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e |ntroduction

» aleatoric vs. epistemic uncertainty

 Markov decision processes (MD

=

» sequential decision making under uncertainty

» policies and objectives

MaxProb, SSP, finite-horizon, temporal logic

» solving MDPs (optimal policy generation)

inear programming (PTIME)

or dynamic programming (value iteration)




» stochastic games: adding adversarial

e Uncertain MDPs

aspects

» MDPs + epistemic uncertainty, robust control,

'obust dynamic programming, interva

uncertainty set representation, challer

e Sampling-based uncertain MDPs

» removing the transition independence

e Bayes-adaptive MDPs

MDPs,
ges, tools

assumption

» maintaining a distribution over the possible models



Stochastic games



e |nteraction with a second robot

{hazard}

@ Player 1 S; | Player 2




 MDPs model sequential decision making
» for a single agent, under stochastic uncertainty

» we may need adversarial (uncontrollable) decisions

» Or collaborative decision making for multiple agents furn-based

stochastic
game

* A (turn-based, two-player) stochastic game
» takes the form & = ({1,2}, 5, (S}, 5,), 50, A, P) where:
» states S, initial state s, and actions A are as for MDPs

v 51,9, € § are the (disjoint) states controlled by players 1 and 2
concurrent

» transition function P : § X A X S — [0,1] is also as for MDPs stochastic
game

* Another possibility: concurrent stochastic games
» with P 1 § X (A XAy) XS — [0,1] Wi wa



uncontrollable/unknown interference
shared autonomy:

{hazard} human-robot control

0.4 06 9 east {goal,}
] o9

stuck

0.9
north 0.1




Strategies for stochastic games

e Strategies (policies) tor turn-based stochastic games
» a strategy for player i is a mapping 7; : (S X A)* X S, = Dist(A)

» a strategy profile (;, m,) defines strategies for both players

» For state s of game & and strategy profile (7, 7,):

» we can define probability space Pr, "™,
random variables E""(X)
and value functions V"*1""2(s)

e Strategies
» can again be deterministic / randomised or memoryless / history-dependent

» 11 is the set of all strategies for playeri € {1,2}



Objectives V1, Vo for players 1 and 2 can be distinct
» simple, useful scenario: zero-sum (directly opposing), i.e., V1 = -Vo

» SO We assume a single objective V which one player maximises and the other minimises

Consider MaxProb for player 1 (other cases are similar);

° T\, 7T .
max, cry, M, o, V2(s)  where V™™ s exactly as for MDP MaxProb

Games are determined, i.e., for all states s:

max, oy, minﬂzen2 Vi (s) = minﬂzen2 max, oy, Vi s)
SO we define:
, optimal value: V*(s) = max, oy, minﬂzenz Vi(s)

, optimal strategy (for player 1): 7 = argmax . cry. minﬂzen2 V*(s,)



>

 Memoryless deterministic strategies suffice (for both players)

o Complexity worse than for MDPs: NP N co-NP, rather than P

» P approach does not adapt (but strategy improvement is possible)

* |n practice: dynamic programming (value iteration) works well

» e.g., for MaxProb:

1 if s € goal
) 0 f s & goal and k=0
Xy = MaX, e zs,es P(s’y - x51 if s & goal,s € S; and k > 0

min, e 2 o PO - xg7! it s & goal,s € S, and k> 0

eSS v



 Optimal player 1 strategy changes:

{hazard}

Player 2
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e Concurrent stochastic games: strategies, value functions defined similarly

» games are still determined: max, oy min, o V"%(s) = min, o max, o VA7(s)

»  but optimal strategies still memoryless but now randomised Lt @
. . 1 f s € goal
* Value iteration can be extended: .
xg =130 fs & goal and k=0 t T
val(Z) otherwise WiWg

»where val(Z) is the value of the matrix game with payoffs: 7z , = 2 SPf’b(s’) - xsk,_l
’ s'e

» solved via the linear prog

» P, gives the probability o
picking action a in its opt

ram

- player -

mal strat

cgy

Maximise game value v subject to;

Zap =V forb € A,
fora e A,
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Sequential decision making with stochastic games

« UAV road survelllance e [Futures market investment  Multi-robot control
»  with partial human control » market is part stochastic, » adversarial (worst-case)
(varying operator accuracy) part adversarial vS. collaborative
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Uncertain MDPs



 We can use MDPs for sequential decision making under (aleatoric) uncertainty

>

modelled here using transition probabilities (often learnt from data)
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 We can use MDPs for sequential decision making under (aleatoric) uncertainty

» modelled here using transition probabilities (often learnt from data)

e Policies can be sensitive to small perturbations in transition probabillities

» S0 “optimal” policies can in tfact be sub-optimal

oal
@ w S east »@D 87 0.7 east
-
O (0.6
south <7 south 0.5-6 stuck 8
= 0.54south
0.5-e/4 0.4+e/4 [ 0.9 =
0.5+e north 0.1 © 04
stuck east ' o
soX0 ¢
©
west = 0.2 e

{goal;y ** {goal;} 02 -01 0 0.1 0.2

106



We can use MDPs tor sequential decision making under (aleatoric) uncertainty

» modelled here using transition probabilities (often learnt from data)

Policies can be sensitive to small perturbations in transition probabilities

» S0 “optimal” policies can in tfact be sub-optimal

Uncertain MDPs: MDPs + epistemic uncertainty (model uncertainty)

» we focus here on uncertainty in transition probabilities

Key guestions:

» how to model (and solve for) epistemic uncertainty?
» what guarantees do we get”

» |s It statistically accurate?

»  how computationally efficient is it?
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e An uncertain MD

v P is the transition function uncertainty set

2 (UM

D

P) takes the form = (S, sy, A, &) where:

» states 3, initial state s, and actions A are as for MDPs

.e., each P € £ is a transition function P : S X A X S — [0,1]

« The uncertainty set ¢ C Dist(S)

v foreachs € 5, a € A(s)

> iS@?: {PSa

» similarly: ¢ =

» (9P sometimes “ambiguity sets”)

{PY :

. P e &)

P e &}

[0.7,0.8] 0

[0.4,0.0] < 0.2,0.3]

[0.4,0.6] é\
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 Semantics of a uMDP A = (S, sy, A, )
v M can be seen as a (usually infinite) set of MDPs: | /]| = { #]|P] : P € &}
» where J|P| = (S, sy, A, P) is M instantiated with P € &

e But other views are possible

» dynamic, Bayesian, ...

 Some examples of uMDPs

Interval MDPs (IMDPs) Likelihood MDPs Sampled MDPs




 Can we allow dependencies between uncertainty sets?

» implications for computational tractability and modelling accuracy

* Rectangularity

v transition function uncertainty set & is (s,a)-rectangular
fwe have &P = X nesxa P

.e., If there are no dependencies between uncertainty sets for each s, a
» interval MDPs are (s,a)-rectangular (“sampled MDPs” might not be)

» - we will assume (s,a)-rectangularity for now (and later relax it)

 We can also define s-rectangularity [Wiesemann et al. |
o« P =X, ¢ P where L. = {(P))cn : PE P}
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Non-rectangular uMDPs

 When might dependences between uncertainties arise?

Underwater vehicle control

IN unkNown ocean currents
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Task scheduling in the
presence of faulty processors
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 Example MDP (in fact, just a single policy) with parameter p

1 -
(st
0 € [0.4,0.6] 1 @

* Worst-case probability to reach v'7
» min{p(l —p) : p€[04,06]} =04-(1-04)=0.24

* Worst-case probability to reach v under rectangularity assumptions?
» min{p;(1 —p,) : p;,pr €10.4,0.6]} =04 -(1 —0.6) =0.16 (too conservative)
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-or uUMDPs, as for MDPs, we can define
» policiest: (S XA)* XS > A, or
» memoryless policies,, : § = A

» (depending on the set &, some care is
needed to make sure policies can be applied)

~or policy & € II and transition probabilities P € &

» we can define probability space PrS”’P,
random variables -Pf’P(X) and
value functions V()

» which correspond to the MDP.Z | P]
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-0or now, we consider a robust view of uncertainty

» |.e., we focus on worst-case (adversarial, pessimistic) scenarios

Robust policy evaluation:

» worst-case scenario for (maximising) policy z, i.e.: mMiNp. g VEE(s)

Robust control (policy optimisation):
, optimal worst-case value V*(s) = max,__qminp_g V7™ (s)

» optimal worst-case policy 7 = argmax . miNp. o VEE(s)

Other cases:
» for a minimising objective (e.g. SPP), we use: V¥(s) = min__maxp. 4 VEE(s)

» We may also consider optimistic scenarios, e.g. V*(s) = max . maxpc g VEE(s)
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An IMDP for the robot example

» uncertainty added to two state-action pairs

oal
“ 0.6 east
east S+
0.1*xe/4 ek
south X < south 0.5+ stuc
0.5 ' 0.9
+e/4 0.4 5+
+e/4 e north 0.1
stuck east '
(Loa)e8 = @
west
{goal,} {goal}

» Note: the degree of uncertainty (e)
N states s1 and s Is correlated here
(but the actual transition probabilities are not)

>

Robust control

for any e, we can pick a “robust”

(optimal worst-case) policy

and give a safe lower bound
on its performance

0.7

0.6
0.5 east

04 south

0.3
0.2 e

Max. prob. reach goalj
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« Now we consider a more dynamic approach to resolving uncertainty

» (which we will need to extend dynamic programming to this setting)

 An environment policy (or nature policy, or adversary) 7 € &
v isamapping7: (S XA)* X (SXA)— Dist(S)

» such that 7(sy, ag, - .., S,, a,) € P}

» note: this assumes (s,a)-rectangularity!

e Policies &, T yield

» a probability space Pr**

» random variables E*(X)

v and value functions V**
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e Stochastic games
» unknown parts of the system can be modelled adversarially

» Zero-sum turn-based (or concurrent) stochastic games

dynamic programming (value iteration) generalises

* Uncertain MDPs
»  MDPs plus epistemic uncertainty: set of transition functions
» rectangularity (dependencies)
» control policies + robust control

» environment policies
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