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Overview (Part 2)

- Markov decision processes (MDPs)

— MDPs: definition
— Paths, strategies & probability spaces

- PCTL model checking
- Costs and rewards
- Case study: Firewire root contention

. Strategy synthesis for MDPs
— Properties and objectives
— Verification vs synthesis

- Case study: Dynamic power management
- Summary



Recap: Discrete-time Markov chains

Discrete-time Markov chains (DTMCs)

— state-transition systems augmented with probabilities
Formally: DTMC D = (S, s;., P, L) where:

— Sis a set of states and s, € S is the initial state

— P:S xS —[0,1] is the transition probability matrix

— L :S — 2AP |labels states with atomic propositions

— define a probability space Pr, over paths Path,

Properties of DTMCs
— can be captured by the logic PCTL
— e.g. send — P_yqs [ F deliver ]

— key question: what is the probability
of reaching states T < S from state s?

501 {succ]

— reduces to graph analysis + linear equation system



Nondeterminism

Some aspects of a system may not be probabilistic and
should not be modelled probabilistically; for example:

Concurrency - scheduling of parallel components

— e.g. randomised distributed algorithms - multiple
probabilistic processes operating asynchronously

Underspecification - unknown model parameters

— e.g. a probabilistic communication protocol designed for
message propagation delays of between d,,;, and d,, .,

Unknown environments
— e.g. probabilistic security protocols - unknown adversary



Probability vs. nondeterminism

- Labelled transition system

- Discrete-time Markov chain

— (5,50,R,L) where R < SxS
— choice is nondeterministic

— (S,54,P,L) where P : SXS—[0,1]
— choice is probabilistic

- How to combine?



Markov decision processes

Markov decision processes (MDPs)
— extension of DTMCs which allow nondeterministic choice

Like DTMCs:

— discrete set of states representing possible configurations of
the system being modelled

— transitions between states occur in discrete time-steps

Probabilities and nondeterminism {heads}

— in each state, a nondeterministic
choice between several discrete
probability distributions over
successor states




Simple MDP example

- A simple communication protocol
— after one step, process starts trying to send a message

— then, a nondeterministic choice between: (a) waiting a step
because the channel is unready; (b) sending the message

— if the latter, with probability 0.99 send successfully and stop
— and with probability 0.01, message sending fails, restart

restart




Markov decision processes

Formally, an MDP M is a tuple (S,s;,,x,0,L) where:
— Sis a set of states (“state space”)
— Si,it € S is the initial state

— o is an alphabet of action labels

— 0 < S x o x Dist(S) is the transition
probability relation, where Dist(S) is the set ‘ {tails}
of all discrete probability distributions over S

— L:S — 2APis a labelling with atomic propositions

nity

Notes:
— we also abuse notation and use o as a function
— j.e. 0 : S — 20xDist®) where 6(s) = { (a,n) | (s,a,n) € &}
— we assume 0 (s) is always non-empty, i.e. no deadlocks

— MDPs, here, are identical to probabilistic automata [Segala]
. usually, MDPs take the form: © : S X o« — Dist(S) 8



Simple MDP example 2

M = (S,s; ., Steps,L) AP = {init,heads,tails}
e L(s,)={init},

S ={sqy, Sy, S», S3} L(s))=4,

s —s, L(s,)={heads},

L(s;)={tails}

Steps(sg) ={ (a, [s;—~1]}

Steps(s,) = { (b, [s4—0.7,5,—0.3]), (¢, [s,~0.5,5;~0.5]) }
Steps(s,) = { (@, [s,~1]) } theads}
Steps(s3) ={ (a, [s3—~ 1]}




Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

PRISM code:

module M1
s : [0..2] init O;
[1s=0-> (s’=1);

[] s=1 -> 0.5:(s’=0) + 0.5:(s’=2);

[1s=2-> (s'=2);

endmodule

module M2 = M1 [ s=t ] endmodule

1
1
1
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Example - Parallel composition

Asynchronous parallel
composition of two
3-state DTMCs

Action labels
omitted here Q




Paths and strategies

- A (finite or infinite) path through an MDP {heads}
— is a sequence of (connected) states

— e.g. Sp(@g,Mp)s (@, M)s,...

— represents an execution of the system

— resolves both the probabilistic and
nondeterministic choices

- A strategy o (aka. “adversary” or “policy”) of an MDP
— is a resolution of nondeterminism only

— is (formally) a mapping from finite paths to distributions on
action-distribution pairs

— induces a fully probabilistic model
— i.e. an (infinite-state) Markov chain over finite paths
— on which we can define a probability space over infinite paths

12



Classification of strategies

Strategies are classified according to

randomisation:

— o is deterministic (pure) if o(s,...s,) is a point distribution, and
randomised otherwise

memory:
— o is memoryless (simple) if o(s,...s,) = o(s,) for all s,...s_

— o is finite memory if there are finitely many modes such that
o(s,...s,) depends only on s_and the current mode, which is
updated each time an action is performed

— otherwise, o is infinite memory

- A strategy o induces, for each state s in the MDP:
— a set of infinite paths Patho (s)
— a probability space Pro, over Path? (s)

13



Example strategy

- Fragment of induced Markov chain for strategy which picks
b then cins,

finite—-memory,
deterministic

14



Induced DTMCs

. Strategy o for MDP induces an infinite-state DTMC D°

- D9 = (Path9,(s),s,P°,) where:

— states of the DTMC are the finite paths of o starting in state s
— initial state is s (the path starting in s of length 0)

— PO (w,w’)=u(s’) if w’= w(a, u)s’ and o(w)=(a,u)

— Po(w,w’)=0 otherwise

1-to-1 correspondence between Path°(s) and paths of D°

- This gives us a probability measure Pro, over Patho(s)
— from probability measure over paths of D°

15



MDPs and probabilities

- Prob(s, @) = Pro. { w € Patho(s) | w = ¥}

— for some path formula g
— e.g. Prob(s, F tails)

- MDP provides best-/worst-case analysis

— based on lower/upper bounds on probabilities
— over all possible adversaries

pmin(S’W) — iﬂfcseAdv PI’ObG(S,\p)

Prnax (S, W) = SUP, g, Prob®(s,v)

16



Examples

Probc'(s,, F tails) = 0.5
Prob92(s,, F tails) = 0.5
— (where o, picks b i-1 times then ¢)

Prmax(So, F tails) = 0.5
Pmin(So, F tails) = 0

Probo'(s,, F tails) = 0.5

Probo2(s,, F tails)
= 0.3+0.7-0.5 = 0.65

Prob93(s,, F tails)
= 0.3+0.7-0.3+0.7-0.7-0.5 = 0.755

Prmax(So, F tails) =1
Pmin(So, F tails) = 0.5

17



Memoryless strategies

Memoryless strategies always pick same choice in a state
— also known as: positional, Markov, simple
— formally, o(sy(ag,Mq)s;---S,) depends only on s,
— can write as a mapping from states, i.e. o(s) for each s € S
— induced DTMC can be mapped to a |S|-state DTMC

From previous example:
— adversary o, (picks cin s;) is memoryless; o, is not

18



PCTL

- Temporal logic for properties of MDPs (and DTMCs)
— extension of (non-probabilistic) temporal logic CTL

— key addition is probabilistic operator P

— quantitative extension of CTL’s A and E operators

PCTL syntax:

— ¢ =truela|dPAdP| D] P., [W] (state formulas)
—P = Xd|dUskd|PUD (path formulas)

— where a is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,=2}, k e N

- Example: send — P_, o< [ true U='0 deliver ]

19



PCTL semantics for MDPs

PCTL formulas interpreted over states of an MDP
— s = ¢ denotes ¢ is “true in state s” or “satisfied in state s”

- Semantics of (non-probabilistic) state formulas:

— for a state s of the MDP (S,s,,;;,%,0,L):

—skEa < a € L(s)
- SEP AP, < skE¢;, and s E ¢,
—sE -} < s kE ¢ is false

- Semantics of path formulas:

— for a path w = sy(ay,Mg)s;(a;,M)S5... in the MDP:
- WEXo® S S EQ
- wkE ¢, Uskdp, <« di<ksuchthats, = $, and Vj<i, s; = ¢,

—wE ¢, Ud, < k=0 such that w & ¢, Usk o, -



PCTL semantics for MDPs

- Semantics of the probabilistic operator P

— can only define probabilities for a specific strategy o

— s = P_, [ @ ] means “the probability, from state s, that @ is
true for an outgoing path satisfies ~p for all strategies o’

— formally s & P,lw] & Pro@) ~p for all strategies o
— where we use Pr.o(p) to denote Pr,°{ w € Path,° | w = @ }

- Some equivalences:
—Fd=0db=truelU o (eventually, “future”)
-~ God=0¢=—-(F ) (always, “globally”)

21



Minimum and maximum probabilities

- Letting:

= PrmX(p) = sup, Pro(y)
— Pr,min(y) = inf; Pro(y)

- We have:

—if~e{z,>}thens=P_[Y] < Prmn(y) ~p
—if~e{<,<l,thens=EP_[Y] & Prmx(y) ~p
- Model checking P_,[ @ ] reduces to the computation over all
strategies of either:

— the minimum probability of Y holding

— the maximum probability of Y holding
+ Crucial result for model checking PCTL on MDPs

— memoryless strategies suffice, i.e. there are always
memoryless strategies o, and o,,,, for which:

— PrSO'min(L')) = Prsmin(LI)) and Pl’sc’max(kl)) — Prsmin(q))
22



Quantitative properties

For PCTL properties with P as the outermost operator
— quantitative form (two types): P, [w]land P, ., [ W]

— i.e. "what is the minimum/maximum probability (over all
adversaries) that path formula p is true?”

— corresponds to an analysis of best-case or worst-case
behaviour of the system

— model checking is no harder since compute the values of
Pr.min(p) or Pr,m2(y) anyway

1

— useful to spot patterns/trends
0.8
£06
Example: CSMA/CD protocol 3%
Q0
— “min/max probability £ 04,
that a message is sent 0.2l ! ——maximum
1 ---a\{e_rage
within the deadline” 1 — minimum
800 1000 1200 1400 1600 1800

K 23



Some real PCTL examples

Byzantine agreement protocol
— P.in—> [ F (@greement A rounds<?2) ]

— “what is the minimum probability that agreement is reached
within two rounds?”

- CSMA/CD communication protocol

— Prmax—> [ F collisions=k ]
— “what is the maximum probability of k collisions?”

- Self-stabilisation protocols

— P.in-> [ F<t stable ]

— “what is the minimum probability of reaching a stable state
within k steps?”

24



PCTL model checking for MDPs

- Algorithm for PCTL model checking [BAA95]
— inputs: MDP M=(S,s,,;,,&,0,L), PCTL formula ¢
— output: Sat(d) ={s €S |s k= ¢} = setof states satisfying ¢

- Basic algorithm same as PCTL model checking for DTMCs
— proceeds by induction on parse tree of ¢
— non-probabilistic operators (true, a, —, A) straightforward

- Only need to consider P_, [ @ ] formulas

— reduces to computation of Pr,m"(y) or Pr,/mx(y) for all s € S
— dependent on whether ~ € {>=,>} or ~ € {<,<}

— these slides cover the case Pr.m"(d, U §,), i.e. ~ € {=,>}

— case for maximum probabilities is very similar

— next (X ¢) and bounded until (b, U=k ¢,) are straightforward
extensions of the DTMC case 25



PCTL until for MDPs

- Computation of probabilities Pr,mn(¢p, U ¢,) forall s € S
First identify all states where the probability is 1 or 0

— “precomputation” algorithms, yielding sets Syes, Sno
- Then compute (min) probabilities for remaining states (5?)
— either: solve linear programming problem
— or: approximate with an iterative solution method
— or: use policy iteration

Example:
P.,[Fa]

P.,[trueUa]

26



PCTL until - Precomputation

|ldentify all states where Pr.m"n(d, U ¢,) is 1 or O
— Sves = Sat(P.; [ o, U P, ]), S"™°=Sat(—P.,[ P, U, ]
- Two graph-based precomputation algorithms:

— algorithm Prob1A computes Sves

. for all strategies the probability of satisfying ¢, U &, is 1
— algorithm ProbOE computes Sn°

. there exists a strategy for which the probability is 0

Sves = Sat(P., [Fa])

Sno = Sat(—P_,[Fal)

27



Method 1 - Linear programming

- Probabilities Pr.,mn(¢d, U ¢,) for remaining states in the set
S? =S\ (Syes U S"°) can be obtained as the unique solution
of the following linear programming (LP) problem:

maximize ZS o X subject to the constraints
X, < D u(s")- X, + D u(s")
s'eS’ s'eSYes

for all s € S” and for all (a, n) € 8(s)

- Simple case of a more general problem known as the
stochastic shortest path problem [BT91]

- This can be solved with standard techniques
— e.g. Simplex, ellipsoid method, branch-and-cut

28



Example - PCTL until (LP)

Let x; = PrSimi“(F a)
Sves: x,=1, Sho: x3=0
For 7 = {Xq, X;}:
Maximise x,+X; subject to constraints:
e Xg < X
e Xo9 =< 0.25-Xy + 0.5
e X; <0.1-Xy+ 0.5-x;, + 0.4

29



Example - PC

L until (LP)

Let x; = Pr,™"(F a)
Sves: x,=1, Sho: x3=0

For 7 = {Xq, X;}:

Maximise x,+X; subject to constraints:

e Xg = X
e Xg=2/3
e X3 0.2-xy+ 0.8

X X
A '|“

0.8
- X0S2/3 X'l SO.ZXO
' + 0.8

—~——+ X, 0

0 2/3 1 0 0



Example - PCTL until (LP)

Let x; = PrSimi“(F a)
Sves: x,=1, Sho: x3=0

For 7 = {Xq, X;}:

Maximise x,+X; subject to constraints:

e Xg < X
« Xo=<2/3
e X3 0.2-xy+ 0.8

] m§>/ﬂ (Xg, X7)

Solution:

(2/3, 14/15)

2/3 1

31



Example - PCTL until (LP)

Let x; = PrSimi“(F a)
Sves: x,=1, Sho: x3=0
For §* = {Xq, X;}:
Maximise x,+X; subject to constraints:
e Xg < X
e Xg=2/3
e X3 0.2-xy+ 0.8

X; <0.2:xy + 0.8

2

ma%
o0 memoryless

11— adversaries

v <2)3— 2 o

0 2/3 1 32



Method 2 - Value iteration

- For probabilities Pr,mn(d, U ¢,) it can be shown that:

— Pr,min(p, U §,) = lim,_ x.™ where:

] ifs e S
0 ifse S™
(n)
X, =) 0 ifseS andn=0
min(a,u)eSteps(s) [Z H(S')' XS'(n])J if s e S? andn>0
L s'eS

- This forms the basis for an (approximate) iterative solution
— iterations terminated when solution converges sufficiently

33



Example - PCTL until (value iteration)

Compute: PrSimi”(F a)
Sves = {x,}, Sn° ={x3}, S = {Xq, X;}

[ XO(”),X1(”),X2(”),X3(”) ]
n=0: [0,0,1,0]

n=1: [ min(0,0.25-0+0.5),
0.1-0+0.5-0+0.4, 1, 0]
=[0,0.4,1,0]

n=2: [ min(0.4,0.25-0+0.5),
0.1-0+0.5-0.4+0.4, 1, 0]
=[10.4,0.6,1, 0]
n=3:

34



Example - PCTL until (value iteration)

[ XO(“),X](”),XZ(“),X3(”) ]
[ 0.000000, 0.000000, 1, 0]
[ 0.000000, 0.400000, 1, 0]
[ 0.400000, 0.600000, 1, 0]
[ 0.600000, 0.740000, 1, 0]
[ 0.650000, 0.830000, 1, 0]
[ 0.662500, 0.880000, 1, 0]
[ 0.665625, 0.906250, 1, 0]
[ 0.666406, 0.919688, 1, 0]
[ 0.666602, 0.926484, 1, 0]
[ 0.666650, 0.929902, 1, 0]

5 3 3 3 3 3 3 3 5 5
Il
© X NV A WN 7O

[ 0.666667, 0.933332, 1, 0]
[ 0.666667, 0.933332, 1, 0]
~[2/3,14/15,1,0]

S5 S
il
NN
- O

35



Example - Value iteration + LP

[ Xo(n),X](n),Xz(n),X3(n) ]
[ 0.000000, 0.000000, 1, 0]

[ 0.000000, 0.400000, 1, 0]
[ 0.400000, 0.600000, 1, 0]
[ 0.600000, 0.740000, 1, 0]
[ 0.650000, 0.830000, 1, 0]
[ 0.662500, 0.880000, 1, 0]
[ 0.665625, 0.906250, 1, 0]
[ 0.666406, 0.919688, 1, 0]
[ 0.666602, 0.926484, 1, 0]
[ 0.666650, 0.929902, 1, 0]

5 3 3 3 3 3 3 3 5 5
Il
© X NV A WN 7O

2/3

v

[ 0.666667, 0.933332, 1, 0]
[ 0.666667, 0.933332, 1, 0]
~[2/3,14/15,1,0]

X
o
S5 S
il
NN
— O
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Method 3 - Policy iteration

- Value iteration:

— iterates over (vectors of) probabilities
Policy iteration:
— iterates over strategies (“policies”)

1. Start with an arbitrary (memoryless) strategy o

2. Compute the reachability probabilities Pro (F a) for o
3. Improve the strategy in each state

- 4. Repeat 2/3 until no change in strategy

- Termination:

— finite number of memoryless strategies
— improvement in (minimum) probabilities each time

37



Method 3 - Policy iteration

1. Start with an arbitrary (memoryless) strategy o
— pick an element of &(s) for each state s € S
. 2. Compute the reachability probabilities Pro(F a) for o
— probabilistic reachability on a DTMC
— i.e. solve linear equation system

- 3. Improve the strategy in each state

c'(s) = argmin {Zu(s')- Pro(Fa) | (a,pn) e 6(5)}

s'eS

- 4. Repeat 2/3 until no change in strategy

38



Example - Policy iteration

Arbitrary strategy o:
Compute: Pro(F a)
Let x; = Pr °(F a)
X,=1, x3=0 and:
- Xo = X
X; = 0.1-%Xy+ 0.5-x;, + 0.4
Solution:
Pro(Fa)=1[1,1,1,0]
Refine o in state s
min{1(1), 0.5(1)+0.25(0)+0.25(1)}
= min{1, 0.75} = 0.75

39




Example - Policy iteration

Refined strategy o’:
Compute: Pro'(F a)
Let x; = Pr o (F a)
X,=1, x3=0 and:
- Xo = 0.25-x, + 0.5
.X; = 0.1-x5 + 0.5:x; + 0.4
Solution:
Pro(Fa)=[2/3,14/15,1,0]1
This is optimal

40



Example - Policy iteration

A f)
X; = 0.2-xXy + 0.8 . ‘s o]

| ,
Xo =2/3 X, 0 ¥— o > X,
0 / 1

41



Costs and rewards for MDPs

- We can augment MDPs with rewards (or, conversely, costs)
— real-valued quantities assigned to states and/or transitions
— these can have a wide range of possible interpretations

Some examples:

— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit

Extend logic PCTL with R operator, for “expected reward”
— as for PCTL, either R_. [ ... I, Rpyines [ .- ] OF R [ 12 ]

Some examples:
— Ryine? [1729], Ray? [C=00]) R oy [ F “end” ]
— “the minimum expected queue size after exactly 90 seconds”
— “the maximum expected power consumption over one hour”

— the maximum expected time for the algorithm to terminate
42



Case study: FireWire root contention

FireWire (IEEE 1394) il
— high-performance serial bus for networking ,.&
multimedia devices; originally by Apple s
— "hot-pluggable” - add/remove Q’
devices at any time
— no requirement for a single PC (but need acyclic topology)

Root contention protocol
— leader election algorithm, when nodes join/leave
— symmetric, distributed protocol
— uses randomisation (electronic coin tossing) and timing delays
— nodes send messages: "be my parent”
— root contention: when nodes contend leadership
— random choice: "fast"/"slow" delay before retry

43



FireWire example

44



FireWire leader election

45



FireWire root contention

46



FireWire root contention

47



FireWire analysis

- Probabilistic model checking = ==

— model constructed and analysed using PRISM m W E m
— timing delays taken from IEEE standard
— model includes:

. concurrency: messages between nodes and wires
. underspecification of delays (upper/lower bounds)
— max. model size: 170 million states e

- Analysis: oV vAn\e
— verified that root contention always -~
resolved with probability 1
— investigated time taken for leader election == =

— and the effect of using biased coin

- based on a conjecture by Stoelinga

48



FireWire: Analysis results

o
o0}

o
(o))

o
N

o

minimum probability of electing a leader by T
Ao

(=]

- short wire
- |ong wire

4

6
T (10° ns)

8

10

“minimum probability
of electing leader
by time T~
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FireWire: Analysis results

© o o

min. probab. electing leader by T
o

—
S

8- // “minimum probability
J 4 //é,@ R e 0 of elect@ng Ie?der
:\ %/A@%{%M‘i; ;;:‘:“ by time T
=224 ==
2 H ///////////////Il%;f’:}t////gﬁ‘/&““‘ (short wire length)
D= e 2

' Using a biased coin
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FireWire: Analysis results

73“ x 10
= 10]
QO
@
o
5 g “maximum expected
< time to elect a leader”
2 6
£
T 4
(] .
o (short wire length)
3
o o
= Using a biased coin
E
x
0 I
£ 0.2 0.4 0.6 0.8

probability of choosing fast
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FireWire: Analysis results

wW
0 9]
&)
o

3800 *maximum expected

time to elect a leader”
3750t

3700}
(short wire length)

5 Using a biased coin
151010 N T ——— ) is beneficiall

maximum expected time to elect a leader (ns)

0.45 0.5 0.55 0.6 0.65 0.7
probability of choosing fast
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Overview (Part 2)

- Markov decision processes (MDPs)

— MDPs: definition
— Paths, strategies & probability spaces

- PCTL model checking
- Costs and rewards
.- Case study: Firewire root contention

. Strategy synthesis for MDPs
— Properties and objectives
— Verification vs synthesis

- Case study: Dynamic power management
- Summary
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From verification to synthesis

Shift towards quantitative model synthesis from specification

— begin with simpler problems: strategy synthesis, template-based
synthesis, etc

— advantage: correct-by-construction

Here consider the problem of strategy (controller) synthesis

— i.e. “can we construct a strategy to guarantee that a given
quantitative property is satisfied?”

— instead of “does the model satisfy a given quantitative property?”

— also parameter synthesis: “find optimal value for parameter to
satisfy quantitative objective”

Many application domains
— robotics (controller synthesis from LTL/PCTL)
— dynamic power management (optimal policy synthesis) 54



Quantitative verification & synthesis

Probabilistic model
System e.g. Markov chain

003 P_oor [ F=t faill

Probabilistic
model checker
—>  e.g. PRISM

\

) Result

v X

Quantitative
results

1ittit

.............

Al 8 T B T

J

0S t
ystem L
require- Probabilistic temporal

ments

logic specification

e.g. PCTL, CSL, LTL

Stra’gegy
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Running example

Example MDP
— robot moving through terrain divided into 3 x 2 grid

States:
Sos S1s S2, S35 S4, S

Actions:

north, east, south,
west, stuck

Labels

(atomic propositions):

hazard, goal,, goal,

56



Properties and objectives

P is true with :

. The syntax: probabiity—p e
e e e er e ee e e e e ee e e nn et ; reward is ~r

_CI)::: P~p[Lp] | RNr[p] ............................................
_lIJZtI’UE|a|l|)/\L|)|—|L|)|XLp| LI)USI(LI) | Ll)ULl)

b = Fb |C | C g'm"'r"l'é')'(";c"’" ..... iainded “unt””

— where b is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,>}, k € N,
andr € R,

— Fb=trueUD

- We refer to ¢ as property, Y and p as objectives
— (branching time more challenging for synthesis)

57



Properties and objectives

Semantics of the probabilistic operator P
— can only define probabilities for a specific strategy o

— s = P_, [ @ ] means “the probability, from state s, that @ is
true for an outgoing path satisfies ~p for all strategies o’

— formally s & P,lw] & Pro@) ~p for all strategies o
— where we use Pr.o(p) to denote Pr,°{ w € Path,° | w = @ }

R.. [ - ] means “the expected value of - satisfies ~r”

Some examples:
— P_o4 [ F “goal” ] “probability of reaching goal is at least 0.4”

— R_ [ C=50 ] “expected power consumption over one hour is
below 5"

— R_;o [ F “"end” ] "expected time to termination is at most 10"
58



Verification and strategy synthesis

- The verification problem is:

— Given an MDP M and a property ¢, does M satisfy & under any
possible strategy o?

- The synthesis problem is dual:

— Given an MDP M and a property ¢, find, if it exists, a strategy
o such that M satisfies ¢ under o

- Verification and strategy synthesis is achieved using the
same techniques, namely computing optimal values for
probability objectives:

— Prymin(y) = inf_ Pr.2(y)

— Pr;maX(p) = sup_ Pr.9 (V)

— and similarly for expectations
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Computing reachability for MDPs

Computation of probabilities Pr,ma(F b) for all s € S

Step 1: pre-compute all states where probability is 1 or O
— graph-based algorithms, yielding sets Syes, Sno
Step 2: compute probabilities for remaining states (S
— (i) solve linear programming problem
— (i) approximate with value iteration
— (iii) solve with policy (strategy) iteration

1. Precomputation:
— algorithm Prob1E computes Sves
. there exists a strategy for which the probability of "F b" is 1
— algorithm ProbOA computes Sm°

. for all strategies, the probability of satisfying "F b" is O
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Example - Reachability

{hazard} {goal,}

Example:
P20.4 [ F goal] ]

So compute:
Pr,maX(F goal,)
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Example - Precomputation

{hazard} {goaly}

..............

..............

Example:
P20.4 [ F goal] ]

So compute:
Pr,maX(F goal,)
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Reachability for MDPs

- 2. Numerical computation
— compute probabilities Pr,ma(F b)
— for remaining states in S’ = S\ (Sves U S"9)

— obtained as the unique solution of the linear programming
(LP) problem:

minimize Zses? X, subject to the constraints :

X, 2 Z,u(s’)-xs,+ Z,u(s’)

A
s’eS’ s’eSY®

for allse S’ and for all (a, ) € J(s)

- This can be solved with standard techniques
— e.g. Simplex, ellipsoid method, branch-and-cut
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Example - Reachability (LP)

0.4 {hazard} {goaly} Let x; = PrsimaX(F goal;)
E : SYes: Xy=Xg=1
Sno: x,=x3=0
For S = {Xq, X;}:
Minimise x,+X,; subject to:
e Xg = 0.4:%Xy + 0.6-X; (east)
e Xo = 0.1-%; + 0.1 (south)
e X; = 0.5 (south)

e X; = 0 (easy)

Example:
P20.4 [ F goal] ]

So compute:

Pr,maX(F goal,)
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Example - Reachability (LP)

0.4 {hazard} {goaly} Let x; = PrsimaX(F goal;)
E : SYes: Xy=Xg=1
Sno: x,=x3=0
For S = {Xq, X;}:
Minimise x,+X,; subject to:
e Xg = X; (east)
e Xo = 0.1-%; + 0.1 (south)
e X; = 0.5 (south)

XO > O.] 'X]

Xg = X, : + 0.1

0 1 0 2/3 1 0 1



Example - Reachability (LP)

{hazard}

Let x; = Pr,m2(F goal,)

SYes: Xy=Xg=1
Sno: x,=x3=0
For S = {Xq, X;}:
Minimise x,+X,; subject to:
. Xg = X
e Xo=0.1-x; + 0.1
e X3 =0.5

Solution:
(Xq, X;) = (0.5, 0.5)
i.e.
Pr,,m2X(F goaly) = 0.5
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Reachability for MDPs

2. Numerical computation (alternative method)

— value iteration
— it can be shown that: Pr,m(F b) = lim,_ ., X, where:

1 ifse S
0 ifse §™
x," =1 0 ifse S’andn = 0

max{z (s’ ) x. " l(a,u)e 5(5)} ifse S’andn > 0

s’eS

- Approximate iterative solution technique
— iterations terminated when solution converges sufficiently
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Example - Reachability (val. iter.)

0.4 {hazard} {goaly}

Compute: Pr,mX(F goal,)
SYes: Xy=X5=1
Sno: x,=x3=0
$7 = {Xq, X;}

[ Xo(”),X]("),XZ(”),Xg(“),X4(”),X5(”) ]
n=0: [0,0,0,0,1,1]
n=1: [ max(0.6-0+0.4-0, 0.1-0+0.1-1+0.8-0), max(0, 0.5), 0,0, 1, 1]
=[10.1,0.5,0,0,1, 1]
2: [ max(0.6-0.5+0.4-0.1, 0.1-0.5+0.1-1+0.8-0), max(0, 0.5), 0,0, 1, 1]
=[0.34,0.5,0,0,1, 1]

S
I
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Example - Reachability (val. iter.)

{hazard}

[XO(“),X] (”),Xz("),xg(”),x4(“),X5(”]
n=0: [0,0,0,0,1, 1]
n=1: [0.1, 0.5,0,0, 1, 1]
n=2: [0.34, 0.5, 0,0, 1, 1]
n=3: [0.436, 0.5, 0,0, 1, 1]
n=4: [0.4744, 0.5, 0,0, 1, 1]
n=>5: [0.48976, 0.5, 0,0, 1, 1]
n=06: [0.495904, 0.5, 0,0, 1, 1]
n=7: [0.4983616, 0.5, 0,0, 1, 1]
n=_8: [0.49934464, 0.5, 0,0, 1, 1]

n=16: [0.49999957, 0.5,0,0, 1, 1]

n=17: [0.49999982, 0.5, 0,0, 1, 1]
~ [0.50.5,0,0,1, 1]
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Memoryless strategies

- Memoryless strategies suffice for probabilistic reachability

— i.e. there exist memoryless strategies 0, & 0,,,, such that:
— Prob%min(s, F a) = p,,ix(S, F a) for all statess €S
— Prob®max(s, F a) = p,,.,(S, F a) for all statess €S

. Construct strategies from optimal solution:

O-min (S) = argmin{z ILl(S, ) P min (S, ’ Fa) | (a’ lu) < 5(8)}

s’eS

o, .(8)= argmax{z U )P (8, Fa)l(a,u)e 5(8)}

s’eS
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Strategy synthesis

Compute optimal probabilities Pr,ma(F b) for all s € S

- To compute the optimal strategy o*, choose the locally
optimal action in each state

— must guarantee progress towards target states

— in general depends on the method used to compute the
optimal probabilities

For reachability
— memoryless strategies suffice
For step-bounded reachability
— need finite-memory strategies

— typically requires backward computation for a fixed number of
steps

/1



Example - Strategy

{hazard} _{9°a|2}_ Optimal strategy:
' ; So © east
s, . south

v
X
o
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Example - Bounded reachability

{hazard}

{goal,}

Example:
IDmax:? [ FS3 goaIZ ]

So compute:
Pr,maX(F=3 goal,) = 0.99

Optimal strategy

is finite—-memory:
s, (after 1 step): east
s, (after 2 steps): west
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Strategy synthesis for LTL objectives

- Reduce to the problem of reachability on the product of
MDP M and an omega-automaton representing

— for example, deterministic Rabin automaton (DRA)

- Need only consider computation of maximum probabilities
Pr max(y)
— since Pr,min(p) = 1 - Pr,max(—y)

- To compute the optimal strategy o*
— find memoryless deterministic strategy on the product

— convert to finite-memory strategy with one mode for each
state of the DRA for ¢
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Example - LTL

P.oos [ (G —hazard) A (GF goal,) ]
— avoid hazard and visit goal, infinitely often

Pr,,m((G —hazard) A (GF goaly)) = 0.1

Optimal strategy:
(in this instance,
memoryless)
So - south
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Multi-objective strategy synthesis

- Consider conjunctions of probabilistic LTL formulas P_, [y]
— require all conjuncts to be satisfied

Reduce to a multi-objective reachability problem on the
product of MDP M and the omega-automata representing
the conjuncts

— convert (by negation) to formulas with upper probability
bounds (=, >), then to DRA

— need to consider all combinations of objectives

- The problem can be solved using LP methods [TACASO7] or
via approximations to Pareto curve [ATVAT?Z]

— strategies may be finite memory and randomised
Continue as for single-objectives to compute the strategy o*
— find memoryless deterministic strategy on the product

— convert to finite-memory strategy
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Example - Multi-objective

0.4 {hazard} {goaly} w,

4 g, = G —hazard
8'2‘\\ P, = GF goal,

0-3_ \\\\
0.2_ ........................................... ~. < _
0.1
0 1 T T T 1 | 1 I>Lp]
0O 0.2 04 0.6 0.8 1

Multi-objective formula
- Py, [G —hazard ] A P_,, [ GF goal, ]1? True (achievable)

. Numerical query
~ Ppax_ [ GF goal, ] such that P.,, [ G —hazard ] ? ~0.227

Pareto query

- for P ., [ G —hazard ] A P, [ GF goal, ] ? 27



Example - Multi-objective strategies

0.4 {hazard} {goal} Strategy 1
(deterministic)
Sy - east
s, . south
S, & —
S3 & -
S, . east
Sc . west
Ll)zi
Y, = G —hazard
0.>9. = GF goal
0.4 \\\\\ LIJZ g 1
0.3 TS~
0.1 P
0 ; —» W

T T T T T T 1
0O 0.2 04 06 08 1



Example - Multi-objective strategies

0.4 {hazard} tgoal;} Strategy 2
(deterministic)
Sy - south
s, . south
S, & —
S3 & -
S, . east
Sc . west
Ll)zi
Y, = G —hazard
0.>9. = GF goal
0.4 \\\\\ LIJZ g 1
0.3 TS~
0.1 - P
0 ; —» W

T T T T T T 1
0O 0.2 04 06 08 1



Example - Multi-objective strategies

{goal,}

{hazard}

Y, = G —hazard
~. P, = GF goal,

044 T>~_
0.3 - >~

I ' -

~
~

~

||||||||||>Lp‘
O 0.2 04 0.6 0.8 1

Optimal strategy:
(randomised)
Sog . 0.3226 : east
0.6774 : south
s, : 1.0 : south

s, : 1.0 : east
Ss : 1.0 : west
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Case study: Dynamic power management

Synthesis of dynamic power management schemes
— for an IBM TravelStar VP disk drive
— 5 different power modes: active, idle, idlelp, stby, sleep

— power manager controller bases decisions on current power
mode, disk request queue, etc.

Build controllers that

— minimise energy
consumption, subject to
constraints on e.g.

— probability that a request
waits more than K steps 2.0

— expected number of
lost disk requests

2000

=
(%)
o
o
/

1000

min power consumptio

See: lab and http://www.prismmodelchecker.org/files/tacas11 /'




Summary (Part 2)

Markov decision processes (MDPs)

— extend DTMCs with nondeterminism

— to model concurrency, underspecification, ...
Property specifications

— PCTL: exactly same syntax as for DTMCs

— but quantify over all strategies
Model checking algorithms

— covered three basic techniques for MDPs: linear programming,
value iteration, or policy iteration

Strategy synthesis
— can reuse model checking algorithms
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PRISM: Recent & new developments

New features:
1. parametric model checking
2. strategy synthesis
3. real-time: probabilistic timed automata (PTAS)

Further new additions:

— enhanced statistical model checking
(approximations + confidence intervals, acceptance sampling)

— efficient CTMC model checking
(fast adaptive uniformisation)

— benchmark suite & testing functionality
— www.prismmodelchecker.org

— Beyond PRISM...
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1. Parametric model checking

Can specify models in parametric form [TASE1 3]
— parameters expressed as unevaluated constants

— e.g. const double x;

— transition probabilities specified as expressions over
parameters, e.g. 0.5 + x

Properties are given in PCTL, with parameter constants

— new construct constfilter (min, x1*x2, prop)
— filters over parameter values, rather than states

Determine parameter valuations to guarantee satisfaction
of given properties, useful for model repair
- Two methods implemented in PRISM (‘explicit’ engine)

— constraints-based approach is a reimplementation of PARAM
2.0 [Hahn et al]

— sampling-based approaches are new implementation
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2. Controller (strategy) synthesis

Can synthesise controllers using machine learning [ATVAT14]

— partial exploration of the state space, with guarantees of
accuracy

— combines real-time dynamic programming (RTDP) with value
iteration

— focus on updating “most important parts” = most often visited
by good strategies

— speeds up value iteration

Implemented in PRISM
— for both MDPs and stochastic games

— not yet integrated into the main release, subject of ongoing
research
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3. Probabilistic timed automata (PTAS)

- Probability + nondeterminism + real-time
— timed automata + discrete probabilistic choice, or...
— probabilistic automata + real-valued clocks

PTA example: message transmission over faulty channel

States

x:=0 retry _ _
. locations + data variables

tries:=0
X>

59—2‘1‘ tries<N Transitions
X=TALTES = o . guards and action labels
triesq::\f tries:=tries Real-valued clocks
. state invariants, guards, resets
Probability

. discrete probabilistic choice
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Model checking PTAs in PRISM

Properties for PTAs:
— min/max probability of reaching X (within time T)
— min/max expected cost/reward to reach X
(for “linearly-priced” PTAs, i.e. reward gain linear with time)

PRISM has two different PTA model checking techniques...

“Digital clocks” - conversion to finite-state MDP
— preserves min/max probability + expected cost/reward/price
— (for PTAs with closed, diagonal-free constraints)
— efficient, in combination with PRISM’s symbolic engines

Quantitative abstraction refinement
— zone-based abstractions of PTAs using stochastic games
— provide lower/upper bounds on quantitative properties

— automatic iterative abstraction refinement
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Case study: Energy management

- Energy management protocol for Microgrid N N W
— Microgrid: local energy management | % % %
— randomised demand management protocol T -

[Hildmann/Saffre'l 1]
— probability: randomisation, demand model, ...

- Existing analysis 204
— simulation-based _ omow Al
— assumes all clients are unselfish 2 .1 \  -—
Q No use of alg
>
. o =
« Our analysis = =
L Deviations of
. . _ varying size
— stochastic multi-player game g 10
— clients can cheat (and cooperate) 2
— exposes protocol weakness 5 . S

1 2 3 4 5 6 7 8
Number of households
Automatic Verification of Competitive Stochastic Systems, Chen et al., In Proc TACAS 2012

— propose/verify simple fix




Case study: Autonomous urban driving

Inspired by DARPA challenge

— represent map data as a stochastic
game, with environment active,
able to select hazards

— express goals as conjunctions of
probabilistic and reward properties

— e.g. “maximise probability of
avoiding hazards and minimise time
to reach destination”

Solution (PRISM-games 2.0)

— synthesise a probabilistic strategy
to achieve the multi-objective goal

— enable the exploration of trade-offs between subgoals
— applied to synthesise driving strategies for English villages

—
el
et

P

o
$ .
/ -

Synthesis for Multi-Objective Stochastic Games: An Application to Autonomous Urban
Driving, Chen et al., In Proc QEST 2013




Human operator
— sensor tasks

— high-level commands for
piloting

UAV autonomy
— low-level piloting function
Quantitative mission objectives

— road network surveillance with
the minimal time, fuel, or
restricted operating zone visits

Analysis of trade-offs

— consider operator fatigue and
workload

— multi-objective, MDP and SMG
models

(A
Controller Synthesis for Autonomous Systems Interacting with Human Operators. L. Feng

et al, In Proc. ICCPS 2015, ACM



Case study: Control improvisation

razx )])

h

4 0.95

P(G|[(hour(t) = h) = (e} <

09}

==g==[mproviser based on Learned Mode!
== Duration-Calibrated Improviser

- | == Transition-Calibrated Improviser
«§= Empirical Satisfaction Probability

085 9§

0.8+

0.75 -
0.7
0.65 -
0.6

| 2 3 4 5 6 7 8 90 10 11 12 13 14 15 16 17 18 10 20 21 22 23 2i
- Synthesise a control g(ﬁg{"‘egy blending data and models

— hard constraints (that must always be satisfied)

— soft constraints (that must be “mostly satisfied”)

— and randomness requirements on system behavior
- Applied PRISM to synthesise strategies for home appliances

— use PCTL for soft constraints
— http://arxiv.org/pdf/1511.02279.pdf
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Case study: Personalisation

400 I I I I T I I I I

300 - -
200 - -

100 -

wl WY YW

-200 1 1 L | 1 1 L 1
0 1 2 3 4 5 6 7 g 9 10

Time (s)

Voltage (mV)

Personalisation of wearable devices

— estimate parameters for a heart model based on ECG data

— generate synthetic ECG

— useful for model-based development of personalised devices
Devoloped HeartVerify based on Simulink/Stateflow

— variety of tools and techniques

— http://www.veriware.org/pacemaker.php
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Case study: Cardiac pacemaker

- Hybrid model-based framework

— timed automata model for pacemaker
software

— hybrid heart models in Simulink, adopt
synthetic ECG model (non-linear ODE)

- Properties

— (basic safety) maintain
60-100 beats per minute

— (advanced) detailed analysis

energy usage, plotted against 3000
timing parameters of the 2800
pacemaker ol

M 2400+

— parameter synthesis: find values 2200-
for timing delays that optimise 2000+
energy usage 80

100 TAVI [msec]
. _ _ TURI [msec] _ S
Synthesising robust and optimal parameters for cardiac pacemakers using symbolic and

evolutionary computation techniques. Kwiatkowska, Mereacre, Paoletti and Patane, HSB’16




DNA computation

- Cardelli’s DNA transducer gate @)
— inputs/outputs single strands «1. (1)
— two transducers connected 2 (1)

- PRISM identifies a bug: 5-step tracetoa . .. . (g
“bad” deadlock state

— previously found manually [Cardelli’10]
— detection now fully automated
- Bug is easily fixed

— (and verified) reactive gates

(]’]’]’]’]’]’]’]’]’O’OJO’O’O’O’O’O’O’O’O’O’O’OJO’O’O’O’O’O’O’O’O)
(O’]’]’0’]’]’]’]’]’]’]JO’O’O’O’O’O’O’O’O’O’O’OJO’O’O’O’O’O’O’O’O)
(O’O’.I’0’]’]’]’]’]’O’.I’]’]’]’O’O’O’O’O’O’O’O’O’O’O’O’O’O’O’O’O’O)
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) x1* © x2* c2°
(O’O’]’0’]’]’O’]’O’O’]’]’]’O’O’O’]’O’O’O’O’]’]’]’O’O’O’O’O’O’O’O)
(O’O’]’0’]’]’O’]’O’O’]’0’]’O’O’O’O’O’O’]’]’]’]’]’O’O’O’O’O’O’O’O) xl t c2 a t a
‘tT x1* = ¢c2™ a* = ar

Design and Analysis of DNA Strand Displacement Devices using Probabilistic Model
Checking, Lakin et a/, Journal of the Royal Society Interface, 9(72), 1470-1485, 2012




DNA origami tiles

- DNA origami tiles: molecular breadboard [Turberfield lab]

a b
=3 1 1 T ] ()
] ] - - [ [
- ] ] . . ]
] ] - [ [ —
- ] ] C_ . ]
] ] - - [ [
- ] ] . . ]
] ] - - [ [
-] ] ] C .
] ] - - [ [
- ] ] e e s

seam body 4 edge

Aim to understand how to control the folding pathways
. formulate an abstract Markov chain model
. obtain model predictions using Gillespie simulation
. perform a range of experiments, consistent with preditions

Guiding the folding pathway of DNA origami. Dunne, Dannenberg, Ouldridge, Kwiatkowska,
Turberfield & Bath, Nature 525, pages 82-86, 2015.




Perception software




Things that can go wrong...

...in perception software
- sensor failure

— object detection
failure

Machine learning
software

— not clear how it
works

- does not offer
guarantees

- Yet end-to-end
solutions are being
considered...




Motivating example
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Deep neural network
- employed as a perception module of an autonomous car

- must be resilient to image imperfections, change of camera
angle, weather, lighting conditions, ...



Motivating example
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Deep neural network
- employed as a perception module of an autonomous car

- must be resilient to image imperfections, change of camera
angle, weather, lighting conditions, ...



Deep neural networks can be fooled!

- They are unstable wrt adversarial perturbations

— often imperceptible changes to the image [Szegedy et al 2014]
— sometimes artificial white noise

— potential security risk

- Substantial growth in techniques to evaluate robustness

— variety of robustness measures, different from risk [Vapnik’91]
— tools DeepFool [CVPR’16] and constraint—-based [NIPS’16]

- This talk: focus on safety and automated verification framework
— visible and human-recognisable perturbations

— should not result in class changes

— tool DLV based on Satisfiability Modulo Theory

— https://128.84.21.199/abs/1610.06940



Projects

Several possible topics, happy to discuss
Modelling, analysis and synthesis

— driver modelling using PRISM-games

— autonomous driving using PRISM-games

— energy -aware protocols using PRISM-games
— DNA circuits using DSD and PRISM

Software tool development

— strategy synthesis using machine learning
- Theory
— algorithms for model synthesis

http://www.cs.ox.ac.uk/people/marta.kwiatkowska/research.html
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