
Probabilistic model checking with PRISM

Marta Kwiatkowska

Department of Computer Science, University of Oxford

IMT, Lucca, May 2016

2

Lecture plan

• Course slides and lab session

− http://www.prismmodelchecker.org/courses/imt16/

• 3 sessions: lectures 9-11

− 1 – Discrete time Markov chains (DTMCs)

− 2 – Markov decision processes (MDPs)

− 3 – LTL model checking for DTMCs/MDPs

• For extended versions of this material

− and an accompanying list of references

− see: http://www.prismmodelchecker.org/lectures/

3

Probabilistic models

Discrete
time

Continuous
time

NondeterministicFully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)

Probabilistic timed
automata (PTAs)

Simple stochastic
games (SMGs)

Interactive Markov
chains (IMCs)

LTL Model Checking

Part 3

5

Overview (Part 3)

• Linear temporal logic (LTL)

• Strongly connected components

• ω-automata (Büchi, Rabin)

• LTL model checking for DTMCs

• LTL model checking for MDPs

• New developments and beyond PRISM

6

Limitations of PCTL

• PCTL, although useful in practice, has limited expressivity

− essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

• One useful approach: extend models with costs/rewards

− see slides for the last two lectures

• Another direction: Use more expressive logics. e.g.:

− LTL [Pnu77] – (non-probabilistic) linear-time temporal logic

− PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL

− both allow path operators to be combined

− (in PCTL, P~p […] always contains a single temporal operator)

7

LTL - Linear temporal logic

• LTL syntax (path formulae only)

− ψ ::= true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ

− where a ∈ AP is an atomic proposition

− usual equivalences hold: F φ ≡ true U φ, G φ ≡ ¬(F ¬φ)

• LTL semantics (for a path ω)

− ω ⊨ true always

− ω ⊨ a ⇔ a ∈ L(ω(0))

− ω ⊨ ψ1 ∧ ψ2 ⇔ ω ⊨ ψ1 and ω ⊨ ψ2

− ω ⊨ ¬ψ ⇔ ω ⊭ ψ

− ω ⊨ X ψ ⇔ ω[1…] ⊨ ψ

− ω ⊨ ψ1 U ψ2 ⇔ ∃k≥0 s.t. ω[k…] ⊨ ψ2 ∧∀i<k ω[i…] ⊨ ψ1

where ω(i) is ith state of ω, and ω[i…] is suffix starting at ω(i)

8

LTL examples

• (F tmp_fail1) ∧ (F tmp_fail2)

− “both servers suffer temporary failures at some point”

• GF ready

− “the server always eventually returns to a ready-state”

• FG error

− “an irrecoverable error occurs”

• G (req → X ack)

− “requests are always immediately acknowledged”

9

LTL for DTMCs

• Same idea as PCTL: probabilities of sets of path formulae

− for a state s of a DTMC and an LTL formula ψ:

− Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ }

− all such path sets are measurable [Var85]

• A (probabilistic) LTL specification often comprises
an LTL (path) formula and a probability bound

− e.g. P≥1 [GF ready] – “with probability 1, the server always
eventually returns to a ready-state”

− e.g. P≤0.01 [FG error] – “with probability at most 0.01, an
irrecoverable error occurs”

• PCTL* subsumes both LTL and PCTL

− e.g. P>0.5 [GF crit1] ∧ P>0.5 [GF crit2]

10

Long-run behaviour of DTMCs

k=2:

0.25
1 1

11

0.25

0.5

0.5

0.5

k=0:

0.25
1 1

11

0.25

0.5

0.5

0.5

k=1:

0.25
1 1

11

0.25

0.5

0.5

0.5

k=3:

0.25
1 1

11

0.25

0.5

0.5

0.5

11

Strongly connected components

• Long-run properties of DTMCs rely on an analysis of their
underlying graph structure (i.e. ignoring probabilities)

• Strongly connected set of states T

− for any pair of states s and s’ in T, there is a path from s to s’,
passing only through states in T

• Strongly connected component (SCC)

− a maximally strongly connected set of states
(i.e. no superset of it is also strongly connected)

• Bottom strongly connected component (BSCC)

− an SCC T from which no state outside T is reachable from T

12

Example - (B)SCCs

s0

0.25
1

s1 s2

s3 s4 s5

1

11

0.25

0.5

0.5

0.5

BSCC

BSCCBSCC

SCC

13

Fundamental property of DTMCs

• Fundamental property of (finite) DTMCs…

• With probability 1,
some BSCC will be reached
and all of its states
visited infinitely often

• Formally:

− Prs0 (s0s1s2… | ∃ i≥0, ∃ BSCC T such that
∀ j≥i sj ∈ T and
∀ s∈T sk = s for infinitely many k) = 1

s0

0.25
1

s1 s2

s3 s4 s5

1

11

0.25

0.5

0.5

0.5

14

LTL model checking for DTMCs

• LTL model checking for DTMCs relies on:

− computing the probability Prob(s, ψ) for LTL formula ψ

− reduces to probability of reaching a set of “accepting” BSCCs

− 2 simple cases: GF a and FG a…

• Prob(s, GF a) = Prob(s, F TGFa)

− where TGFa = union of all BSCCs
containing some state satisfying a

• Prob(s, FG a) = Prob(s, F TFGa)

− where TFGa = union of all BSCCs
containing only a-states

• To extend this idea to arbitrary
LTL formula, we use ω-automata…

s0

0.25
1

s1 s2

s3 s4 s5

1

11

0.25

0.5

0.5

0.5

Example:

Prob(s0, GF a)

= Prob(s0, F TGFa)

= Prob(s0, F {s3,s2,s5})

= 2/3 + 1/6 = 5/6

{a}

{a}

15

Overview (Part 3)

• Linear temporal logic (LTL)

• Strongly connected components

• ω-automata (Büchi, Rabin)

• LTL model checking for DTMCs

• LTL model checking for MDPs

• New developments and beyond PRISM

16

Reminder – Finite automata

• A regular language over alphabet Σ

− is a set of finite words L ⊆ Σ* such that either:

− L = L(E) for some regular expression E

− L = L(A) for some nondeterministic finite automaton (NFA) A

− L = L(A) for some deterministic finite automaton (DFA) A

• Example:

• NFAs and DFAs have the same expressive power

− we can always determinise an NFA to an equivalent DFA

− (with a possibly exponential blow-up in size)

q0

α

q1 q2

β

β
β

α

NFA A:Regexp: (α+β)*β(α+β)

17

Büchi automata

• ω-automata represent sets of infinite words L ⊆ Σω

− e.g. Büchi automata, Rabin automata, Streett, Muller, …

• A nondeterministic Büchi automaton (NBA) is…

− a tuple A = (Q, Σ, δ, Q0, F) where:

− Q is a finite set of states

− Σ is an alphabet

− δ : Q × Σ → 2Q is a transition function

− Q0 ⊆ Q is a set of initial states

− F ⊆ Q is a set of “accept” states

• NBA acceptance condition

− language L(A) for A contains w ∈ Σω if there is a corresponding
run in A that passes through states in F infinitely often

q0 q1

β

α

α

β

Example:
words w ∈ {α,β}ω

with infinitely many α

18

ω-regular properties

• Consider a model, i.e. an LTS/DTMC/MDP/…

− for example: DTMC D = (S, sinit, P, Lab)

− where labelling Lab uses atomic propositions from set AP

• We can capture properties of these using ω-automata

− let ω ∈ Path(s) be some infinite path in D

− trace(ω) ∈ (2AP)ω denotes the projection of state labels of ω

− i.e. trace(s0s1s2s3…) = Lab(s0)Lab(s1)Lab(s2)Lab(s3)…

− can specify a set of paths of D with an ω-automaton over 2AP

• Let ProbD(s, A) denote the probability…

− from state s in a discrete-time Markov chain D

− of satisfying the property specified by automaton A

− i.e. ProbD(s, A) = PrD
s{ ω ∈ Path(s) | trace(ω) ∈ L(A) }

19

Example

• Nondeterministic Büchi automaton

− for LTL formula FG a, i.e. “eventually always a”

− for a DTMC with atomic propositions AP = {a,b}

• We abbreviate this to just:

q0 q1

¬aa

atrue

q2

true

q0 q1

∅, {b}{a}, {a,b}

{a}, {a,b}∅, {a},
{b}, {a,b}

q2

∅, {a},
{b}, {a,b}

20

Büchi automata + LTL

• Nondeterministic Büchi automata (NBAs)

− define the set of ω-regular languages

• ω-regular languages are more expressive than LTL

− can convert any LTL formula ψ over atomic propositions AP

− into an equivalent NBA Aψ over 2AP

− i.e. ω ⊨ ψ ⇔ trace(ω) ∈ L(Aψ) for any path ω

− for LTL-to-NBA translation, see e.g. [VW94], [DGV99], [BK08]

− worst-case: exponential blow-up from |ψ| to |Aψ|

• But deterministic Büchi automata (DBAs) are less expressive

− e.g. there is no DBA for the LTL formula FG a

− for probabilistic model checking, need deterministic automata

− so we use deterministic Rabin automata (DRAs)

21

Deterministic Rabin automata

• A deterministic Rabin automaton is a tuple (Q, Σ, δ, q0, Acc):

− Q is a finite set of states, q0 ∈ Q is an initial state

− Σ is an alphabet, δ : Q × Σ → Q is a transition function

− Acc = { (Li, Ki) }i=1..k ⊆ 2Q × 2Q is an acceptance condition

• A run of a word on a DRA is accepting iff:

− for some pair (Li, Ki), the states in Li are visited finitely often
and (some of) the states in Ki are visited infinitely often

− or in LTL:

• Example: DRA for FG a

− acceptance condition is
Acc = { ({q0},{q1}) }

)KGFLFG(
iiki1

∧¬
≤≤

∨

q0

¬a

a

a

¬a

q1

22

LTL model checking for DTMCs

• LTL model checking for DTMC D and LTL formula ψ

• 1. Construct DRA Aψ for ψ

• 2. Construct product D ⊗ A of DTMC D and DRA Aψ

• 3. Compute ProbD(s, ψ) from DTMC D ⊗ A

• Running example:

− compute probability of
satisfying LTL formula
ψ = G¬b ∧ GF a on:

s1s0 s2

0.1
{b}

0.3

s4s3 s5

0.6 0.2
0.3

0.5

1

{a}

0.9

0.1

1

1

{a}

{a}

23

Example - DRA

• DRA Aψ for ψ = G¬b ∧ GF a

− acceptance condition is Acc = { ({},{q1}) }

− (i.e. this is actually a deterministic Büchi automaton)

q0 q1

¬a∧¬b

a∧¬b

a∧¬b

¬a∧¬b
q2

true

bb

If G¬b violated
(because we see a b),

end up stuck here

Need to visit here
infinitely often
to satisfy GF a

24

Product DTMC for a DRA

• We construct the product DTMC

− for DTMC D and DRA A, denoted D ⊗ A

− D ⊗ A can be seen as an unfolding of D with states (s,q),
where q records state of automaton A for path fragment so far

− since A is deterministic, D ⊗ A is a also a DTMC

− each path in D has a corresponding (unique) path in D ⊗ A

− the probabilities of paths in D are preserved in D ⊗ A

• Formally, for D = (S,sinit,P,L) and A = (Q,Σ,δ,q0, {(Li,Ki)}i=1..k)

− D ⊗ A is the DTMC (S×Q, (sinit,qinit), P’, L’) where:

− qinit = δ(q0,L(sinit))

−

− li ∈ L’(s,q) if q ∈ Li and ki ∈ L’(s,q) if q ∈ Ki



 =

=

otherwise0

))s(L,q(δq if)s,s(
))q,s(),q,s((' 21221

2211

P
P

25

Example – Product DTMC

Product DTMC D ⊗ Aψ

s0q0

s1s0 s2

0.1
{b}

0.3

s4s3 s5

0.6 0.2
0.3

0.5

1

{a}

0.9

0.1

1

1

{a}

{a}

DTMC D

q0 q1

¬a∧¬b

a∧¬b

a∧¬b

¬a∧¬b
q2

true

bb

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

s0 is initial
state of DTMC D

s0 satisfies neither a nor b
so we stay in q0 in DRA Aψ

26

Example – Product DTMC

s1q2

Product DTMC D ⊗ Aψ

0.1

0.3

0.6

s0q0

s3q1

s1s0 s2

0.1
{b}

0.3

s4s3 s5

0.6 0.2
0.3

0.5

1

{a}

0.9

0.1

1

1

{a}

{a}

DTMC D

q0 q1

¬a∧¬b

a∧¬b

a∧¬b

¬a∧¬b
q2

true

bb

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

s1 satisfies b so
we move to q2 in Aψ

s3 satisfies a but not b
so we move to q1 in Aψ

27

Example – Product DTMC

Product DTMC D ⊗ Aψ

s1s0 s2

0.1
{b}

0.3

s4s3 s5

0.6 0.2
0.3

0.5

1

{a}

0.9

0.1

1

1

{a}

{a}

DTMC D

q0 q1

¬a∧¬b

a∧¬b

a∧¬b

¬a∧¬b
q2

true

bb

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

s2q2s1q2

s3q2

0.1

0.3

0.6
0.2

0.3

0.5

1

0.9

0.1

1

1

s4q2

s0q0

{k1}

s5q2s3q1

1

1

s4q0

2 copies of s3/s4, one after
seeing a b and one no b’s

label states
satisfying

acceptance pair
(L1,K1)

28

Product DTMC for a DRA

• For DTMC D and DRA A

− where qs = δ(q0,L(s))

• Hence:

− where TAcc is the union of all accepting BSCCs in D⊗A

− an accepting BSCC T of D⊗A is such that, for some 1≤i≤k,
no states in T satisfy li and some state in T satisfies ki

• Reduces to computing BSCCs and reachability probabilities

ProbD(s, A) = ProbD⊗A((s,qs), F TAcc)

ProbD(s, A) = ProbD⊗A((s,qs), ∨1≤i≤k (FG ¬li ∧ GF ki)

29

Example: LTL for DTMCs

• Compute Prob(s0, G¬b ∧ GF a) for DTMC D:

s1s0 s2

0.1
{b}

0.3

s4s3 s5

0.6 0.2
0.3

0.5

1

{a}

0.9

0.1

1

1

{a}

{a}

DTMC D

q0 q1

¬a∧¬b

a∧¬b

a∧¬b

¬a∧¬b
q2

true

bb

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

30

Example: LTL for DTMCs

s2q2s1q2

s3q2

Product DTMC D ⊗ Aψ

0.1

0.3

0.6
0.2

0.3

0.5

1

0.9

0.1

1

1

s4q2

s0q0

{k1}

s5q2s3q1

1

1

s4q0

s1s0 s2

0.1
{b}

0.3

s4s3 s5

0.6 0.2
0.3

0.5

1

{a}

0.9

0.1

1

1

{a}

{a}

DTMC D

q0 q1

¬a∧¬b

a∧¬b

a∧¬b

¬a∧¬b
q2

true

bb

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

31

Example: LTL for DTMCs

s2q2s1q2

s3q2

Product DTMC D ⊗ Aψ

0.1

0.3

0.6
0.2

0.3

0.5

1

0.9

0.1

1

1

s4q2

s0q0

{k1}

s5q2s3q1

1

1

s4q0

s1s0 s2

0.1
{b}

0.3

s4s3 s5

0.6 0.2
0.3

0.5

1

{a}

0.9

0.1

1

1

{a}

{a}

DTMC D

q0 q1

¬a∧¬b

a∧¬b

a∧¬b

¬a∧¬b
q2

true

bb

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

ProbD(s0, ψ) = ProbD⊗Aψ (s0q0, F T1) = 3/4

T1 T2

T3

32

Complexity of LTL model checking

• Complexity of model checking LTL formula ψ on DTMC D

− is doubly exponential in |ψ| and polynomial in |D|

− (for the algorithm presented in these lectures)

• Double exponential blow-up comes from use of DRAs

− size of NBA can be exponential in |ψ|

− and DRA can be exponentially bigger than NBA

− in practice, this does not occur and ψ is small anyway

• Polynomial-time operations required on product model

− BSCC computation – linear in (product) model size

− probabilistic reachability – cubic in (product) model size

• In total: O(poly(|D|,|Aψ|))

• Complexity can be reduced to single exponential in |ψ|

− see e.g. [CY88,CY95]

33

PCTL* model checking

• PCTL* syntax:

− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ]

− ψ ::= φ | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ

• Example:

− P>p [GF (send → P>0 [F ack])]

• PCTL* model checking algorithm

− bottom-up traversal of parse tree for formula (like PCTL)

− to model check P~p [ψ]:

• replace maximal state subformulae with atomic propositions

• (state subformulae already model checked recursively)

• modified formula ψ is now an LTL formula

• which can be model checked as for LTL

34

Overview (Part 3)

• Linear temporal logic (LTL)

• Strongly connected components

• ω-automata (Büchi, Rabin)

• LTL model checking for DTMCs

• LTL model checking for MDPs

• New developments and beyond PRISM

35

End components in MDPs

• End components of MDPs
are the analogue of BSCCs in DTMCs

• An end component is a
strongly connected sub-MDP

• A sub-MDP comprises a subset
of states and a subset of the
actions/distributions available
in those states, which is closed
under probabilistic branching

s0

s1 s2

s5
s4s3

s7 s8s6

0.6

0.3

0.3

0.7

0.10.9

0.1

Note:
● action labels omitted
● probabilities omitted where =1

36

Recall - end components in MDPs

• End components of MDPs
are the analogue of BSCCs in DTMCs

• For every end component, there
is an adversary which, with
probability 1, forces the MDP
to remain in the end component,
and visit all its states infinitely often

• Under every adversary σ, with
probability 1 some end component  
will be reached and all of its
states  visited infinitely often
(union of ECs reached with prob 1)

s0

s1 s2

s5
s4s3

s7 s8s6

0.6

0.3

0.3

0.7

0.10.9

0.1

37

Long-run properties of MDPs

• Maximum probabilities

− pmax(s, GF a) = pmax(s, F TGFa)

• where TGFa is the union of sets T for all end components
(T,Steps’) with T ∩ Sat(a) ≠ ∅

− pmax(s, FG a) = pmax(s, F TFGa)

• where TFGa is the union of sets T for all end components
(T,Steps’) with T ⊆ Sat(a)

• Minimum probabilities

− need to compute from maximum probabilities…

− pmin(s, GF a) = 1- pmax(s, FG¬a)

− pmin(s, FG a) = 1- pmax(s, GF¬a)

38

Example

• Model check: P<0.8 [GF b] for s0

• Compute pmax(GF b)

− pmax(GF b) = pmax(s, F TGFb)

− TGFb is the union of sets T
for all end components
with T ∩ Sat(b) ≠ ∅

− Sat(b) = { s4, s6 }

− TGFb = T1∪T2∪T3 = { s1, s3 s4, s6 }

− pmax(s, F TGFb) = 0.75

− pmax(GF b) = 0.75

• Result: s0 ⊨ P<0.8 [GF b]

s0

s1 s2

s5
s4s3

s7 s8s6

0.6

0.3

0.3

0.7

0.10.9

0.1

T1

T2

T3

T4

{b}

{b}

39

Automata-based properties for MDPs

• For an MDP M and automaton A over alphabet 2AP

− consider probability of “satisfying” language L(A) ⊆ (2AP)ω

− ProbM,adv(s, P) = Prs
M,adv { ω ∈ PathM,adv(s) | trace(ω) ∈ L(A) }

− pmax
M(s, A) = supadv∈Adv ProbM,adv(s, A)

− pmin
M(s, A) = infadv∈Adv ProbM,adv(s, A)

• Might need minimum or maximum probabilities

− e.g. s ⊨ P≥0.99 [ψgood] ⇔ pmin
M (s, ψgood) ≥ 0.99

− e.g. s ⊨ P≤0.05 [ψbad] ⇔ pmax
M (s, ψbad) ≤ 0.05

• But, ψ-regular properties are closed under negation

− as are the automata that represent them

− so can always consider maximum probabilities…

− pmax
M(s, ψbad) or 1 - pmax

M(s, ¬ψgood)

40

LTL model checking for MDPs

• Model check LTL specification P~p [ψ] against MDP M

• 1. Convert problem to one needing maximum probabilities

− e.g. convert P>p [ψ] to P<1-p [¬ψ]

• 2. Generate a DRA for ψ (or ¬ψ)

− build nondeterministic Büchi automaton (NBA) for ψ [VW94]

− convert the NBA to a DRA [Saf88]

• 3. Construct product MDP M⊗A

• 4. Identify accepting end components (ECs) of M⊗A

• 5. Compute max. probability of reaching accepting ECs

− from all states of the D⊗A

• 6. Compare probability for (s, qs) against p for each s

41

Product MDP for a DRA

• For an MDP M = (S, sinit, Steps, L)

• and a (total) DRA A = (Q, Σ, δ, q0, Acc)

− where Acc = { (Li, Ki) | 1≤i≤k }

• The product MDP M ⊗ A is:

− the MDP (S×Q, (sinit,qinit), Steps’, L’) where:

qinit = δ(q0,L(sinit))

Steps’(s,q) = { µq | µ ∈ Step(s) }

li ∈ L’(s,q) if q ∈ Li and ki ∈ L’(s,q) if q ∈ Ki

(i.e. state sets of acceptance condition used as labels)



 =

=

otherwise0

))s(L,q(δq' if)'s(µ
)'q,'s(µq

42

Product MDP for a DRA

• For MDP M and DRA A

− where qs = δ(q0,L(s))

• Hence:

− where TAcc is the union of all sets T for accepting end
components (T,Steps’) in D⊗A

− an accepting end components is such that, for some 1≤i≤k:

• q ⊨ ¬li for all (s,q) ∈ T and q ⊨ ki for some (s,q) ∈ T

• i.e. T ∩ (S × Li) = ∅ and T ∩ (S × Ki) ≠ ∅

pmax
M(s, A) = pmax

M⊗A((s,qs), F TAcc)

pmax
M(s, A) = pmax

M⊗A((s,qs), ∨1≤i≤k (FG ¬li ∧ GF ki)

43

Example: LTL for MDPs

• Model check P<0.8 [G ¬b ∧ GF a] for MDP M:

− need to compute pmax(s0, G ¬b ∧ GF a)

MDP M

q0 q1

¬a∧¬b

a∧¬b

a∧¬b

¬a∧¬b
q2

true

bb

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

s0

s2s1 s3

0.3 0.7
{b}

{a}

44

Example: LTL for MDPs

Product MDP M ⊗ Aψ

MDP M

q0 q1

¬a∧¬b

a∧¬b

a∧¬b

¬a∧¬b
q2

true

bb

DRA Aψ for ψ = G¬b ∧ GF a

Acc ={ ({},{q1}) }

pmax
M(s0, ψ) = pmax

M⊗Aψ (s0q0, F T1) = 0.7

s0

s2s1 s3

0.3 0.7
{b}

{a}

s0q2

s1q2 s3q2 s2q0 s3q1

0.3

0.7

s0q0

0.3 0.7

s2q2 {k1}

T1

45

LTL model checking for MDPs

• Complexity of model checking LTL formula ψ on MDP M

− is doubly exponential in |ψ| and polynomial in |M|

− unlike DTMCs, this cannot be improved upon

• PCTL* model checking

− LTL model checking can be adapted to PCTL*, as for DTMCs

• Maximal end components

− can optimise LTL model checking using maximal end
components (there may be exponentially many ECs)

• Optimal adversaries for LTL formulae

− e.g. memoryless adversary always exists for pmax(s, GF a),
but not for pmax(s, FG a)

46

Summary (LTL model checking)

• Linear temporal logic (LTL)

− combines path operators; PCTL* subsumes LTL and PCTL

• ω-automata: represent ω-regular languages/properties

− can translate any LTL formula into a Büchi automaton

− for deterministic ω-automata, we use Rabin automata

• Long-run properties of DTMCs

− need bottom strongly connected components (BSCCs)

• LTL model checking for DTMCs

− construct product of DTMC and Rabin automaton

− identify accepting BSCCs, compute reachability probability

• LTL model checking for MDPs

− MDP-DRA product, reachability of accepting end components

47

PRISM: Recent & new developments

• New features:

1. parametric model checking

2. parameter synthesis

3. strategy synthesis

4. stochastic multi-player games

5. real-time: probabilistic timed automata (PTAs)

• Further new additions:

− enhanced statistical model checking
(approximations + confidence intervals, acceptance sampling)

− efficient CTMC model checking (fast adaptive uniformisation)

− benchmark suite & testing functionality

− www.prismmodelchecker.org

− Beyond PRISM…

48

Parametric model checking and synthesis

Parametric model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Concrete model

System
require-
ments

P<0.01 [F≤t fail]
0.6

0.1

0.3

Probabilistic
model checker

PRISM PARAM

0.5+x

0.1

0.4-x

49

1. Parametric model checking in PRISM

• Parametric Markov chain models in PRISM

− probabilistic parameters expressed as unevaluated constants

− e.g. const double x;

− transition probabilities are expressions over parameters,

e.g. 0.4 + x

• Properties are given in PCTL, with parameter constants

− new construct constfilter (min, x1*x2, phi)

− filters over parameter values, rather than states

• Implemented in ‘explicit’ engine

− returns mapping from parameter regions (e.g. [0.2,0.3],[-2,0])
to rational functions over the parameters

− filter properties used to find parameter values that optimise
the function

− reimplementation of PARAM 2.0 [Hahn et al]

50

2. Parameter synthesis

• Find optimal parameter value given a parametric model and
PCTL/CSL property

− parametric probabilities and rates

• Techniques

− discretisation and integer parameters

− constraint solving, including parametric symbolic constraints

− iterative refinement to improve accuracy

− sampling to improve efficiency

− but scalability is still the biggest challenge

• Implementation

− using tool combination involving Z3, python, PRISM

− see also Prophecy from Katoen’s group

51

3. Controller (strategy) synthesis

• Can synthesise permissive controllers [TACAS14]

− a permissive controller allows more than one action per state

− adds flexibility in case an action become temporarily
unavailable, improving robustness

− e.g. StockPrice Viewer (Android)

− expressed in terms of multi-strategies

• Can synthesise controllers using machine learning [ATVA14]

− partial exploration of the state space, with guarantees of
accuracy

− combines real-time dynamic programming with value iteration

− focus on updating “most important parts” = most often visited
by good strategies

− speeds up value iteration

• Implemented in PRISM for both MDPs and SMGs

52

4. Stochastic multi-player games

• Extension of PRISM

− modelling of stochastic multi-player games

− probabilistic model checking of rPATL and extensions

− strategy synthesis and analysis

• optimal strategy generation

• strategy simulation and export

• model checking of applied strategies

− graphical user interface (editors, simulator, graph plotting, …)

• PRISM-games 2.0:

− long-run average and ratio properties

− multi-objective strategy synthesis

− Pareto curve generation and visualisation

− compositional strategy synthesis techniques

• Available from http://www.prismmodelchecker.org/games/

53

Case study: Autonomous urban driving

• Inspired by DARPA challenge

− represent map data as a stochastic
game, with environment active,
able to select hazards

− express goals as conjunctions of
probabilistic and reward properties

− e.g. “maximise probability of
avoiding hazards and minimise time
to reach destination”

• Solution (PRISM-games 2.0)

− synthesise a probabilistic strategy
to achieve the multi-objective goal

− enable the exploration of trade-offs between subgoals

− applied to synthesise driving strategies for English villages

Synthesis for Multi-Objective Stochastic Games: An Application to Autonomous Urban
Driving, Chen et al., In Proc QEST 2013

54

5. Probabilistic timed automata (PTAs)

• Probability + nondeterminism + real-time

− timed automata + discrete probabilistic choice, or…

− probabilistic automata + real-valued clocks

• PTA example: message transmission over faulty channel

“init”

x≤2

0.9

retry

“done”

true

“lost”

x≤5

“fail”

true

quit

send
x≥3

x:=0

0.1

x≥1∧tries≤N

tries:=0

tries>N

x:=0,
tries:=tries+1

States
• locations + data variables

Transitions
• guards and action labels

Real-valued clocks
• state invariants, guards, resets

Probability
• discrete probabilistic choice

55

Modelling PTAs in PRISM

• PRISM modelling language

− textual language, based on guarded commands

pta

const int N;

module transmitter

s : [0..3] init 0;
tries : [0..N+1] init 0;

x : clock;

invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant

[send] s=0 & tries≤N & x≥1
→ 0.9 : (s’=3)
+ 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);

[retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
[quit] s=0 & tries>N → (s’ =2);

endmodule

rewards “energy” (s=0) : 2.5; endrewards

56

Modelling PTAs in PRISM

• PRISM modelling language

− textual language, based on guarded commands

pta

const int N;

module transmitter

s : [0..3] init 0;
tries : [0..N+1] init 0;

x : clock;

invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant

[send] s=0 & tries≤N & x≥1
→ 0.9 : (s’=3)
+ 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);

[retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
[quit] s=0 & tries>N → (s’ =2);

endmodule

rewards “energy” (s=0) : 2.5; endrewards

Basic ingredients:

• modules
• variables
• commands

57

Modelling PTAs in PRISM

• PRISM modelling language

− textual language, based on guarded commands

pta

const int N;

module transmitter

s : [0..3] init 0;
tries : [0..N+1] init 0;

x : clock;

invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant

[send] s=0 & tries≤N & x≥1
→ 0.9 : (s’=3)
+ 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);

[retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
[quit] s=0 & tries>N → (s’ =2);

endmodule

rewards “energy” (s=0) : 2.5; endrewards

New for PTAs:

• clocks
• invariants
• guards/resets

Basic ingredients:

• modules
• variables
• commands

58

Modelling PTAs in PRISM

• PRISM modelling language

− textual language, based on guarded commands

New for PTAs:

• clocks
• invariants
• guards/resets

Basic ingredients:

• modules
• variables
• commands

Also:

• rewards
(i.e. costs, prices)

• parallel composition

pta

const int N;

module transmitter

s : [0..3] init 0;
tries : [0..N+1] init 0;

x : clock;

invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant

[send] s=0 & tries≤N & x≥1
→ 0.9 : (s’=3)
+ 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);

[retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
[quit] s=0 & tries>N → (s’ =2);

endmodule

rewards “energy” (s=0) : 2.5; endrewards

59

Model checking PTAs in PRISM

• Properties for PTAs:

− min/max probability of reaching X (within time T)

− min/max expected cost/reward to reach X

(for “linearly-priced” PTAs, i.e. reward gain linear with time)

• PRISM has two different PTA model checking techniques…

• “Digital clocks” – conversion to finite-state MDP

− preserves min/max probability + expected cost/reward/price

− (for PTAs with closed, diagonal-free constraints)

− efficient, in combination with PRISM’s symbolic engines

• Quantitative abstraction refinement

− zone-based abstractions of PTAs using stochastic games

− provide lower/upper bounds on quantitative properties

− automatic iterative abstraction refinement

60

Beyond PRISM: Cardiac pacemaker

• Develop model-based framework

− timed automata model for pacemaker
software [Jiang et al]

− hybrid heart models in Simulink, adopt
synthetic ECG model (non-linear ODE)
[Clifford et al]

• Properties

− (basic safety) maintain
60-100 beats per minute

− (advanced) detailed analysis
energy usage, plotted against
timing parameters of the
pacemaker

− parameter synthesis: find values
for timing delays that optimise
energy usage

61

Optimal timing delays problem

• Optimal timing delay synthesis for timed automata
[EMSOFT2014][HSB 2015]

• The parameter synthesis problem solved is

− given a parametric network of timed I/O automata, set of
controllable and uncontrollable parameters, CMTL property ɸ
and length of path n

− find the optimal controllable parameter values, for any
uncontrollable parameter values, with respect to an objective
function O, such that the property ɸ is satisfied on paths of
length n, if such values exist

• Consider family of objective functions

− maximise volume, minimise energy

• Discretise parameters, assume bounded integer parameter
space and path length

− decidable but high complexity (high time constants)

62

Optimal probability of timing delays

• Previously, no nondeterminism and no probability in the
model considered

• Consider parametric probabilistic timed automata (PPTA),

− e.g. guards of the form x ≤ b,

• Can we synthesise optimal timing parameters to optimise
the reachability probability?

• Semi-algorithm [RP 2014]

− exploration of parametric symbolic states, i.e. location, time
zone and parameter valuations

− forward exploration only gives upper bounds on maximum
probability (resp. lower for minimum)

− but stochastic game abstraction yields the precise solution…

• Implementation in progress

63

Quantitative verification - Trends

• Being ‘younger’, generally lags behind conventional
verification

− much smaller model capacity

− compositional reasoning in infancy

− automation of model extraction/adaptation very limited

• Tool usage on the increase, in academic/industrial contexts

− real-time verification/synthesis in embedded systems

− probabilistic verification in security, reliability, performance

• Shift towards greater automation

− specification mining, model extraction, synthesis, verification, …

• But many challenges remain!

64

Acknowledgements

• My group and collaborators in this work

• Project funding

− ERC, EPSRC, Microsoft Research

− Oxford Martin School, Institute for the Future of Computing

• See also

− www.veriware.org

− PRISM www.prismmodelchecker.org

65

PhD Comics and Oxford…

• You are welcome to visit Oxford!

• PhD scholarships, postdocs in verification and synthesis,
and more

More info here:
www.prismmodelchecker.org

Thank you for your attention

