measure Pr_s

Reward formula semantics

Definition of random variables:

- for an infinite path $\omega = s_0 s_1 s_2 ...$

$$X_{l=k}(\omega) = \rho(s_k)$$

$$X_{C \le k}(\omega) \ = \left\{ \begin{array}{cc} 0 & \text{if } k = 0 \\ \sum_{i=0}^{k-1} \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise} \end{array} \right.$$

$$X_{F\varphi}(\omega) = \begin{cases} 0 & \text{if } s_0 \in Sat(\varphi) \\ \infty & \text{if } s_i \notin Sat(\varphi) \text{ for all } i \ge 0 \end{cases}$$
$$\sum_{i=0}^{k_{\varphi}-1} \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise}$$

- where $k_{\varphi} = \min\{ j \mid s_{j} \models \varphi \}$

Model checking reward properties

- Instantaneous: $R_{\sim r}$ [$I^{=k}$]
- Cumulative: $R_{\sim r}$ [$C^{\leq k}$]
 - variant of the method for computing bounded until probabilities
 - solution of recursive equations
- Reachability: R_{~r} [F φ]
 - similar to computing until probabilities
 - precomputation phase (identify infinite reward states)
 - then reduces to solving a system of linear equation
- For more details, see e.g. [KNP07a]
 - complexity not increased wrt classical PCTL

Overview (Part 1)

- Probability basics
- Model checking for discrete-time Markov chains (DTMCs)
 - DTMCs: definition, paths & probability spaces
 - PCTL model checking
 - Costs and rewards
- A glimpse of model checking for continuous-time Markov chains (CTMCs)
- Case studies
 - Bluetooth device discovery
 - Power management
- PRISM developments: parametric model checking
- Summary

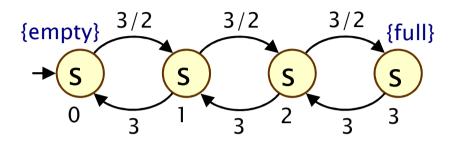
Continuous-time Markov chains

- Continuous-time Markov chains (CTMCs)
 - labelled transition systems augmented with rates
 - discrete states, continuous time-steps
 - delays exponentially distributed
- Formally, a CTMC C is a tuple (S,s_{init},R,L) where:
 - S is a finite set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - R : S × S → $\mathbb{R}_{\geq 0}$ is the transition rate matrix
 - $-L:S \rightarrow 2^{AP}$ is a labelling with atomic propositions
- Transition rates
 - transition between s and s' when R(s,s')>0
 - probability triggered before t time units $1 e^{-R(s,s') \cdot t}$

Simple CTMC example

$$C = (S, s_{init}, R, L)$$

 $S = \{s_0, s_1, s_2, s_3\}$
 $s_{init} = s_0$



AP = {empty, full}

 $L(s_0) = \{empty\} L(s_1) = L(s_2) = \emptyset \text{ and } L(s_3) = \{full\}$

$$\mathbf{R} = \begin{bmatrix} 0 & 3/2 & 0 & 0 \\ 3 & 0 & 3/2 & 0 \\ 0 & 3 & 0 & 3/2 \\ 0 & 0 & 3 & 0 \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} 0 & 3/2 & 0 & 0 \\ 3 & 0 & 3/2 & 0 \\ 0 & 3 & 0 & 3/2 \\ 0 & 0 & 3 & 0 \end{bmatrix} \qquad \mathbf{Q} = \begin{bmatrix} -3/2 & 3/2 & 0 & 0 \\ 3 & -9/2 & 3/2 & 0 \\ 0 & 3 & -9/2 & 3/2 \\ 0 & 0 & 3 & -3 \end{bmatrix}$$

transition rate matrix

infinitesimal generator matrix

Transient and steady-state behaviour

Transient behaviour

- state of the model at a particular time instant
- $-\frac{\pi_{s,t}(s')}{state}$ is probability of, having started in state s, being in state s' at time t
- $-\ \underline{\pi}_{s,t}(s') = \text{Pr}_s \{\ \omega \in \text{Path}(s) \mid \omega @ t = s'\ \}$

Steady-state behaviour

- state of the model in the long-run
- $-\frac{\pi_s}{s'}$ is probability of, having started in state s, being in state s' in the long run
- $-\underline{\pi}_{s}(s') = \lim_{t\to\infty} \underline{\pi}_{s,t}(s')$
- the percentage of time, in long run, spent in each state
- Can compute these numerically, from rates matrix R
 - e.g. embedded/uniformised DTMC

Temporal logic CSL

- CSL Continuous Stochastic Logic
- Similar to PCTL, except real-valued time
 - $-P_{=?}$ [$F^{[4,5.6]}$ outOfPower] the (transient) probability of being out of power in time interval of 4 to 5.6 time units
 - S_{=?} [minQoS] the steady-state probability of satisfying minimum QoS
 - $-R_{<10}$ [$C^{\leq 5}$] cumulated reward up to time 5 is less than 10
- Model checking proceeds essentially via discretisation...
 - discretise CTMC to obtain DTMC (embedded, uniformised)
 - combine with graph-theoretical analysis

PRISM - Case studies

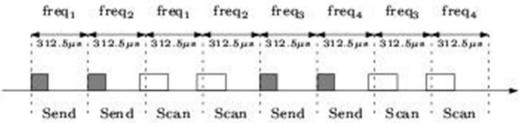
- Randomised distributed algorithms
 - consensus, leader election, self-stabilisation, ...
- Randomised communication protocols
 - Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, ...
- Security protocols/systems
 - contract signing, anonymity, pin cracking, quantum crypto, ...
- Biological systems
 - cell signalling pathways, DNA computation, ...
- Planning & controller synthesis
 - robotics, dynamic power management, ...
- Performance & reliability
 - nanotechnology, cloud computing, manufacturing systems, ...
- See: <u>www.prismmodelchecker.org/casestudies</u>

Case study: Bluetooth device discovery

- Bluetooth: short-range low-power wireless protocol
 - widely available in phones, PDAs, laptops, ...
 - open standard, specification freely available
- Uses frequency hopping scheme
 - to avoid interference (uses unregulated 2.4GHz band)
 - pseudo-random selection over 32 of 79 frequencies
- Formation of personal area networks (PANs)
 - piconets (1 master, up to 7 slaves)
 - self-configuring: devices discover themselves
- Device discovery
 - mandatory first step before any communication possible
 - relatively high power consumption so performance is crucial
 - master looks for devices, slaves listens for master

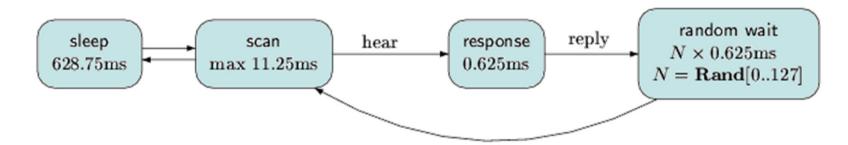
Master (sender) behaviour

- 28 bit free-running clock CLK, ticks every 312.5µs
- Frequency hopping sequence determined by clock:
 - freq = $[CLK_{16-12}+k+(CLK_{4-2,0}-CLK_{16-12}) \mod 16] \mod 32$
 - 2 trains of 16 frequencies (determined by offset k),
 128 times each, swap between every 2.56s
- Broadcasts "inquiry packets" on two consecutive frequencies, then listens on the same two



Slave (receiver) behaviour

- Listens (scans) on frequencies for inquiry packets
 - must listen on right frequency at right time
 - cycles through frequency sequence at much slower speed (every 1.28s)



- On hearing packet, pause, send reply and then wait for a random delay before listening for subsequent packets
 - avoid repeated collisions with other slaves

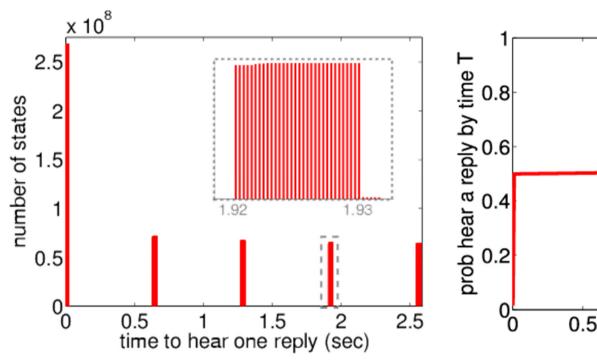
Bluetooth - PRISM model

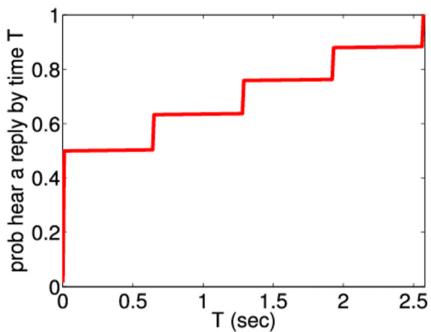
- Modelled/analysed using PRISM model checker [DKNP06]
 - model scenario with one sender and one receiver
 - synchronous (clock speed defined by Bluetooth spec)
 - model at lowest-level (one clock-tick = one transition)
 - randomised behaviour so model as a DTMC
 - use real values for delays, etc. from Bluetooth spec
- Modelling challenges
 - complex interaction between sender/receiver
 - combination of short/long time-scales cannot scale down
 - sender/receiver not initially synchronised, so huge number of possible initial configurations (17,179,869,184)

Bluetooth - Results

- Huge DTMC initially, model checking infeasible
 - partition into 32 scenarios, i.e. 32 separate DTMCs
 - on average, approx. 3.4×10^9 states (536,870,912 initial)
 - can be built/analysed with PRISM's MTBDD engine
- We compute:
 - R=? [F replies=K {"init"}{max}]
 - "worst-case expected time to hear K replies over all possible initial configurations"
- Also look at:
 - how many initial states for each possible expected time
 - cumulative distribution function (CDF) for time, assuming equal probability for each initial state

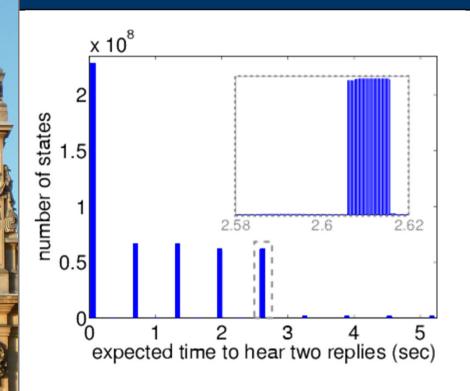
Bluetooth - Time to hear 1 reply

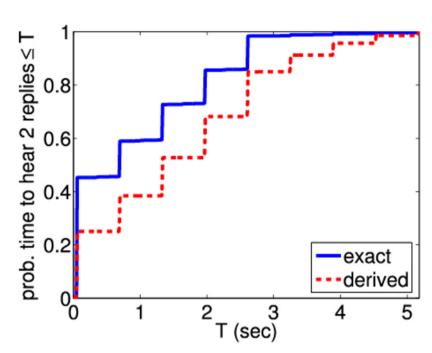




- Worst-case expected time = 2.5716 sec
 - in 921,600 possible initial states
 - best-case = 635 μ s

Bluetooth - Time to hear 2 replies





- Worst-case expected time = 5.177 sec
 - in 444 possible initial states
 - compare actual CDF with derived version which assumes times to reply to first/second messages are independent

Case study: Power management

Power management

- controls power consumption in battery-operated devices
- savings in power usage translate to extended battery life
- important for portable, mobile and handheld electronic devices

System level power management

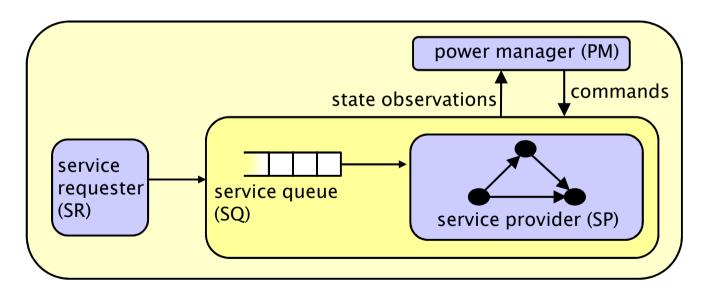
- manages various system devices for power optimisation
- system components manufactured with several power modes
- e.g. disk drive has: active, idle, standby, sleep, ...
- modes can be changed by the operating system through APIs
- exploits application characteristics
- needs to be implemented at the O/S level

Dynamic Power Management (DPM)

- DPM make optimal decisions at runtime based on:
 - dynamically changing system state
 - workload
 - performance constraints
- Stochastic optimal control strategies for DPM
 - construct a mathematical model of the system in PRISM
 - transition times modelled with exponential distributions
 - formulate stochastic optimisation problems
 e.g. "optimise av. energy usage while av. delay below k"
 - create stochastic strategies by solving optimisation problem (exported to Maple for solution externally)
 - analyse strategies in PRISM

DPM – The system model

- Service requester (generates the service requests)
- Service provider (provides service to the requests)
- Service queue (buffers the requests)
- Power manager (monitors the states of the SP and SQ and issues state-transition commands to the SP)



Fujitsu disk drive - The PRISM model

- 4 state Fujitsu disk drive: busy, idle, standby and sleep
- Policies:
 - minimize the average power consumption
 - constraint on the average queue size
- Reward structure "power" (power consumption)
 - state rewards: the av. power consumption of SP in the state
 - transition rewards: energy consumed when SP changes state
- Reward structure "queue" (queue size)
 - state rewards: current size of the queue
- Reward structure "lost" (lost requests)
 - transition rewards: assign 1 to transitions representing the arrival of a request in a state where the queue is full

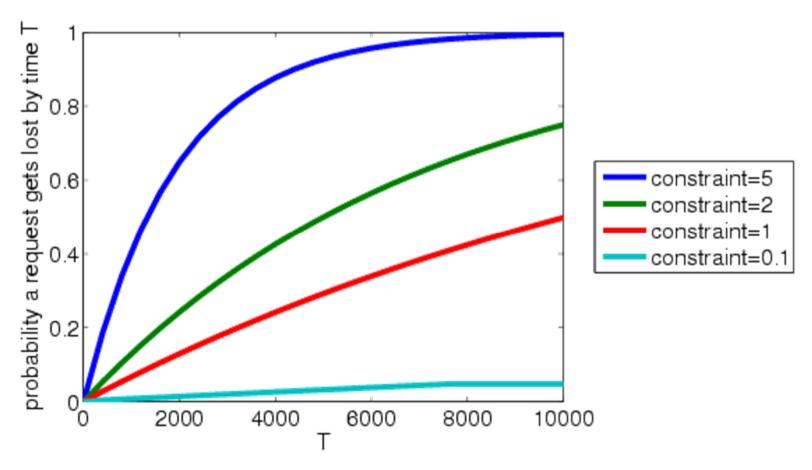
Fujitsu disk drive – Properties

- Probability that queue size becomes ≥ M by time t
 - $P_{=?}[F^{\leq t} (q \geq M)]$
- Probability that at least M requests get lost by time t
 - $-P_{=1}[F^{\leq t} (lost \geq M)]$
- Expected queue size at time t
 - $-R_{\{\text{"queue"}\}=?}[I^{=t}]$
- Expected power consumption by time t
 - $R_{\{\text{"power"}\}=?}[C^{\leq t}]$
- Long run average number of requests lost
 - $-R_{\{\text{"lost"}\}=?}[S]$

Fujitsu disk drive – PRISM results

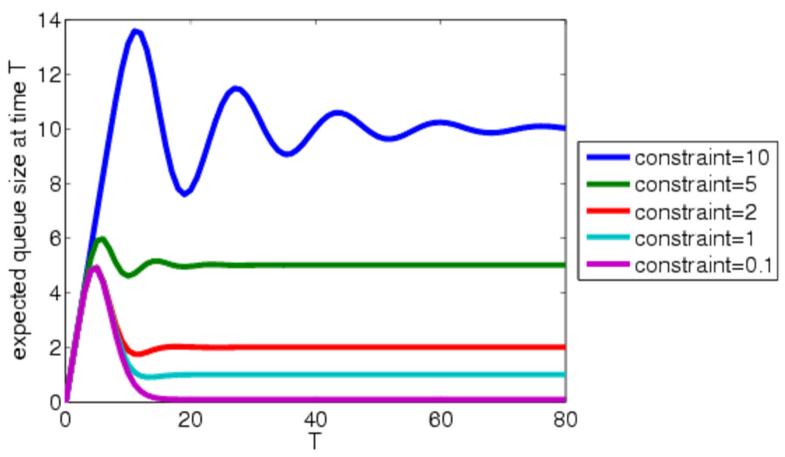
• Probability M requests lost by time t $P_{=?}[F^{\leq t} (lost \geq M)]$

$$P_{=?}[F^{\leq t} (lost \geq M)]$$



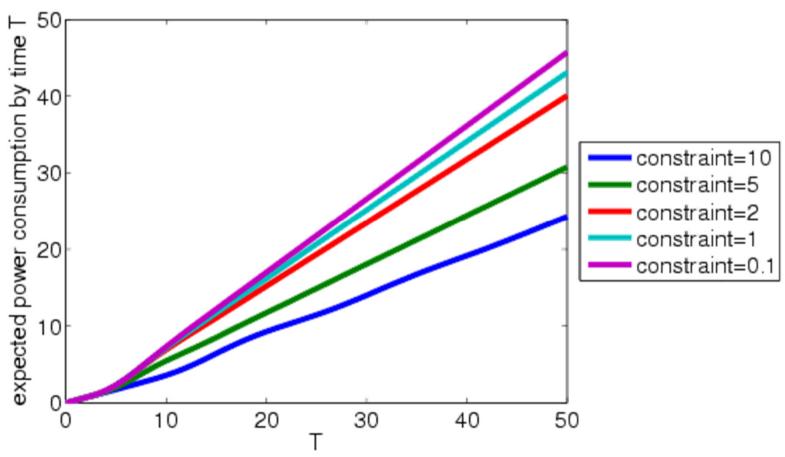
Fujitsu disk drive – PRISM results

• Expected queue size at time t $R_{\{\text{"queue"}\}=?}[I^{=t}]$



Fujitsu disk drive – PRISM results

• Expected power consumption by time t $R_{\{\text{"power"}\}=?}[C^{\leq t}]$



PRISM: Recent & new developments

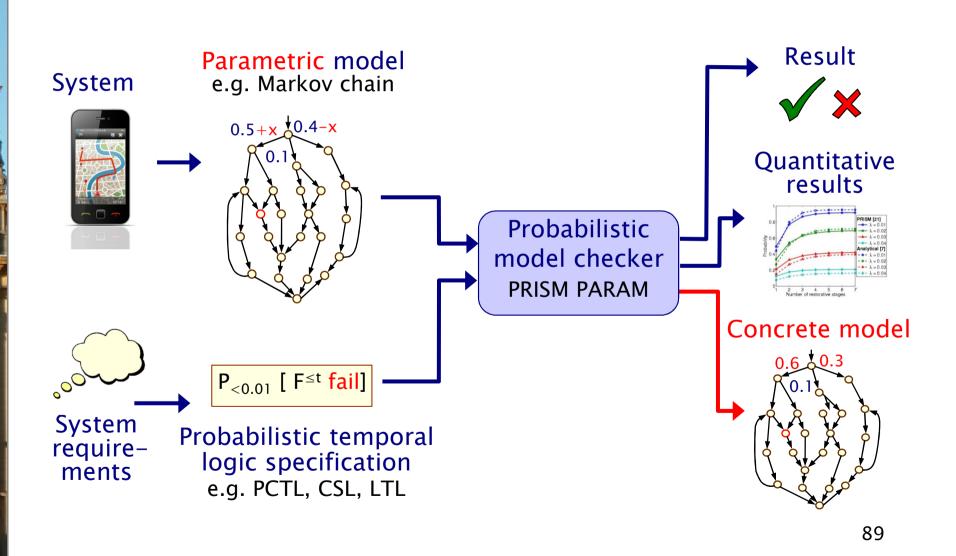
New features:

- 1. parametric model checking
- 2. parameter synthesis
- 3. strategy synthesis
- 4. stochastic multi-player games
- 5. real-time: probabilistic timed automata (PTAs)

Further new additions:

- enhanced statistical model checking
 (approximations + confidence intervals, acceptance sampling)
- efficient CTMC model checking (fast adaptive uniformisation)
- benchmark suite & testing functionality
- www.prismmodelchecker.org
- Beyond PRISM...

Parametric model checking and synthesis



Parametric model checking in PRISM

- Parametric Markov chain models in PRISM
 - probabilistic parameters expressed as unevaluated constants
 - e.g. const double x;
 - transition probabilities are expressions over parameters,
 e.g. 0.4 + x
- Properties are given in PCTL, with parameter constants
 - new construct constfilter (min, x1*x2, phi)
 - filters over parameter values, rather than states
- Implemented in 'explicit' engine
 - returns mapping from parameter regions (e.g. [0.2,0.3],[-2,0])
 to rational functions over the parameters
 - filter properties used to find parameter values that optimise the function
 - reimplementation of PARAM 2.0 [Hahn et al]

Parameter synthesis

- Find optimal parameter value given a parametric model and PCTL/CSL property
 - parametric probabilities and rates
- Techniques
 - discretisation and integer parameters
 - constraint solving, including parametric symbolic constraints
 - iterative refinement to improve accuracy
 - sampling to improve efficiency
 - but scalability is still the biggest challenge
- Implementation
 - using tool combination involving Z3, python, PRISM

Summary (Part 1)

- Discrete-time Markov chains (DTMCs)
 - state transition systems + discrete probabilistic choice
 - probability space over paths through a DTMC
- Property specifications
 - probabilistic extensions of temporal logic, e.g. PCTL, LTL
 - also: expected value of costs/rewards
- Model checking algorithms
 - combination of graph-based algorithms, numerical computation, automata constructions
 - also applicable to continuous-time Markov chains via discretisation
- Case studies: Bluetooth and Power management
- Next: Markov decision processes (MDPs)