
Probabilistic model checking with PRISM

Marta Kwiatkowska

Department of Computer Science, University of Oxford

IMT, Lucca, May 2016

2

What is probabilistic model checking?

• Probabilistic model checking (aka probabilistic/
quantitative verification)…

− is a formal verification technique for modelling and
analysing systems that exhibit probabilistic behaviour

• Formal verification…

− is the application of rigorous, mathematics-based
techniques to establish the correctness of
computerised systems

• Synthesis…

− is an automatic method to generate system
components that are correct-by-construction

3

Why must we verify?

“Testing can only show the presence of errors, not their absence.”

To rule out errors need to
consider all possible executions
often not feasible mechanically!

− need formal verification…

“In their capacity as a tool,
computers will be but a ripple
on the surface of our culture.
In their capacity as intellectual
challenge, computers are
without precedent in the
cultural history of mankind.”

Edsger Dijkstra

1930-2002

4

But my program works!

• True, there are many successful large-scale complex
computer systems…

− online banking, electronic commerce

− information services, online libraries, business processes

− supply chain management

− mobile phone networks

• Yet many new potential application domains with far
greater complexity and higher expectations

− autonomous driving, self-parking cars

− medical sensors: heart rate & blood pressure monitors

− intelligent buildings and spaces, environmental sensors

• Learning from mistakes costly…

5

Infusion pumps

Over the last five years,
[…] 710 patient deaths
linked to problems with
the devices.

Some of those deaths
involved patients who
suffered drug
overdoses accidentally,
either because of
incorrect dosage
entered or because the
device’s software
malfunctioned.

Manufacturers […]
issued 79 recalls,
among the highest for
any medical device.

Published: April 23, 2010

Pump producers now typically conduct
‘simulated’ testing of its devices by users.

F.D.A. Steps Up Oversight of Infusion
Pumps

Source: http://www.nytimes.com/2010/04/24/business/24pump.html?_r=0

6

Cardiac pacemakers

• The Food and Drug Administration (FDA)

− issued 23 recalls of defective pacemaker devices during the
first half of 2010

− classified as “Class I,” meaning
there is “reasonable probability
that use of these products will
cause serious adverse health
consequences or death”

− six of those due to software
defects

• “Killed by code” report

− many similar medical devices

− wireless, implantable, e.g. glucose monitors

Source: https://www.softwarefreedom.org/resources/2010/transparent-medical-devices.html

7

Toyota

• February 2010

− unintended acceleration

− resulted in deaths

• Engine Control Module

− source code found defective

− no mirroring: stack overflow ,
recursion was used

• “Killed by firmware”

− millions of cars recalled, at huge cost

− handling of the incident prompted
much criticism, bad publicity

− fined $1.2 billion for concealing safety defects

Source: http://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences

8

What do these stories have in common?

• Programmable computing devices

− conventional computers and networks

− software embedded in devices

• airbag controllers, mobile phones, medical devices, etc

• Programming error direct cause of failure

• Software critical

− for safety

− for business

− for performance

• High costs incurred: not just financial

• Failures avoidable…

9

Automatic verification

• Formal verification…

− the application of rigorous, mathematics-based techniques
to establish the correctness of computerised systems

− essentially: proving that a program satisfies it specification

− many techniques: manual proof, automated theorem proving,
static analysis, model checking, …

• Automatic verification =

− mechanical, push-button technology

− performed without human intervention

1070 atoms10500,000 states

10

Verification via model checking

Finite-state
model

Temporal logic
specification

Result
System

Counter-
example

System
require-
ments

¬EF fail

Model checker
e.g. SMV, Spin

11

Verification… or falsification?

• More value in showing property violation?

− model checkers used as debugging tool!

− can we synthesise directly from specification?

• Widely accepted in industrial practice

− Intel, Cadence, Bell Labs, IBM, Microsoft, ...

• Many software tools, including commercial

− CProver/CBMC, NuSMV, FDR2, UPPAAL, ...

− hardware design, protocols, software, …

Much progress since 1981! But...

12

New challenges for verification

• Devices, ever smaller

− laptops, phones, sensors…

• Networking, wireless, wired & global

− wireless & internet everywhere

• New design and engineering challenges

− adaptive computing,
ubiquitous/pervasive computing,
context-aware systems

− DNA computing and biosensing

− trade-offs between e.g. performance,
security, power usage, battery life, …

13

New challenges for verification

• Many properties other than correctness are important

• Need to guarantee…

− safety, reliability, performance, dependability

− resource usage, e.g. battery life

− security, privacy, trust, anonymity, fairness

− and much more…

• Quantitative, as well as qualitative requirements:

− “how reliable is my car’s Bluetooth network?”

− “how efficient is my phone’s power management policy?”

− “how secure is my bank’s web-service?”

• This course: probabilistic verification and synthesis

14

Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• Examples: real-world protocols featuring randomisation:

− Randomised back-off schemes

• CSMA protocol, 802.11 Wireless LAN

− Random choice of waiting time

• IEEE1394 Firewire (root contention), Bluetooth (device discovery)

− Random choice over a set of possible addresses

• IPv4 Zeroconf dynamic configuration (link-local addressing)

− Randomised algorithms for anonymity, contract signing, …

15

Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance

− to quantify rate of failures, express Quality of Service

• Examples:

− computer networks, embedded systems

− power management policies

− nano-scale circuitry: reliability through defect-tolerance

16

Why probability?

• Some systems are inherently probabilistic…

• Randomisation, e.g. in distributed coordination algorithms

− as a symmetry breaker, in gossip routing to reduce flooding

• To model uncertainty and performance

− to quantify rate of failures, express Quality of Service

• To model biological processes

− reactions occurring between large numbers of molecules are
naturally modelled in a stochastic fashion

17

Probabilistic model checking

Probabilistic model
e.g. Markov chain

Probabilistic
temporal logic
specification

e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Counter-
example

System
require-
ments

P<0.1 [F fail]

0.5

0.1

0.4

Probabilistic
model checker

e.g. PRISM

18

Probabilistic models

Discrete
time

Continuous
time

NondeterministicFully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)

Probabilistic timed
automata (PTAs)

Simple stochastic
games (SMGs)

Interactive Markov
chains (IMCs)

19

Probabilistic models

Discrete
time

Continuous
time

NondeterministicFully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)

Probabilistic timed
automata (PTAs)

Simple stochastic
games (SMGs)

Interactive Markov
chains (IMCs)

NB One can also consider continuous space…

20

Lecture plan

• Course slides and lab session

− http://www.prismmodelchecker.org/courses/imt16/

• 3 sessions: lectures 9-11

− 1 – Discrete time Markov chains (DTMCs)

− 2 – Markov decision processes (MDPs)

− 3 – LTL model checking for DTMCs/MDPs

• For extended versions of this material

− and an accompanying list of references

− see: http://www.prismmodelchecker.org/lectures/

21

Course material

• Reading

− [DTMCs/CTMCs] Kwiatkowska, Norman and Parker. Stochastic
Model Checking. LNCS vol 4486, p220-270, Springer 2007.

− [MDPs/LTL] Forejt, Kwiatkowska, Norman and Parker.
Automated Verification Techniques for Probabilistic Systems.
LNCS vol 6659, p53-113, Springer 2011.

− [SMGs] Chen, Forejt, Kwiatkowska, Parker and Simaitis.
Automatic Verification of Competitive Stochastic Systems.
FMSD 43(1), 61-92, 2013.

− [PTAs] Norman, Parker and Sproston. Model Checking for
Probabilistic Timed Automata. FMSD 43(2), 164-190, 2013.

− [DTMCs/MDPs/LTL] Principles of Model Checking by Baier and
Katoen, MIT Press 2008

• See also PRISM website

− www.prismmodelchecker.org

Discrete-time Markov chains

Part 1

23

Overview (Part 1)

• Probability basics

• Model checking for discrete-time Markov chains (DTMCs)

− DTMCs: definition, paths & probability spaces

− PCTL model checking

− Costs and rewards

• A glimpse of model checking for continuous-time Markov
chains (CTMCs)

• PRISM: overview

− Modelling language

− Properties

− GUI, etc

− Case study: Bluetooth device discovery

• Summary

24

Probability example

• Modelling a 6-sided die using a fair coin

− algorithm due to Knuth/Yao:

− start at 0, toss a coin

− upper branch when H

− lower branch when T

− repeat until value chosen

• Is this algorithm correct?

− e.g. probability of obtaining a 4?

− obtain as disjoint union of events

− THH, TTTHH, TTTTTHH, …

− Pr(“eventually 4”)

= (1/2)3 + (1/2)5 + (1/2)7 + … = 1/6

0

3

2

1

6

4

5

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

25

Example…

• Other properties?

− “what is the probability of termination?”

• e.g. efficiency?

− “what is the probability of needing
more than 4 coin tosses?”

− “on average, how many
coin tosses are needed?”

• Probabilistic model checking provides a framework for
these kinds of properties…

− modelling languages

− property specification languages

− model checking algorithms, techniques and tools

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

26

Discrete-time Markov chains

• Discrete-time Markov chains (DTMCs)

− state-transition systems augmented with probabilities

• States

− discrete set of states representing possible configurations of
the system being modelled

• Transitions

− transitions between states occur
in discrete time-steps

• Probabilities

− probability of making transitions
between states is given by
discrete probability distributions

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

27

Simple DTMC example

• Modelling a very simple communication protocol

− after one step, process starts trying to send a message

− with probability 0.01, channel unready so wait a step

− with probability 0.98, send message successfully and stop

− with probability 0.01, message sending fails, restart

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

28

Discrete-time Markov chains

• Formally, a DTMC D is a tuple (S,sinit,P,L) where:

− S is a finite set of states (“state space”)

− sinit ∈ S is the initial state

− P : S × S → [0,1] is the transition probability matrix

where Σs’∈S P(s,s’) = 1 for all s ∈ S

− L : S → 2AP is function labelling states with atomic
propositions

• Note: no deadlock states

− i.e. every state has at least

one outgoing transition

− can add self loops to represent

final/terminating states

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

29

Simple DTMC example

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

D = (S,sinit,P,L)

S = {s0, s1, s2, s3}
sinit = s0



















=

1000

0001

98.001.001.00

0010

P

AP = {try, fail, succ}
L(s0)=∅,
L(s1)={try},
L(s2)={fail},
L(s3)={succ}

30

Some more terminology

• P is a stochastic matrix, meaning it satisifes:

− P(s,s’) ∈ [0,1] for all s,s’ ∈ S and Σs’∈S P(s,s’) = 1 for all s ∈ S

• A sub-stochastic matrix satisfies:

− P(s,s’) ∈ [0,1] for all s,s’ ∈ S and Σs’∈S P(s,s’) ≤ 1 for all s ∈ S

• An absorbing state is a state s for which:

− P(s,s) = 1 and P(s,s’) = 0 for all s≠s’

− the transition from s to itself is sometimes called a self-loop

• Note: Since we assume P is stochastic…

− every state has at least one outgoing transition

− i.e. no deadlocks (in model checking terminology)

31

DTMCs: An alternative definition

• Alternative definition… a DTMC is:

− a family of random variables { X(k) | k=0,1,2,… }

− where X(k) are observations at discrete time-steps

− i.e. X(k) is the state of the system at time-step k

− which satisfies…

• The Markov property (“memorylessness”)

− Pr(X(k)=sk | X(k-1)=sk-1, … , X(0)=s0)

= Pr(X(k)=sk | X(k-1)=sk-1)

− for a given current state, future states are independent of past

• This allows us to adopt the “state-based” view presented so
far (which is better suited to this context)

32

Other assumptions made here

• We consider time-homogenous DTMCs

− transition probabilities are independent of time

− P(sk-1,sk) = Pr(X(k)=sk | X(k-1)=sk-1)

− otherwise: time-inhomogenous

• We will (mostly) assume that the state space S is finite

− in general, S can be any countable set

• Initial state sinit ∈ S can be generalised…

− to an initial probability distribution sinit : S → [0,1]

• Focus on path-based properties

− rather than steady-state

33

Paths and probabilities

• A (finite or infinite) path through a DTMC

− is a sequence of states s0s1s2s3… such that P(si,si+1) > 0 ∀i

− represents an execution (i.e. one possible behaviour) of the
system which the DTMC is modelling

• To reason (quantitatively) about this system

− need to define a probability space over paths

• Intuitively:

− sample space: Path(s) = set of all
infinite paths from a state s

− events: sets of infinite paths from s

− basic events: cylinder sets (or “cones”)

− cylinder set C(ω), for a finite path ω
= set of infinite paths with the common finite prefix ω

− for example: C(ss1s2)

s1 s2s

34

Probability spaces

• Let Ω be an arbitrary non-empty set

• A σ-algebra (or σ-field) on Ω is a family Σ of subsets of Ω
closed under complementation and countable union, i.e.:

− if A ∈ Σ, the complement Ω ∖ A is in Σ

− if Ai ∈ Σ for i ∈ ℕ, the union ∪i Ai is in Σ

− the empty set ∅ is in Σ

• Theorem: For any family F of subsets of Ω, there exists a
unique smallest σ-algebra on Ω containing F

• Probability space (Ω, Σ, Pr)

− Ω is the sample space

− Σ is the set of events: σ-algebra on Ω

− Pr : Σ → [0,1] is the probability measure:

Pr(Ω) = 1 and Pr(∪i Ai) = Σi Pr(Ai) for countable disjoint Ai

35

Probability space over paths

• Sample space Ω = Path(s)

set of infinite paths with initial state s

• Event set ΣPath(s)

− the cylinder set C(ω) = { ω’ ∈ Path(s) | ω is prefix of ω’ }

− ΣPath(s) is the least σ-algebra on Path(s) containing C(ω) for all
finite paths ω starting in s

• Probability measure Prs

− define probability Ps(ω) for finite path ω = ss1…sn as:

• Ps(ω) = 1 if ω has length one (i.e. ω = s)

• Ps(ω) = P(s,s1) · … · P(sn-1,sn) otherwise

• define Prs(C(ω)) = Ps(ω) for all finite paths ω

− Prs extends uniquely to a probability measure Prs:ΣPath(s)→[0,1]

• See [KSK76] for further details

36

Probability space - Example

• Paths where sending fails the first time

− ω = s0s1s2

− C(ω) = all paths starting s0s1s2…

− Ps0(ω) = P(s0,s1) · P(s1,s2)

= 1 · 0.01 = 0.01

− Prs0(C(ω)) = Ps0(ω) = 0.01

• Paths which are eventually successful and with no failures

− C(s0s1s3) ∪ C(s0s1s1s3) ∪ C(s0s1s1s1s3) ∪ …

− Prs0(C(s0s1s3) ∪ C(s0s1s1s3) ∪ C(s0s1s1s1s3) ∪ …)

= Ps0(s0s1s3) + Ps0(s0s1s1s3) + Ps0(s0s1s1s1s3) + …

= 1·0.98 + 1·0.01·0.98 + 1·0.01·0.01·0.98 + …

= 0.9898989898…

= 98/99

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

37

Reachability

• Key property: probabilistic reachability

− probability of a path reaching a state in some target set T ⊆ S

− e.g. “probability of the algorithm terminating successfully?”

− e.g. “probability that an error occurs during execution?”

• Dual of reachability: invariance

− probability of remaining within some class of states

− Pr(“remain in set of states T”) = 1 - Pr(“reach set S\T”)

− e.g. “probability that an error never occurs”

• We will also consider other variants of reachability

− time-bounded, constrained (“until”), …

38

Reachability probabilities

• Formally: ProbReach(s, T) = Prs(Reach(s, T))

− where Reach(s, T) = { s0s1s2 … ∈ Path(s) | si in T for some i }

• Is Reach(s, T) measurable for any T ⊆ S ? Yes…

− Reach(s, T) is the union of all basic cylinders
Cyl(s0s1…sn) where s0s1…sn in Reachfin(s, T)

− Reachfin(s, T) contains all finite paths s0s1…sn such that:
s0=s, s0,…,sn-1 ∉ T, sn ∈ T (reaches T first time)

− set of such finite paths s0s1…sn is countable

• Probability

− in fact, the above is a disjoint union

− so probability obtained by simply summing…

39

Computing reachability probabilities

• Compute as (infinite) sum…

• Σs0,…,sn ∈ Reachfin(s, T) Prs0(Cyl(s0,…,sn))

= Σs0,…,sn ∈ Reachfin(s, T) P(s0,…,sn)

• Example:

− ProbReach(s0, {4})

= Prs0(Reach(s0, {4}))

− Finite path fragments:

− s0(s2s6)
ns2s54 for n ≥ 0

− Ps0(s0s2s54) + Ps0(s0s2s6s2s54) + Ps0(s0s2s6s2s6s2s54) + …

= (1/2)3 + (1/2)5 + (1/2)7 + … = 1/6

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

40

Computing reachability probabilities

• Compute as (infinite) sum…

• Σs0,…,sn ∈ Reachfin(s, T) Prs0(Cyl(s0,…,sn))

= Σs0,…,sn ∈ Reachfin(s, T) P(s0,…,sn)

• Example:

− ProbReach(s0, {4})

= Prs0(Reach(s0, {4}))

− Finite path fragments:

− s0(s2s6)
ns2s54 for n ≥ 0

− Ps0(s0s2s54) + Ps0(s0s2s6s2s54) + Ps0(s0s2s6s2s6s2s54) + …

= (1/2)3 + (1/2)5 + (1/2)7 + … = 1/6

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

41

Computing reachability probabilities

• Alternative: derive a linear equation system

− solve for all states simultaneously

− i.e. compute vector ProbReach(T)

• Let xs denote ProbReach(s, T)

• Solve:

xs =

1

0

P (s, s') ⋅ xs'

s'∈S

∑

if s ∈ T

if T is not reachable from s

otherwise













42

Example

• Compute ProbReach(s0, {4})

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

43

Unique solutions

• Why the need to identify states that cannot reach T?

• Consider this simple DTMC:

− compute probability of reaching {s0} from s1

− linear equation system: xs0
= 1, xs1

= xs1

− multiple solutions: (xs0
, xs1

) = (1,p) for any p ∈ [0,1]

s1s0 1

1

44

Bounded reachability probabilities

• Probability of reaching T from s within k steps

• Formally: ProbReach≤k(s, T) = Prs(Reach≤k(s, T)) where:

− Reach≤k(s, T) = { s0s1s2 … ∈ Path(s) | si in T for some i≤k }

• ProbReach≤k(T) = x(k+1) from the previous fixed point

− which gives us…

ProbReach≤k(s, T) =

1

0

P(s,s')⋅ ProbReach≤k-1(s', T)
s'∈S

∑

if s ∈ T

if k = 0 & s ∉ T

if k > 0 & s ∉ T













45

(Bounded) reachability

• ProbReach(s0, {1,2,3,4,5,6}) = 1

• ProbReach≤k (s0, {1,2,3,4,5,6}) = …

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

46

Qualitative properties

• Quantitative properties:

− “what is the probability of event A?”

• Qualititative properties:

− “the probability of event A is 1” (“almost surely A”)

− or: “the probability of event A is > 0” (“possibly A”)

• For finite DTMCs, qualititative properties do not depend on
the transition probabilities - only need underlying graph

− e.g. to determine “is target set T reached with probability 1?”
(see DTMC model checking later)

47

Aside: Infinite Markov chains

• Infinite-state random walk

• Value of probability p does affect qualitative properties

− ProbReach(s, {s0}) = 1 if p ≤ 0.5

− ProbReach(s, {s0}) < 1 if p > 0.5

s1s0
1-p

p

s2

1-p

p

s3

1-p

p

• •
•1-p

48

Temporal logic

• Temporal logic

− formal language for specifying and reasoning about how the
behaviour of a system changes over time

− defined over paths, i.e. sequences of states s0s1s2s3… such
that P(si,si+1) > 0 ∀i

• Logics used in this course are probabilistic extensions of
temporal logics devised for non-probabilistic systems (CTL,
LTL)

− So we revert briefly to (labelled) state-transition diagrams

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

s1s0

s2

s3

{fail}

{succ}

{try}

49

CTL semantics

• Intuitive semantics:

− of quantifiers (A/E) and temporal operators (F/G/U)

EF red EG red E [yellow U red]

AF red AG red A [yellow U red]

49

50

PCTL

• Temporal logic for describing properties of DTMCs

− PCTL = Probabilistic Computation Tree Logic [HJ94]

− essentially the same as the logic pCTL of [ASB+95]

• Extension of (non-probabilistic) temporal logic CTL

− key addition is probabilistic operator P

− quantitative extension of CTL’s A and E operators

• Example

− send → P≥0.95 [true U≤10 deliver]

− “if a message is sent, then the probability of it being delivered
within 10 steps is at least 0.95”

51

PCTL syntax

• PCTL syntax:

− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state formulas)

− ψ ::= X φ | φ U≤k φ | φ U φ (path formulas)

− define F φ ≡ true U φ (eventually), G φ ≡ ¬(F ¬φ) (globally)

− where a is an atomic proposition, used to identify states of
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• A PCTL formula is always a state formula

− path formulas only occur inside the P operator

“until”

ψ is true with
probability ~p

“bounded
until”

“next”

52

PCTL semantics for DTMCs

• PCTL formulas interpreted over states of a DTMC

− s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”

• Semantics of (non-probabilistic) state formulas:

− for a state s of the DTMC (S,sinit,P,L):

− s ⊨ a ⇔ a ∈ L(s)

− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊨ φ is false

• Examples

− s3 ⊨ succ

− s1 ⊨ try ∧ ¬fail
s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

53

PCTL semantics for DTMCs

• Semantics of path formulas:

− for a path ω = s0s1s2… in the DTMC:

− ω ⊨ X φ ⇔ s1 ⊨ φ

− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1

− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 such that ω ⊨ φ1 U≤k φ2

• Some examples of satisfying paths:

− X succ

− ¬fail U succ

s1 s3 s3 s3

{succ} {succ} {succ}{try}

s1 s1 s3 s3

{try} {succ} {succ}

s0

{try}

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

54

PCTL semantics for DTMCs

• Semantics of the probabilistic operator P

− informal definition: s ⊨ P~p [ψ] means that “the probability,
from state s, that ψ is true for an outgoing path satisfies ~p”

− example: s ⊨ P<0.25 [X fail] ⇔ “the probability of atomic
proposition fail being true in the next state of outgoing paths
from s is less than 0.25”

− formally: s ⊨ P~p [ψ] ⇔ Prob(s, ψ) ~ p

− where: Prob(s, ψ) = Prs { ω ∈ Path(s) | ω ⊨ ψ }

− (sets of paths satisfying ψ are always measurable [Var85])

s

¬ψ

ψ Prob(s, ψ) ~ p ?

55

More PCTL…

• Usual temporal logic equivalences:

− false ≡ ¬true (false)

− φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) (disjunction)

− φ1 → φ2 ≡ ¬φ1 ∨ φ2 (implication)

− F φ ≡ ◊ φ ≡ true U φ (eventually, “future”)

− G φ ≡ □ φ ≡ ¬(F ¬φ) (always, “globally”)

− bounded variants: F≤k φ, G≤k φ

• Negation and probabilities

− e.g. ¬P>p [φ1 U φ2] ≡ P≤p [φ1 U φ2]

− e.g. P>p [G φ] ≡ P<1-p [F ¬φ]

56

Quantitative properties

• Consider a PCTL formula P~p [ψ]

− if the probability is unknown, how to choose the bound p?

• When the outermost operator of a PTCL formula is P

− we allow the form P=? [ψ]

− “what is the probability that path formula ψ is true?”

• Model checking is no harder: compute the values anyway

• Useful to spot patterns, trends

• Example

− P=? [F err/total>0.1]

− “what is the probability
that 10% of the NAND
gate outputs are erroneous?”

57

Reachability and invariance

• Derived temporal operators, like CTL…

• Probabilistic reachability: P~p [F φ]

− the probability of reaching a state satisfying φ

− F φ ≡ true U φ

− “φ is eventually true”

− bounded version: F≤k φ ≡ true U≤k φ

• Probabilistic invariance: P~p [G φ]

− the probability of φ always remaining true

− G φ ≡ ¬(F ¬φ) ≡ ¬(true U ¬φ)

− “φ is always true”

− bounded version: G≤k φ ≡ ¬(F≤k ¬φ)

strictly speaking,
G φ cannot be
derived from the
PCTL syntax in
this way since
there is no
negation of path
formulae

58

Qualitative vs. quantitative properties

• P operator of PCTL can be seen as a quantitative analogue
of the CTL operators A (for all) and E (there exists)

• Qualitative PCTL properties

− P~p [ψ] where p is either 0 or 1

• Quantitative PCTL properties

− P~p [ψ] where p is in the range (0,1)

• P>0 [F φ] is identical to EF φ

− there exists a finite path to a φ-state

• P≥1 [F φ] is (similar to but) weaker than AF φ

− a φ-state is reached “almost surely”

− see next slide…

59

Example: Qualitative/quantitative

• Toss a coin repeatedly until “tails” is thrown

• Is “tails” always eventually thrown?

− CTL: AF “tails”

− Result: false

− Counterexample: s0s1s0s1s0s1…

• Does the probability of eventually
throwing “tails” equal one?

− PCTL: P≥1 [F “tails”]

− Result: true

− Infinite path s0s1s0s1s0s1… has zero probability

s0

s1

s2

0.5

0.5

1

1

{heads}

{tails}

60

Overview (Part 1)

• Probability basics

• Model checking for discrete-time Markov chains (DTMCs)

− DTMCs: definition, paths & probability spaces

− PCTL model checking

− Costs and rewards

• A glimpse of model checking for continuous-time Markov
chains (CTMCs)

• PRISM: overview

− Modelling language

− Properties

− GUI, etc

− Case study: Bluetooth device discovery

• Summary

61

PCTL model checking for DTMCs

• Algorithm for PCTL model checking [CY88,HJ94,CY95]

− inputs: DTMC D=(S,sinit,P,L), PCTL formula φ

− output: Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• What does it mean for a DTMC D to satisfy a formula φ?

− sometimes, want to check that s ⊨ φ ∀ s ∈ S, i.e. Sat(φ) = S

− sometimes, just want to know if sinit ⊨ φ, i.e. if sinit ∈ Sat(φ)

• Sometimes, focus on quantitative results

− e.g. compute result of P=? [F error]

− e.g. compute result of P=? [F≤k error] for 0≤k≤100

62

PCTL model checking for DTMCs

• Basic algorithm proceeds by induction on parse tree of φ

− example: φ = (¬fail ∧ try) → P>0.95 [¬fail U succ]

• For the non-probabilistic operators:

− Sat(true) = S

− Sat(a) = { s ∈ S | a ∈ L(s) }

− Sat(¬φ) = S \ Sat(φ)

− Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

• For the P~p [ψ] operator

− need to compute the
probabilities Prob(s, ψ)
for all states s ∈ S

− focus here on “until”
case: ψ = φ1 U φ2

∧

¬

→

P>0.95 [· U ·]

¬

fail fail

succtry

63

Probability computation

• Three temporal operators to consider:

• Next: P~p[X φ]

• Bounded until: P~p[φ1 U≤k φ2] (omitted)

− adaptation of bounded reachability for DTMCs

• Until: P~p[φ1 U φ2]

− adaptation of reachability for DTMCs

− graph-based “precomputation” algorithms

− techniques for solving large linear equation systems

64

PCTL next for DTMCs

• Computation of probabilities for PCTL next operator

− Sat(P~p[X φ]) = { s ∈ S | Prob(s, X φ) ~ p }

− need to compute Prob(s, X φ) for all s ∈ S

• Sum outgoing probabilities for
transitions to φ-states

− Prob(s, X φ) = Σs’∈Sat(φ) P(s,s’)

• Compute vector Prob(X φ) of
probabilities for all states s

− Prob(X φ) = P · φ

− where φ is a 0-1 vector over S with φ(s) = 1 iff s ⊨ φ

− computation requires a single matrix-vector multiplication

s

φ

65

PCTL next - Example

• Model check: P≥0.9 [X (¬try ∨ succ)]

− Sat (¬try ∨ succ) = (S \ Sat(try)) ∪ Sat(succ)
= ({s0,s1,s2,s3} ∖ {s1}) ∪ {s3} = {s0,s2,s3}

− Prob(X (¬try ∨ succ)) = P · (¬try ∨ succ) = …

• Results:

− Prob(X (¬try ∨ succ)) = [0, 0.99, 1, 1]

− Sat(P≥0.9 [X (¬try ∨ succ)]) = {s1, s2, s3}



















=



















⋅



















=

1

1

0.99

0

1

1

0

1

1000

0001

0.980.010.010

0010

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

66

PCTL until for DTMCs

• Computation of probabilities Prob(s, φ1 U φ2) for all s ∈ S

• First, identify all states where the probability is 1 or 0

− Syes = Sat(P≥1 [φ1 U φ2])

− Sno = Sat(P≤0 [φ1 U φ2])

• Then solve linear equation system for remaining states

• Running example:

P>0.8 [¬a U b] 0.40.1

0.6

1 0.3

0.70.1
0.3

0.50.9

1

{a}

{b}

0.1

s0

s1 s3

s2 s4

s5

67

Precomputation

• We refer to the first phase (identifying sets Syes and Sno) as
“precomputation”

− two algorithms: Prob0 (for Sno) and Prob1 (for Syes)

− algorithms work on underlying graph (probabilities irrelevant)

• Important for several reasons

− ensures unique solution to linear equation system

• only need Prob0 for uniqueness, Prob1 is optional

− reduces the set of states for which probabilities must be
computed numerically

− gives exact results for the states in Syes and Sno (no round-off)

− for model checking of qualitative properties (P~p[·] where p is
0 or 1), no further computation required

68

Sno = Sat(P≤0 [¬a U b])

0.40.1

0.6

1 0.3

0.70.1
0.3

0.50.9

0.1

Sat(P>0 [¬a U b])Sat(b)

Precomputation - Prob0

• Prob0 algorithm to compute Sno = Sat(P≤0 [φ1 U φ2]) :

− first compute Sat(P>0 [φ1 U φ2]) ≡ Sat(E[φ1 U φ2])

− i.e. find all states which can, with non-zero probability, reach
a φ2-state without leaving φ1-states

− i.e. find all states from which there is a finite path through
φ1-states to a φ2-state: simple graph-based computation

− subtract the resulting set from S

Example:

P>0.8 [¬a U b]

1

a

b
s0

s1 s3

s2 s4

s5

69

Syes =

Sat(P≥1 [¬a U b])

Sat(P<1 [¬a U b])Sno = Sat(P≤0 [¬a U b])

Precomputation - Prob1

• Prob1 algorithm to compute Syes = Sat(P≥1 [φ1 U φ2]) :

− first compute Sat(P<1 [φ1 U φ2]), reusing Sno

− this is equivalent to the set of states which have a non-zero
probability of reaching Sno, passing only through φ1-states

− again, this is a simple graph-based computation

− subtract the resulting set from S

Example:

P>0.8 [¬a U b]

1

a

b

0.40.1

0.6

1 0.3

0.70.1
0.3

0.9

0.1

0.5
s0

s1 s3

s2 s4

s5

70

PCTL until - linear equations

• Probabilities Prob(s, φ1 U φ2) can now be obtained as the
unique solution of the following set of linear equations

− essentially the same as for probabilistic reachability

• Can also be reduced to a system in |S?| unknowns instead
of |S| where S? = S \ (Syes ∪ Sno)

Prob(s, φ1 U φ2) =

1

0

P(s,s')⋅ Prob(s', φ1 U φ2)
s'∈S

∑













if s ∈ Syes

if s ∈ Sno

otherwise

71

PCTL until - linear equations

• Example: P>0.8 [¬a U b]

• Let xi = Prob(si, ¬a U b)

x1 = x3 = 0

x4 = x5 = 1

x2 = 0.1x2+0.1x3+0.3x5+0.5x4 = 8/9

x0 = 0.1x1+0.9x2 = 0.8

Prob(¬a U b) = x = [0.8, 0, 8/9, 0, 1, 1]

Sat(P>0.8 [¬a U b]) = { s2,s4,s5 }

Sno =

Sat(P≤0 [¬a U b])

a

b

0.40.1

0.6

1 0.3

0.70.1
0.3

0.9

1

Syes =

Sat(P≥1 [¬a U b])

0.1

0.5

s0

s1 s3

s2 s4

s5

72

PCTL Until – Example 2

• Example: P>0.5 [G¬b]

• Prob(si, G¬b)
= 1 - Prob(si, ¬(G¬b))
= 1 - Prob(si, F b)

• Let xi = Prob(si, F b)

x3 = 0 and x4 = x5 = 1

x2 = 0.1x2+0.1x3+0.3x5+0.5x4 = 8/9

x1 = 0.6x3+0.4x0 = 0.4x0

x0 = 0.1x1+0.9x2 = 5/6 and x1= 1/3

Prob(G¬b) = 1-x = [1/6, 2/3, 1/9, 1, 0, 0]

Sat(P>0.5 [G¬b]) = { s1,s3 }

Sno = Sat(P≤0 [F b])

Syes =

Sat(P≥1 [F b])

a

b

0.40.1

0.6

1 0.3

0.70.1
0.3

0.9

10.1

0.5

s0

s1 s3

s2 s4

s5

73

Linear equation systems

• Solution of large (sparse) linear equation systems

− size of system (number of variables) typically O(|S|)

− state space S gets very large in practice

• Two main classes of solution methods:

− direct methods - compute exact solutions in fixed number of
steps, e.g. Gaussian elimination, L/U decomposition

− iterative methods, e.g. Power, Jacobi, Gauss-Seidel, …

− the latter are preferred in practice due to scalability

• General form: A·x = b

− indexed over integers,

− i.e. assume S = { 0,1,…,|S|-1 }

74

PCTL model checking - Summary

• Computation of set Sat(Φ) for DTMC D and PCTL formula Φ

− recursive descent of parse tree

− combination of graph algorithms, numerical computation

• Probabilistic operator P:

− X Φ : one matrix-vector multiplication, O(|S|2)

− Φ1 U≤k Φ2 : k matrix-vector multiplications, O(k|S|2)

− Φ1 U Φ2 : linear equation system, at most |S| variables, O(|S|3)

• Complexity:

− linear in |Φ| and polynomial in |S|

75

Limitations of PCTL

• PCTL, although useful in practice, has limited expressivity

− essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

• More expressive logics can be used, for example:

− LTL [Pnu77] – (non-probabilistic) linear-time temporal logic

− PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL

− both allow path operators to be combined

− (in PCTL, P~p […] always contains a single temporal operator)

− supported by PRISM

− (not covered in this lecture)

• Another direction: extend DTMCs with costs and rewards…

76

Costs and rewards

• We augment DTMCs with rewards (or, conversely, costs)

− real-valued quantities assigned to states and/or transitions

− these can have a wide range of possible interpretations

• Some examples:

− elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, …

• Costs? or rewards?

− mathematically, no distinction between rewards and costs

− when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards

− we will consistently use the terminology “rewards” regardless

77

Reward-based properties

• Properties of DTMCs augmented with rewards

− allow a wide range of quantitative measures of the system

− basic notion: expected value of rewards

− formal property specifications will be in an extension of PCTL

• More precisely, we use two distinct classes of property…

• Instantaneous properties

− the expected value of the reward at some time point

• Cumulative properties

− the expected cumulated reward over some period

78

DTMC reward structures

• For a DTMC (S,sinit,P,L), a reward structure is a pair (ρ,ι)

− ρ : S → ℝ≥0 is the state reward function (vector)

− ι : S × S → ℝ≥0 is the transition reward function (matrix)

• Example (for use with instantaneous properties)

− “size of message queue”: ρ maps each state to the number of
jobs in the queue in that state, ι is not used

• Examples (for use with cumulative properties)

− “time-steps”: ρ returns 1 for all states and ι is zero

(equivalently, ρ is zero and ι returns 1 for all transitions)

− “number of messages lost”: ρ is zero and ι maps transitions

corresponding to a message loss to 1

− “power consumption”: ρ is defined as the per-time-step

energy consumption in each state and ι as the energy cost of

each transition

79

PCTL and rewards

• Extend PCTL to incorporate reward-based properties

− add an R operator, which is similar to the existing P operator

− φ ::= … | P~p [ψ] | R~r [I=k] | R~r [C≤k] | R~r [F φ]

− where r ∈ ℝ≥0, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• R~r [·] means “the expected value of · satisfies ~r”

“reachability”

expected
reward is ~r

“cumulative”“instantaneous”

80

Types of reward formulas

• Instantaneous: R~r [I=k]

− “the expected value of the state reward at time-step k is ~r”

− e.g. “the expected queue size after exactly 90 seconds”

• Cumulative: R~r [C≤k]

− “the expected reward cumulated up to time-step k is ~r”

− e.g. “the expected power consumption over one hour”

• Reachability: R~r [F φ]

− “the expected reward cumulated before reaching a state
satisfying φ is ~r”

− e.g. “the expected time for the algorithm to terminate”

81

Reward formula semantics

• Formal semantics of the three reward operators

− based on random variables over (infinite) paths

• Recall:

− s ⊨ P~p [ψ] ⇔ Prs { ω ∈ Path(s) | ω ⊨ ψ } ~ p

• For a state s in the DTMC (see [KNP07a] for full definition):

− s ⊨ R~r [I=k] ⇔ Exp(s, XI=k) ~ r

− s ⊨ R~r [C≤k] ⇔ Exp(s, XC≤k) ~ r

− s ⊨ R~r [F Φ] ⇔ Exp(s, XFΦ) ~ r

where: Exp(s, X) denotes the expectation of the random variable

X : Path(s) → ℝ≥0 with respect to the probability measure Prs

82

Reward formula semantics

• Definition of random variables:

− for an infinite path ω= s0s1s2…

− where kφ =min{ j | sj ⊨ φ }

 otherwise

0k if

)s,s()s(ρ

0
)ω(X 1k

0i 1iii
kC

=

+



=
∑

−

= +

≤ ι

)s(ρ)ω(X kkI ==

otherwise

 0i all for)φSat(s if

)φSat(s if

)s,s()s(ρ

0

)ω(X i

0

1-k

0i 1iii

φF

φ

≥∉

∈

+

∞










=

∑ = +ι

83

Model checking reward properties

• Instantaneous: R~r [I=k]

• Cumulative: R~r [C≤k]

− variant of the method for computing bounded until
probabilities

− solution of recursive equations

• Reachability: R~r [F φ]

− similar to computing until probabilities

− precomputation phase (identify infinite reward states)

− then reduces to solving a system of linear equation

• For more details, see e.g. [KNP07a]

− complexity not increased wrt classical PCTL

84

Overview (Part 1)

• Probability basics

• Model checking for discrete-time Markov chains (DTMCs)

− DTMCs: definition, paths & probability spaces

− PCTL model checking

− Costs and rewards

• A glimpse of model checking for continuous-time Markov
chains (CTMCs)

• PRISM: overview

− Modelling language

− Properties

− GUI, etc

− Case study: Bluetooth device discovery

• Summary

85

Continuous-time Markov chains

• Continuous-time Markov chains (CTMCs)

− labelled transition systems augmented with rates

− discrete states, continuous time-steps

− delays exponentially distributed

• Formally, a CTMC C is a tuple (S,sinit,R,L) where:

− S is a finite set of states (“state space”)

− sinit ∈ S is the initial state

− R : S × S → ℝ≥0 is the transition rate matrix

− L : S → 2AP is a labelling with atomic propositions

• Transition rates

− transition between s and s’ when R(s,s’)>0

− probability triggered before t time units 1 – e-R(s,s’)·t

86

Simple CTMC example

C = (S, sinit, R, L)

S = {s0, s1, s2, s3}

sinit = s0

AP = {empty, full}

L(s0)={empty} L(s1)=L(s2)=∅ and L(s3)={full}



















=

0300

2/3030

02/303

002/30

R

s
1

s
0

3/2

1

{full}{empty}

s
2

s
3

3/2 3/2

333



















−

−

−

−

=

3300

2/32/930

02/32/93

002/32/3

Q

infinitesimal
generator matrix

transition
rate matrix

87

Transient and steady-state behaviour

• Transient behaviour

− state of the model at a particular time instant

− πs,t(s’) is probability of, having started in state s, being in
state s’ at time t

− πs,t (s’) = Prs{ ω ∈ Path(s) | ω@t=s’ }

• Steady-state behaviour

− state of the model in the long-run

− πs(s’) is probability of, having started in state s, being in state
s’ in the long run

− πs(s’) = limt→∞ πs,t(s’)

− the percentage of time, in long run, spent in each state

• Can compute these numerically, from rates matrix R

− e.g. embedded/uniformised DTMC

88

Temporal logic CSL

• CSL – Continuous Stochastic Logic

• Similar to PCTL, except real-valued time

− P=? [F[4,5.6] outOfPower] - the (transient) probability of being
out of power in time interval of 4 to 5.6 time units

− S=? [minQoS] – the steady-state probability of satisfying
minimum QoS

− R<10 [C≤5] – cumulated reward up to time 5 is less than 10

• Model checking proceeds essentially via discretisation…

− discretise CTMC to obtain DTMC (embedded, uniformised)

− combine with graph-theoretical analysis

• State-space explosion

− can we exploit continuous approximations?

89

Overview (Part 1)

• Probability basics

• Model checking for discrete-time Markov chains (DTMCs)

− DTMCs: definition, paths & probability spaces

− PCTL model checking

− Costs and rewards

• A glimpse of model checking for continuous-time Markov
chains (CTMCs)

• PRISM: overview

− Modelling language

− Properties

− GUI, etc

− Case study: Bluetooth device discovery

• Summary

91

PRISM…

• Model checking for various temporal logics…

− probabilistic/reward extensions of CTL/CTL*/LTL

− PCTL, CSL, LTL, PCTL*, rPATL, CTL, …

• Various efficient model checking engines and techniques

− symbolic methods (binary decision diagrams and extensions)

− explicit-state methods (sparse matrices, etc.)

− statistical model checking (simulation-based approximations)

− and more: symmetry reduction, quantitative abstraction
refinement, fast adaptive uniformisation, ...

• Graphical user interface

− editors, simulator, experiments, graph plotting

• See: http://www.prismmodelchecker.org/

− downloads, tutorials, case studies, papers, …

92

Probability example

• Modelling a 6-sided die using a fair coin

− algorithm due to Knuth/Yao:

− start at 0, toss a coin

− upper branch when H

− lower branch when T

− repeat until value chosen

• Is this algorithm correct?

− e.g. probability of obtaining a 4?

− obtain as disjoint union of events

− THH, TTTHH, TTTTTHH, …

− Pr(“eventually 4”)

= (1/2)3 + (1/2)5 + (1/2)7 + … = 1/6

0

3

2

1

6

4

5

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

93

Example…

• Other properties?

− “what is the probability of termination?”

• e.g. efficiency?

− “what is the probability of needing
more than 4 coin tosses?”

− “on average, how many
coin tosses are needed?”

• Probabilistic model checking provides a framework for
these kinds of properties…

− modelling languages

− property specification languages

− model checking algorithms, techniques and tools

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

94

Probabilistic models

dtmc

module die

// local state s : [0..7] init 0;

// value of the dice d : [0..6] init 0;

[] s=0 -> 0.5 : (s'=1) + 0.5 : (s'=2);

…

[] s=3 ->

0.5 : (s'=1) + 0.5 : (s'=7) & (d'=1);

[] s=4 ->

0.5 : (s'=7) & (d'=2) + 0.5 : (s'=7) & (d'=3);

…

[] s=7 -> (s'=7);

endmodule

rewards "coin_flips"

[] s<7 : 1;

endrewards

Given in PRISM’s guarded commands modelling notation

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

95

Probabilistic models

int s, d;

s = 0; d = 0;

while (s < 7) {

bool coin = Bernoulli(0.5);

if (s = 0)

if (coin) s = 1 else s = 2;

...

else if (s = 3)

if (coin) s = 1 else {s = 7; d = 1;}

else if (s = 4)

if (coin) {s = 7; d = 2} else {s = 7; d = 3;}

…

}

return (d)

Given as a probabilistic program

s3

0.5

0.5

0.5

0.5

0.5

0.5
0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

s4

s1

s0

s2

s5

s6

96

PRISM GUI: Editing a model

97

PRISM GUI: The Simulator

98

PRISM GUI: Model checking and graphs

99

PRISM – Case studies

• Randomised distributed algorithms

− consensus, leader election, self-stabilisation, …

• Randomised communication protocols

− Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, …

• Security protocols/systems

− contract signing, anonymity, pin cracking, quantum crypto, …

• Biological systems

− cell signalling pathways, DNA computation, …

• Planning & controller synthesis

− robotics, dynamic power management, …

• Performance & reliability

− nanotechnology, cloud computing, manufacturing systems, …

• See: www.prismmodelchecker.org/casestudies

100

Case study: Bluetooth device discovery

• Bluetooth: short-range low-power wireless protocol

− widely available in phones, PDAs, laptops, ...

− open standard, specification freely available

• Uses frequency hopping scheme

− to avoid interference (uses unregulated 2.4GHz band)

− pseudo-random selection over 32 of 79 frequencies

• Formation of personal area networks (PANs)

− piconets (1 master, up to 7 slaves)

− self-configuring: devices discover themselves

• Device discovery

− mandatory first step before any communication possible

− relatively high power consumption so performance is crucial

− master looks for devices, slaves listens for master

101

Master (sender) behaviour

• 28 bit free-running clock CLK, ticks every 312.5µs

• Frequency hopping sequence determined by clock:

− freq = [CLK16-12+k+ (CLK4-2,0-
CLK16-12) mod 16] mod 32

− 2 trains of 16 frequencies
(determined by offset k),
128 times each, swap between
every 2.56s

• Broadcasts “inquiry packets” on
two consecutive frequencies,
then listens on the same two

102

Slave (receiver) behaviour

• Listens (scans) on frequencies for inquiry packets

− must listen on right frequency at right time

− cycles through frequency sequence at much slower speed
(every 1.28s)

• On hearing packet, pause, send reply and then wait for a
random delay before listening for subsequent packets

− avoid repeated collisions with other slaves

103

Bluetooth – PRISM model

• Modelled/analysed using PRISM model checker [DKNP06]

− model scenario with one sender and one receiver

− synchronous (clock speed defined by Bluetooth spec)

− model at lowest-level (one clock-tick = one transition)

− randomised behaviour so model as a DTMC

− use real values for delays, etc. from Bluetooth spec

• Modelling challenges

− complex interaction between sender/receiver

− combination of short/long time-scales – cannot scale down

− sender/receiver not initially synchronised, so huge number of
possible initial configurations (17,179,869,184)

104

Bluetooth - Results

• Huge DTMC – initially, model checking infeasible

− partition into 32 scenarios, i.e. 32 separate DTMCs

− on average, approx. 3.4 x 109 states (536,870,912 initial)

− can be built/analysed with PRISM's MTBDD engine

• We compute:

− R=? [F replies=K {“init”}{max}]

− “worst-case expected time to hear K replies over all possible
initial configurations”

• Also look at:

− how many initial states for each possible expected time

− cumulative distribution function (CDF) for time, assuming
equal probability for each initial state

105

Bluetooth - Time to hear 1 reply

• Worst-case expected time = 2.5716 sec

− in 921,600 possible initial states

− best-case = 635 µs

106

Bluetooth - Time to hear 2 replies

• Worst-case expected time = 5.177 sec

− in 444 possible initial states

− compare actual CDF with derived version which assumes times
to reply to first/second messages are independent

107

Summary (Part 1)

• Discrete-time Markov chains (DTMCs)

− state transition systems + discrete probabilistic choice

− probability space over paths through a DTMC

• Property specifications

− probabilistic extensions of temporal logic, e.g. PCTL, LTL

− also: expected value of costs/rewards

• Model checking algorithms

− combination of graph-based algorithms, numerical
computation, automata constructions

− also applicable to continuous-time Markov chains via
discretisation

• PRISM and Bluetooth case study

• Next: Markov decision processes (MDPs)

