Probabilistic verification and synthesis

Marta Kwiatkowska
Department of Computer Science, University of Oxford

KTH, Stockholm, August 2015
What is probabilistic verification?

- **Probabilistic verification** (aka probabilistic/quantitative model checking)...
 - is a *formal verification* technique for modelling and analysing systems that exhibit *probabilistic* behaviour

- **Formal verification**...
 - is the application of rigorous, mathematics-based techniques to establish the correctness of computerised systems

- **Synthesis**...
 - is an automatic method to generate system components that are *correct-by-construction*
“Testing can only show the presence of errors, not their absence.”

To rule out errors need to consider **all possible executions** often not feasible mechanically!
 – need formal verification…

“In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, computers are without precedent in the cultural history of mankind.”

Edsger Dijkstra
1930–2002
But my program works!

- True, there are many successful large-scale complex computer systems...
 - online banking, electronic commerce
 - information services, online libraries, business processes
 - supply chain management
 - mobile phone networks

- Yet many new potential application domains with far greater complexity and higher expectations
 - autonomous driving, self-parking cars
 - medical sensors: heart rate & blood pressure monitors
 - intelligent buildings and spaces, environmental sensors

- Learning from mistakes costly...
The NASA Mars space mission

Mars Climate Orbiter
Launched 11th December 1998

LOST 23rd September 1999
Conversion error from English units to metric in navigation software
Cost: $125 million

Source: http://mars.jpl.nasa.gov/msp98/

Mars Polar Lander
Launched 3rd January 1999

LOST 3rd December 1999
Engine shutdown due to spurious signals that gave false indication that spacecraft had landed

Cost: $125 million
Infusion pumps

F.D.A. Steps Up Oversight of Infusion Pumps

Over the last five years, [...] 710 patient deaths linked to problems with the devices.
Some of those deaths involved patients who suffered drug overdoses accidentally, either because of incorrect dosage entered or because the device’s software malfunctioned.
Manufacturers [...] issued 79 recalls, among the highest for any medical device.

Pump producers now typically conduct ‘simulated’ testing of its devices by users.

Source: http://www.nytimes.com/2010/04/24/business/24pump.html?_r=0
Cardiac pacemakers

• The Food and Drug Administration (FDA)
 – issued 23 recalls of defective pacemaker devices during the first half of 2010
 – classified as “Class I,” meaning there is “reasonable probability that use of these products will cause serious adverse health consequences or death”
 – six of those due to software defects

• “Killed by code” report
 – many similar medical devices
 – wireless, implantable, e.g. glucose monitors

Source: https://www.softwarefreedom.org/resources/2010/transparent-medical-devices.html
Toyota

- **February 2010**
 - unintended acceleration
 - resulted in deaths

- **Engine Control Module**
 - source code found **defective**
 - no mirroring: stack overflow, recursion was used

- “**Killed by firmware**”
 - millions of cars recalled, at huge cost
 - handling of the incident prompted much criticism, bad publicity
 - fined $1.2 billion for concealing safety defects

What do these stories have in common?

• Programmable computing devices
 – conventional computers and networks
 – software embedded in devices
 • airbag controllers, mobile phones, medical devices, etc
• Programming error direct cause of failure

• Software critical
 – for safety
 – for business
 – for performance
• High costs incurred: not just financial

• Failures avoidable…
Automatic verification

- **Formal verification...**
 - the application of rigorous, mathematics-based techniques to establish the correctness of computerised systems
 - essentially: proving that a program satisfies its specification
 - many techniques: manual proof, automated theorem proving, static analysis, model checking, ...

- **Automatic verification =**
 - mechanical, push-button technology
 - performed without human intervention

\[10^{500,000} \text{ states} \quad 10^{70} \text{ atoms}\]
Verification via model checking

- System
- Finite-state model
- Temporal logic specification
- ¬EF fail
- Model checker e.g. SMV, Spin

Result
- ✔
- ✗
- Counter-example
Verification… or falsification?

• More value in showing **property violation**?
 – model checkers used as **debugging** tool!
 – can we **synthesise** directly from specification?

• **Widely accepted in industrial practice**
 – Intel, Cadence, Bell Labs, IBM, Microsoft, ...

• **Many software tools, including commercial**
 – CProver/CBMC, NuSMV, FDR2, UPPAAL, ...
 – hardware design, protocols, software, ...

Much progress since 1981! But...
New challenges for verification

- Devices, ever smaller
 - laptops, phones, sensors…

- Networking, wireless, wired & global
 - wireless & internet everywhere

- New design and engineering challenges
 - adaptive computing,
 ubiquitous/pervasive computing,
 context-aware systems
 - DNA computing and biosensing
 - trade-offs between e.g. performance,
 security, power usage, battery life, …
New challenges for verification

• Many properties other than correctness are important
• Need to guarantee…
 – safety, reliability, performance, dependability
 – resource usage, e.g. battery life
 – security, privacy, trust, anonymity, fairness
 – and much more…

• Quantitative, as well as qualitative requirements:
 – “how reliable is my car’s Bluetooth network?”
 – “how efficient is my phone’s power management policy?”
 – “how secure is my bank’s web-service?”

• This course: probabilistic verification and synthesis
Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms
 – as a symmetry breaker, in gossip routing to reduce flooding

• Examples: real–world protocols featuring randomisation:
 – Randomised back–off schemes
 • CSMA protocol, 802.11 Wireless LAN
 – Random choice of waiting time
 • IEEE1394 Firewire (root contention), Bluetooth (device discovery)
 – Random choice over a set of possible addresses
 • IPv4 Zeroconf dynamic configuration (link–local addressing)
 – Randomised algorithms for anonymity, contract signing, …
Why probability?

- Some systems are inherently probabilistic...

- Randomisation, e.g. in distributed coordination algorithms
 - as a symmetry breaker, in gossip routing to reduce flooding

- To model uncertainty and performance
 - to quantify rate of failures, express Quality of Service

- Examples:
 - computer networks, embedded systems
 - power management policies
 - nano-scale circuitry: reliability through defect-tolerance
Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms
 – as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance
 – to quantify rate of failures, express Quality of Service

• To model biological processes
 – reactions occurring between large numbers of molecules are naturally modelled in a stochastic fashion
Probabilistic model checking

- System
 - e.g. Markov chain
- Probabilistic model
- Probabilistic model checker e.g. PRISM
- Result
- Quantitative results
- Counter-example

- System requirements
- Probability
 - $P_{<0.1}[F \text{ fail}]$
- Probabilistic temporal logic specification
 - e.g. PCTL, CSL, LTL
Probabilistic models

<table>
<thead>
<tr>
<th>Discrete time</th>
<th>Continuous time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully probabilistic</td>
<td>Nondeterministic</td>
</tr>
<tr>
<td>Discrete-time Markov chains (DTMCs)</td>
<td>Markov decision processes (MDPs)</td>
</tr>
<tr>
<td>Continuous-time Markov chains (CTMCs)</td>
<td>Simple stochastic games (SMGs)</td>
</tr>
<tr>
<td></td>
<td>Probabilistic timed automata (PTAs)</td>
</tr>
<tr>
<td></td>
<td>Interactive Markov chains (IMCs)</td>
</tr>
</tbody>
</table>
Probabilistic models

<table>
<thead>
<tr>
<th>Discrete time</th>
<th>Fully probabilistic</th>
<th>Nondeterministic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Discrete-time Markov chains (DTMCs)</td>
<td>Markov decision processes (MDPs)</td>
</tr>
<tr>
<td></td>
<td>Continuous-time Markov chains (CTMCs)</td>
<td>Simple stochastic games (SMGs)</td>
</tr>
<tr>
<td>Continuous time</td>
<td>Probabilistic timed automata (PTAs)</td>
<td>Interactive Markov chains (IMCs)</td>
</tr>
</tbody>
</table>

NB One can also consider continuous space…
Lecture plan

• Course slides and lab session
 – http://www.prismmodelchecker.org/courses/kth15/

• 5 sessions: lectures 9–12noon, labs 2.30–5pm
 – 1 – Introduction
 – 2 – Discrete time Markov chains (DTMCs)
 – 3 – Markov decision processes (MDPs)
 – 4 – LTL model checking for DTMCs/MDPs
 – 5 – Probabilistic timed automata (PTAs)

• For extended versions of this material
 – and an accompanying list of references
 – see: http://www.prismmodelchecker.org/lectures/
Course material

- **Reading**
 - [DTMCs/MDPs/LTL] Principles of Model Checking by Baier and Katoen, MIT Press 2008

- **See also PRISM website**
 - www.prismmodelchecker.org
Part 1

Introduction to model checking
Overview (Part 1)

- Introduction
- Transition systems
- Temporal logic
- Model checking
 - Reachability
 - CTL model checking
- PRISM: overview
 - Probability example
 - Modelling language
 - Properties
 - GUI, etc
- Summary
Modelling reactive systems

- **Reactive systems**
 - keep interacting with their environment without terminating
 - e.g. protocols, operating systems, monitoring devices
 - termination is not relevant

- **Graphical notations based on automata**
 - based on finite–state automata (DFA, NFA) and formal languages, e.g. regular languages
 - usually no accepting state

- **System is modelled as**
 - states, i.e. snapshots of the system’s variables at some point in time
 - transitions, which cause state changes in response to stimuli
 - computation proceeds through invoking state changes from some initial state, possibly ad infinitum
Modelling with automata

• Simple light switch

• Automaton
 – usually finite state

• States
 – atomic propositions
 – values of variables

• Transitions
 – actions/commands
 – e.g. on/off button

• Properties
 – If light is Off, then sometime in future it is On
Modelling with probabilistic automata

• As automata except
 – add probability

• States
 – values of atomic propositions
 – can have clocks

• Transitions
 – actions, possibly guarded
 – probabilistic choice of target state

• Properties
 – If light is Faulty then with probability 1 it becomes ~Faulty
Transition systems

- A labelled transition system (LTS) is a tuple \(M = (S,s_{\text{init}},\alpha,T,L) \) where
 - \(S \) is a set of states ("state space")
 - \(s_{\text{init}} \in S \) is the initial state
 - \(\alpha \) is an alphabet of action labels
 - \(T \subseteq S \times \alpha \times S \) is the transition relation
 - \(L : S \to 2^{\text{AP}} \) is a labelling with atomic propositions

- Note
 - the state space is not necessarily finite
 - we sometimes omit state names or proposition labels
 - \(T \) is nondeterministic
 - since we model reactive systems, no accepting state
Example

- $S = \{1, 2, 3\}$
- $s_{init} = 1$
- $\alpha = \{\text{press, repair}\}$
- $T = \{(1, \text{press}, 2), (2, \text{press}, 1), (2, \text{press}, 3), (3, \text{repair}, 1)\}$
- $\text{AP} = \{\text{On, Faulty}\}$
- $L = \{1 \mapsto \{\}, 2 \mapsto \{\text{On}\}, 3 \mapsto \{\text{Faulty}\}\}$
Paths & execution runs

- A path ω of transition system $M = (S, s_{init}, \alpha, T, L)$ is a finite or infinite sequence of transitions $(s_i, a_i, s'_i) \in T$ such that, for all $i \geq 0$, $s'_i = s_{i+1}$
- Paths are denoted $s_0a_0s_1a_1 \ldots$
- Or, if transition labels are omitted, $s_0s_1s_2 \ldots$
- A path ω is a **partial execution run** if it starts in the initial state s_{init}
- An execution run is **complete** if it is maximal, i.e. cannot be extended (ends in a **deadlocking** state)
- Transition systems can be **unfolded** into execution trees
Executions and unfoldings

Execution runs

Execution tree
Reachability graph

- Let $M = (S, s_{\text{init}}, \alpha, T, L)$ be a finite transition system

- A state s is reachable if there exists an execution leading to s

- The reachable states are
 - $\text{Reach}(M) = \{s \in S \mid s \text{ is reachable}\}$

- The reachability graph is the subgraph of M obtained by restricting to $\text{Reach}(M)$
Reachability & invariance properties

- Given transition system $M = (S, s_{init}, \alpha, T, L)$ and set of states $Y \subseteq S$, define the following:

 - **Reachability**: is it possible to reach a state in Y?
 - Is $\text{Reach}(M) \cap Y \neq \emptyset$?
 - A witness is an execution leading to a state in Y

 - **Invariance**: is every reachable state of S also in Y?
 - Is $\text{Reach}(M) \subseteq Y$?
 - Y is an invariant for M

 - **Safety**: is a state in Y never reachable?
 - Is $\text{Reach}(M) \setminus Y = \emptyset$?
 - NB the dual of reachability – a witness for reachability of $\neg Y$ is an error trace for Y
Reachability analysis

- **Represent the graph in an appropriate data structure** – adjacency list
 - e.g. a list of states, each associated with a list of successors
 - memory optimisation possible, not discussed

- **Employ graph traversal** – traverse the graph one edge at a time
 - iterate computation of successors (forward)
 - iterate computation of predecessors (backward)

- **Known as enumerative or explicit state**
 - since states explored one at a time
 - **symbolic** analysis processes sets of states at a time
Backward safety checking

- Start from the set \(\sim Y \) of unsafe states
- Is it possible to reach an unsafe state from the initial state?
- Model finite-state, hence termination assured, but can visit unreachable states
- Can also generate witness
 - how?

Initial state
Temporal logic basics

• Temporal logic expresses statements about the temporal order of events
 – e.g. sent → F received
• Consider individual executions, i.e. infinite sequences of states
• Atomic propositions are elementary statements about states appearing in executions
 – e.g. true, ~Closed
• Boolean combinators
 – negation ¬
 – conjunction (∧), disjunction (∨), implication (→)
• Propositional formulas
 – built from atomic propositions and Boolean connectives
Unfold into executions or trees

Linear time

Branching time
Temporal combinators

• For linear time, a model is an infinite sequence

• The temporal combinators express statements about order of events along a sequence
 – X, next
 – F, future
 – G, always
 – U, until

• NB, each of these refers to a particular execution
Linear time temporal logic (LTL)

- For LTL, a **model** is an infinite state sequence
 \[\omega = s_0, s_1, s_2 \ldots \]

- **Temporal operators**
 - “Next-time”: \(X p \) at \(t \) iff \(p \) at \(t+1 \)
 \[
 \begin{array}{c|c|c|c|c|c|c|c}
 p & p & p & p & Xp & Xp & \ldots
 \end{array}
 \]
 - “Globally”: \(G p \) at \(t \) iff \(p \) for all \(t' \geq t \)
 \[
 \begin{array}{c|c|c|c|c|c|c|c|c|c|c}
 p & p & p & p & p & p & p & p & p & p & Gp & \ldots
 \end{array}
 \]
Temporal operators...

- "Future": \(F \ p \ at \ t \ iff \ p \ for \ some \ t' \geq t. \)

- "Until": \(p \ U \ q \ at \ t \ iff \)
 - \(q \ for \ some \ t' \geq t \) and
 - \(p \ occurs \ between \ (and \ incl.) \ t \ and \ (not \ incl.) \ t' \)

\[\begin{array}{cccccccc}
 p & p & p & p & p & p & p & p \\
\end{array} \]

\[F \ p... \]

\[\begin{array}{cccccccc}
 p & p & p & p & p & p & p & q \\
\end{array} \]

\[p \ U \ q... \]
Examples

• “p now and in the next two states”
 \[p \land Xp \land XXp \]
 \[\text{atomic prop}\]

• “no signal until light is on”
 \[\neg \text{signal } U \text{ on} \]
 \[\text{must occur}\]

• “if sent, then eventually received”
 \[G (\text{sent } \Rightarrow \text{F received}) \]
 \[\text{temporal operator}\]
Linear time temporal logic

- PLTL (Propositional Linear Time Logic)

- Models are infinite sequences of states $\omega = s_0, s_1, s_2, \ldots$

- LTL syntax (path formulae only)
 - $\psi ::= \text{true} \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi U \psi$
 - where $a \in AP$ is an atomic proposition

- Derived formulas
 - $F \phi \equiv \text{true} U \phi$
 - $G \phi \equiv \neg (F \neg \phi)$
• **LTL semantics (for a path \(\omega \))**

 - \(\omega \models \text{true} \) \quad always
 - \(\omega \models a \) \quad \iff a \in L(\omega(0))
 - \(\omega \models \psi_1 \land \psi_2 \) \quad \iff \(\omega \models \psi_1 \) and \(\omega \models \psi_2 \)
 - \(\omega \models \neg \psi \) \quad \iff \(\omega \not\models \psi \)
 - \(\omega \models X \psi \) \quad \iff \(\omega[1...] \models \psi \)
 - \(\omega \models \psi_1 \lor \psi_2 \) \quad \iff \(\exists k \geq 0 \text{ s.t. } \omega[k...] \models \psi_2 \land \forall i < k \omega[i...] \models \psi_1 \)

 where \(\omega(i) \) is \(i^{th} \) state of \(\omega \), and \(\omega[i...] \) is suffix starting at \(\omega(i) \)

• **How to define LTL for an LTS?**
Path quantifiers

- So far, the operators pertain to a single execution

- Branching time logics allow to quantify over paths possible from a given state

- Path quantifiers allow to express:
 - $A\psi$: all executions out of the state satisfy ψ
 - $E\psi$: there exists an execution satisfying ψ

- Path quantifiers and temporal operators often used in pairs, e.g.
 - $AG \neg$deadlock (invariant)
 - $EF p$ (reachability of p)

- Do not confuse A (all paths from the given state) with G (all states of the given path)
Linear vs branching time logic

F On
GF On

(Implied A for LTS)

AF On
AGF On

(state dependent)
Computation Tree Logic

- **Variants** CTL* (more expressive) and CTL (simpler and easier to model check)

- **CTL* composed from**
 - propositional logic
 - two types of formulas, state and path formulas
 - path formulas are as in LTL
 - state formulas allow quantification over paths
 - e.g. $A\psi$ for path formula ψ
 - arbitrary nesting

- **CTL is a syntactic restriction of CTL***
 - every operator F, G, X, U is preceded by A or E
CTL semantics

- Intuitive semantics:
 - of quantifiers (A/E) and temporal operators (F/G/U)
• **Semantics of state formulae:**

 - $s \models \phi$ denotes “s satisfies ϕ” or “ϕ is true in s”

• **For a state s of an LTS $M = (S, s_{init}, \alpha, T, L)$:**

 - $s \models \text{true}$ always
 - $s \models a$ \iff $a \in L(s)$
 - $s \models \phi_1 \land \phi_2$ \iff $s \models \phi_1$ and $s \models \phi_2$
 - $s \models \neg \phi$ \iff $s \not\models \phi$
 - $s \models A \psi$ \iff $\omega \models \psi$ for all $\omega \in \text{Path}(s)$
 - $s \models E \psi$ \iff $\omega \models \psi$ for some $\omega \in \text{Path}(s)$
• Semantics of path formulae:
 - $\omega \models \psi$ denotes “ω satisfies ψ” or “ψ is true along ω”

• For a path ω of an LTS ($S, s_{\text{init}}, \rightarrow, L$):
 - $\omega \models X \phi \iff \omega(1) \models \phi$
 - $\omega \models F \phi \iff \exists k \geq 0 \text{ s.t. } \omega(k) \models \phi$
 - $\omega \models G \phi \iff \forall i \geq 0 \omega(i) \models \phi$
 - $\omega \models \phi_1 U \phi_2 \iff \exists k \geq 0 \text{ s.t. } \omega(k) \models \phi_2 \text{ and } \forall i < k \omega(i) \models \phi_1$
• **Some examples of satisfying paths:**
 - $\omega_0 \models X \text{succ}$
 - $\{\text{try}\} \{\text{succ}\} \{\text{succ}\} \{\text{succ}\}$
 - ω_0: $s_1 \rightarrow s_3 \rightarrow s_3 \rightarrow s_3 \rightarrow \ldots$
 - $\omega_1 \models \neg\text{fail} \lor \text{succ}$
 - $\{\text{try}\} \{\text{try}\} \{\text{succ}\} \{\text{succ}\}$
 - ω_1: $s_0 \rightarrow s_1 \rightarrow s_1 \rightarrow s_3 \rightarrow s_3 \rightarrow \ldots$

• **Example CTL formulas:**
 - $s_1 \models \text{try} \land \neg\text{fail}$
 - $s_1 \models E[X \text{succ}]$ and $s_3 \models A[X \text{succ}]$
 - $s_0 \models E[\neg\text{fail} \lor \text{succ}]$ but $s_0 \not\models A[\neg\text{fail} \lor \text{succ}]$
CTL examples

• AG (¬(crit$_1$ ∧ crit$_2$))
 – mutual exclusion

• AG EF initial
 – for every computation, it is always possible to return to the initial state

• AG (request → AF response)
 – every request will eventually be granted

• AG AF crit$_1$ ∧ AG AF crit$_2$
 – each process has access to the critical section infinitely often
Expressiveness

- **LTL less expressive than CTL***
 - $\text{EF } \phi$ not LTL-expressible

- **CTL sublogic of CTL***
 - $\text{FG } \phi$ not CTL-expressible

- **LTL and CTL not comparable**
 - $\text{FG } \phi$ is LTL- but not CTL-expressible
 - $\text{EF } \phi$ is CTL- but not LTL-expressible
• **Given**
 – a finite-state labelled transition system \(M = (S, s_{\text{init}}, \alpha, T, L) \):
 - where \(\text{AP} \) are atomic propositions
 - \(L: S \rightarrow 2^{\text{AP}} \) is a labelling of states with propositions
 – and a CTL formula \(\phi \)

• **Find all states in** \(M \) **that satisfy** \(\phi \):
 \[
 \{ s \in S \mid M, s \models \phi \}
 \]
 and check that this set includes all initial states

• **Model checking much more efficient than LTL and CTL**
CTL model checking idea

- Convert formula to ENF
- Build parse tree of the formula

- Proceed recursively, bottom-up (from leaves upwards) labelling states for each subformula
 - if subformula is true in $s \in S$, add it to the set of labels for s
 - continue, going up the formula parse tree
 - stop when root of the parse tree is checked

- When the algorithm terminates
 - $M \models \phi$ iff the initial state is labelled with ϕ
Complexity

• **CTL model checking (EG is worst case)**
 – Partition the state space into strongly connected components (subgraphs where every state can reach every other state), \(O(|S| + |T|)\)
 – Traverse the transition graph, \(O(|S| + |T|)\)
 – Label for each subformula, \(|\phi|\) of them

• **The overall complexity is**
 \(O(|\phi| * (|S| + |T|))\)

• **In contrast, LTL/CTL* model checking**
 – is \(O(2^{|\phi|} * (|S| + |T|))\), i.e. exponential in size of formula (PSPACE)
 – Linear in size of model, as is CTL
 – Proceeds by automata–theoretic methods (product with the LTS)
Overview (Part 1)

• Introduction
• Transition systems
• Temporal logic
• Model checking
 – reachability
 – CTL model checking
• PRISM: overview
 – Probability example
 – Modelling language
 – Properties
 – GUI, etc
• Summary
• PRISM: Probabilistic symbolic model checker
 – developed at Birmingham/Oxford University, since 1999
 – free, open source software (GPL), runs on all major OSs

• Construction/analysis of probabilistic models…
 – discrete−time Markov chains, continuous−time Markov chains,
 Markov decision processes, probabilistic timed automata,
 stochastic multi−player games, …

• Simple but flexible high−level modelling language
 – based on guarded commands; see later…

• Many import/export options, tool connections
 – in: (Bio)PEPA, stochastic π−calculus, DSD, SBML, Petri nets, …
 – out: Matlab, MRMC, INFAMY, PARAM, …
• Model checking for various temporal logics…
 – probabilistic/reward extensions of CTL/CTL*/LTL
 – PCTL, CSL, LTL, PCTL*, rPATL, CTL, …

• Various efficient model checking engines and techniques
 – symbolic methods (binary decision diagrams and extensions)
 – explicit–state methods (sparse matrices, etc.)
 – statistical model checking (simulation–based approximations)
 – and more: symmetry reduction, quantitative abstraction refinement, fast adaptive uniformisation, …

• Graphical user interface
 – editors, simulator, experiments, graph plotting

• See: http://www.prismmodelchecker.org/
 – downloads, tutorials, case studies, papers, …
PRISM functionality

• High-level modelling language
• Wide range of model analysis methods
 – efficient symbolic implementation techniques
 – also: approximate verification using simulation + sampling
• Graphical user interface
 – model/property editor
 – discrete-event simulator – model traces for debugging, etc.
 – easy automation of verification experiments
 – graphical visualisation of results
• Command-line version
 – same underlying verification engines
 – useful for scripting, batch jobs
Overview of the probabilistic model checking process

- two distinct phases: model construction, model checking
Model construction

High-level model

PRISM language description

Model construction

Translation from high-level language

Reachability: building set of reachable states

Model

matrix manipulation

graph-based algorithm

DTMC, MDP or CTMC
PRISM modelling language

- Simple, textual, state-based language
 - modelling of DTMCs, CTMCs, MDPs, ...
 - based on Reactive Modules [AH99]

- Basic components...
- Modules:
 - components of system being modelled
 - composed in parallel
- Variables
 - finite (integer ranges or Booleans)
 - local or global
 - all variables public: anyone can read, only owner can modify
PRISM modelling language

- **Guarded commands**
 - describe behaviour of each module
 - i.e. the changes in state that can occur
 - labelled with probabilities (or, for CTMCs, rates)
 - (optional) action labels

\[
\text{[send]} (s=2) \rightarrow p_{\text{loss}} : (s'=3) \& (\text{lost}'=\text{lost}+1) + (1-p_{\text{loss}}) : (s'=4);
\]
PRISM modelling language

- **Parallel composition**
 - model multiple components that can execute independently
 - for DTMC models, mostly assume components operate synchronously, i.e. move in lock-step

- **Synchronisation**
 - simultaneous transitions in more than one module
 - guarded commands with matching action-labels
 - probability of combined transition is product of individual probabilities for each component

- **More complex parallel compositions can be defined**
 - using process-algebraic operators
 - other types of parallel composition, action hiding/renaming
Simple example

dtmc

module M1
 x : [0..3] init 0;
 [a] x=0 -> (x' =1);
 [b] x=1 -> 0.5 : (x' =2) + 0.5 : (x' =3);
endmodule

module M2
 y : [0..3] init 0;
 [a] y=0 -> (y' =1);
 [b] y=1 -> 0.4 : (y' =2) + 0.6 : (y' =3);
endmodule
Probability example

• Modelling a 6-sided die using a fair coin
 – algorithm due to Knuth/Yao:
 – start at 0, toss a coin
 – upper branch when H
 – lower branch when T
 – repeat until value chosen

• Is this algorithm correct?
 – e.g. probability of obtaining a 4?
 – obtain as disjoint union of events
 – THH, TTTTHH, TTTTTTHH, ...
 – Pr(“eventually 4”)
 \[= \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^5 + \left(\frac{1}{2}\right)^7 + \ldots = \frac{1}{6} \]
Example…

• **Other properties?**
 – “what is the probability of termination?”

• **e.g. efficiency?**
 – “what is the probability of needing more than 4 coin tosses?”
 – “on average, how many coin tosses are needed?”

• **Probabilistic model checking provides a framework for these kinds of properties…**
 – modelling languages
 – property specification languages
 – model checking algorithms, techniques and tools
dtmc
module die
// local state s : [0..7] init 0;
// value of the dice d : [0..6] init 0;
[] s=0 -> 0.5 : (s'=1) + 0.5 : (s'=2);
...
[] s=3 -
 0.5 : (s'=1) + 0.5 : (s'=7) & (d'=1);
[] s=4 -
 0.5 : (s'=7) & (d'=2) + 0.5 : (s'=7) & (d'=3);
...
[] s=7 -> (s'=7);
endmodule
rewards "coin_flips"
[] s<7 : 1;
endrewards

Given in PRISM’s guarded commands modelling notation
int s, d;
s = 0; d = 0;
while (s < 7) {
 bool coin = Bernoulli(0.5);
 if (s == 0)
 if (coin) s = 1 else s = 2;
 ...
 else if (s == 3)
 if (coin) s = 1 else {s = 7; d = 1;}
 else if (s == 4)
 if (coin) {s = 7; d = 2} else {s = 7; d = 3;}
 ...
} return (d)

Given as a probabilistic program
Costs and rewards

• We augment models with rewards (or, conversely, costs)
 – real-valued quantities assigned to states and/or transitions
 – these can have a wide range of possible interpretations

• Some examples:
 – elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...

• Costs? or rewards?
 – mathematically, no distinction between rewards and costs
 – when interpreted, we assume that it is desirable to minimise costs and to maximise rewards
 – we consistently use the terminology “rewards” regardless

• Properties (see later)
 – reason about expected cumulative/instantaneous reward
Rewards in the PRISM language

Rewards “total_queue_size”
true : queue1 + queue2;
endrewards

(instantaneous, state rewards)

Rewards “time”
true : 1;
endrewards

(cumulative, state rewards)

Rewards “dropped”
[receive] q = q_max : 1;
endrewards

(cumulative, transition rewards)
(q = queue size, q_max = max. queue size, receive = action label)

Rewards “power”
sleep = true : 0.25;
sleep = false : 1.2 * up;
[wake] true : 3.2;
endrewards

(cumulative, state/trans. rewards)
(up = num. operational components, wake = action label)
PRISM – Property specification

- Temporal logic–based property specification language
 - subsumes PCTL, CSL, probabilistic LTL, PCTL*, ...

- Simple examples:
 - $P_{\leq 0.01} [F \text{ “crash” }]$ – “the probability of a crash is at most 0.01”
 - $S_{>0.999} [\text{ “up” }]$ – “long–run probability of availability is >0.999”

- Usually focus on quantitative (numerical) properties:
 - $P_{=?} [F \text{ “crash” }]$
 “what is the probability of a crash occurring?”
 - then analyse trends in quantitative properties as system parameters vary
PRISM – Property specification

• Properties can combine numerical + exhaustive aspects
 – \(P_{\text{max}}=? [F \leq 10 \text{ “fail” }] \) – “worst-case probability of a failure occurring within 10 seconds, for any possible scheduling of system components”
 – \(P=? [G \leq 0.02 \text{ !“deploy” “crash”}{\text{max}}] \) – “the maximum probability of an airbag failing to deploy within 0.02s, from any possible crash scenario”

• Reward–based properties (rewards = costs = prices)
 – \(R_{\text{“time”}}=? [F \text{ “end” }] \) – “expected algorithm execution time”
 – \(R_{\text{“energy”}}\text{max}=? [C \leq 7200] \) – “worst-case expected energy consumption during the first 2 hours”

• Properties can be combined with e.g. arithmetic operators
 – e.g. \(P=? [F \text{ fail}_1] / P=? [F \text{ fail}_{\text{any}}] \) – “conditional failure prob.”
Experiments:
- ranges of model/property parameters
- e.g. $P = ? \ [F \leq T \ error]$ for $N=1..5$, $T=1..100$
 where N is some model parameter and T a time bound
- identify patterns, trends, anomalies in quantitative results
PRISM GUI: Editing a model
PRISM GUI: The Simulator
PRISM GUI: Model checking and graphs
• Randomised distributed algorithms
 – consensus, leader election, self-stabilisation, …
• Randomised communication protocols
 – Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, …
• Security protocols/systems
 – contract signing, anonymity, pin cracking, quantum crypto, …
• Biological systems
 – cell signalling pathways, DNA computation, …
• Planning & controller synthesis
 – robotics, dynamic power management, …
• Performance & reliability
 – nanotechnology, cloud computing, manufacturing systems, …

• See: www.prismmodelchecker.org/casestudies
Summary (Part 1)

• Introduced reactive systems
 – modelled by labelled transition systems
 – unfolded into execution paths or trees

• Property specifications
 – expressed in temporal logic, e.g. CTL, LTL

• Model checking algorithms
 – graph-based algorithms
 – automata constructions

• PRISM: Probabilistic Symbolic Model Checker

• Next: discrete-time Markov chains (DTMCs)