
AIMS Systems Verification

Quantitative Verification Part 2

Prof. Marta Kwiatkowska

Department of Computer Science
University of Oxford

Quantitative Verification Hilary Term 2017

Overview (Part 2)

• Markov decision processes (MDPs)

− MDPs: definition

− Paths, strategies & probability spaces

• PCTL model checking

• Costs and rewards

• Case study: Firewire root contention

• Strategy synthesis for MDPs

− Properties and objectives

− Verification vs synthesis

• Case study: Dynamic power management

• Summary

2

Recap: Discrete-time Markov chains

• Discrete-time Markov chains (DTMCs)

− state-transition systems augmented with probabilities

• Formally: DTMC D = (S, sinit, P, L) where:

− S is a set of states and sinit ∈ S is the initial state

− P : S × S → [0,1] is the transition probability matrix

− L : S → 2AP labels states with atomic propositions

− define a probability space Prs over paths Paths

• Properties of DTMCs

− can be captured by the logic PCTL

− e.g. send → P≥0.95 [F deliver]

− key question: what is the probability
of reaching states T ⊆ S from state s?

− reduces to graph analysis + linear equation system

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

3

Nondeterminism

• Some aspects of a system may not be probabilistic and
should not be modelled probabilistically; for example:

• Concurrency - scheduling of parallel components

− e.g. randomised distributed algorithms - multiple
probabilistic processes operating asynchronously

• Underspecification - unknown model parameters

− e.g. a probabilistic communication protocol designed for
message propagation delays of between dmin and dmax

• Unknown environments

− e.g. probabilistic security protocols - unknown adversary

4

5

Probability vs. nondeterminism

• Labelled transition system

− (S,s0,R,L) where R ⊆ S×S

− choice is nondeterministic

• Discrete-time Markov chain

− (S,s0,P,L) where P : S×S→[0,1]

− choice is probabilistic

• How to combine?

s1s0

s2

s3

0.01

0.98

0.01

1

1

1

{fail}

{succ}

{try}

s1s0

s2

s3

{fail}

{succ}

{try}

Markov decision processes

• Markov decision processes (MDPs)

− extension of DTMCs which allow nondeterministic choice

• Like DTMCs:

− discrete set of states representing possible configurations of
the system being modelled

− transitions between states occur in discrete time-steps

• Probabilities and nondeterminism

− in each state, a nondeterministic
choice between several discrete
probability distributions over
successor states

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

6

Simple MDP example

• A simple communication protocol

− after one step, process starts trying to send a message

− then, a nondeterministic choice between: (a) waiting a step
because the channel is unready; (b) sending the message

− if the latter, with probability 0.99 send successfully and stop

− and with probability 0.01, message sending fails, restart

s1s0

s2

s3

0.01

0.99

1

1

1

1

{fail}

{succ}

{try}

start
send

stop

wait

restart

7

Markov decision processes

• Formally, an MDP M is a tuple (S,sinit,α,δ,L) where:

− S is a set of states (“state space”)

− sinit ∈ S is the initial state

− α is an alphabet of action labels

− δ ⊆ S × α × Dist(S) is the transition
probability relation, where Dist(S) is the set
of all discrete probability distributions over S

− L : S → 2AP is a labelling with atomic propositions

• Notes:

− we also abuse notation and use δ as a function

− i.e. δ : S → 2α×Dist(S) where δ(s) = { (a,µ) | (s,a,µ) ∈ δ }

− we assume δ (s) is always non-empty, i.e. no deadlocks

− MDPs, here, are identical to probabilistic automata [Segala]

• usually, MDPs take the form: δ : S × α → Dist(S)

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

8

9

Simple MDP example 2

M = (S,sinit,Steps,L)

S = {s0, s1, s2, s3}
sinit = s0

Steps(s0) = { (a, [s1֏1]) }
Steps(s1) = { (b, [s0֏0.7,s1֏0.3]), (c, [s2֏0.5,s3֏0.5]) }
Steps(s2) = { (a, [s2֏1]) }
Steps(s3) = { (a, [s3֏1]) }

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

AP = {init,heads,tails}
L(s0)={init},
L(s1)=∅,
L(s2)={heads},
L(s3)={tails}

10

Example - Parallel composition

t0 t1 t2 1

1

0.5
0.5

s0 s1 s2 1

1

0.5
0.5

Asynchronous parallel composition of two 3-state DTMCs

PRISM code:

module M1

s : [0..2] init 0;

[] s=0 -> (s’=1);

[] s=1 -> 0.5:(s’=0) + 0.5:(s’=2);

[] s=2 -> (s’=2);

endmodule

module M2 = M1 [s=t] endmodule

Example - Parallel composition

1 1 1

s0 s0 t0 s0 t1 s0 t2

s1 t0

s2 t0

s1 t1

s2 t1

s1 t2

s2 t2

s1

s2

t0 t1 t2

0.5

1

1

1

1

1 0.51 0.51
1

0.5

1

0.5

1

0.5

0.5

0.5

0.5

1

0.5
0.5

0.5 0.5 0.5

0.51

0.5

1

Asynchronous parallel
composition of two

3-state DTMCs

Action labels
omitted here

11

Paths and strategies

• A (finite or infinite) path through an MDP

− is a sequence of (connected) states

− e.g. s0(a0,µ0)s1(a1,µ1)s2…

− represents an execution of the system

− resolves both the probabilistic and
nondeterministic choices

• A strategy σ (aka. “adversary” or “policy”) of an MDP

− is a resolution of nondeterminism only

− is (formally) a mapping from finite paths to distributions on
action-distribution pairs

− induces a fully probabilistic model

− i.e. an (infinite-state) Markov chain over finite paths

− on which we can define a probability space over infinite paths

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

12

Classification of strategies

• Strategies are classified according to

• randomisation:

− σ is deterministic (pure) if σ(s0...sn) is a point distribution, and
randomised otherwise

• memory:

− σ is memoryless (simple) if σ(s0...sn) = σ(sn) for all s0...sn

− σ is finite memory if there are finitely many modes such that
σ(s0...sn) depends only on sn and the current mode, which is
updated each time an action is performed

− otherwise, σ is infinite memory

• A strategy σ induces, for each state s in the MDP:

− a set of infinite paths Pathσ (s)

− a probability space Prσ
s over Pathσ (s)

13

Example strategy

• Fragment of induced Markov chain for strategy which picks
b then c in s1

finite-memory,
deterministic

s0

0.5

1

s0s1s0s1s2

s0s1s0s1s30.5
s0s1

0.7
s0s1s0

s0s1s1

0.3

1
s0s1s0s1

0.5 s0s1s1s2

s0s1s1s30.5

1

1

s0s1s1s2s2

s0s1s1s3s3

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

14

15

Induced DTMCs

• Strategy σ for MDP induces an infinite-state DTMC Dσ

• Dσ = (Pathσ
fin(s),s,Pσ

s) where:

− states of the DTMC are the finite paths of σ starting in state s

− initial state is s (the path starting in s of length 0)

− Pσ
s(ω,ω’)=µ(s’) if ω’= ω(a, µ)s’ and σ(ω)=(a,µ)

− Pσ
s(ω,ω’)=0 otherwise

• 1-to-1 correspondence between Pathσ(s) and paths of Dσ

• This gives us a probability measure Prσ
s over Pathσ(s)

− from probability measure over paths of Dσ

16

MDPs and probabilities

• Probσ(s, ψ) = Prσ
s { ω ∈ Pathσ(s) | ω ⊨ ψ }

− for some path formula ψ

− e.g. Probσ(s, F tails)

• MDP provides best-/worst-case analysis

− based on lower/upper bounds on probabilities

− over all possible adversaries

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

 pmin(s,ψ) = infσ∈Adv Probσ (s,ψ)

 pmax(s,ψ) = supσ∈Adv Probσ(s,ψ)

17

Examples

• Probσ1(s0, F tails) = 0.5

• Probσ2(s0, F tails) = 0.5

− (where σi picks b i-1 times then c)

• …

• pmax(s0, F tails) = 0.5

• pmin(s0, F tails) = 0

• Probσ1(s0, F tails) = 0.5

• Probσ2(s0, F tails)
= 0.3+0.7·0.5 = 0.65

• Probσ3(s0, F tails)
= 0.3+0.7·0.3+0.7·0.7·0.5 = 0.755

• …

• pmax(s0, F tails) = 1

• pmin(s0, F tails) = 0.5

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a

18

Memoryless strategies

• Memoryless strategies always pick same choice in a state

− also known as: positional, Markov, simple

− formally, σ(s0(a0,µ0)s1...sn) depends only on sn

− can write as a mapping from states, i.e. σ(s) for each s ∈ S

− induced DTMC can be mapped to a |S|-state DTMC

• From previous example:

− adversary σ1 (picks c in s1) is memoryless; σ2 is not

s1s0

s2

s3

0.5

0.50.7

1

1

{heads}

{tails}

{init}

0.3

1a

b

c

a

a
s1s0

s2

s3

0.5

0.5

1

1

{heads}

{tails}

{init} 1a

c

a

a

PCTL

• Temporal logic for properties of MDPs (and DTMCs)

− extension of (non-probabilistic) temporal logic CTL

− key addition is probabilistic operator P

− quantitative extension of CTL’s A and E operators

• PCTL syntax:

− φ ::= true | a | φ ∧ φ | ¬φ | P~p [ψ] (state formulas)

− ψ ::= X φ | φ U≤k φ | φ U φ (path formulas)

− where a is an atomic proposition, used to identify states of
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• Example: send → P≥0.95 [true U≤10 deliver]

19

PCTL semantics for MDPs

• PCTL formulas interpreted over states of an MDP

− s ⊨ φ denotes φ is “true in state s” or “satisfied in state s”

• Semantics of (non-probabilistic) state formulas:

− for a state s of the MDP (S,sinit,α,δ,L):

− s ⊨ a ⇔ a ∈ L(s)

− s ⊨ φ1 ∧ φ2 ⇔ s ⊨ φ1 and s ⊨ φ2

− s ⊨ ¬φ ⇔ s ⊨ φ is false

• Semantics of path formulas:

− for a path ω = s0(a0,µ0)s1(a1,µ1)s2… in the MDP:

− ω ⊨ X φ ⇔ s1 ⊨ φ

− ω ⊨ φ1 U≤k φ2 ⇔ ∃i≤k such that si ⊨ φ2 and ∀j<i, sj ⊨ φ1

− ω ⊨ φ1 U φ2 ⇔ ∃k≥0 such that ω ⊨ φ1 U≤k φ2
20

PCTL semantics for MDPs

• Semantics of the probabilistic operator P

− can only define probabilities for a specific strategy σ

− s ⊨ P~p [ψ] means “the probability, from state s, that ψ is
true for an outgoing path satisfies ~p for all strategies σ”

− formally s ⊨ P~p [ψ] ⇔ Prs
σ(ψ) ~ p for all strategies σ

− where we use Prs
σ(ψ) to denote Prs

σ { ω ∈ Paths
σ | ω ⊨ ψ }

• Some equivalences:

− F φ ≡ ◊ φ ≡ true U φ (eventually, “future”)

− G φ ≡ □ φ ≡ ¬(F ¬φ) (always, “globally”)

s

¬ψ

ψ Prs
σ(ψ) ~ p

21

Minimum and maximum probabilities

• Letting:

− Prs
max(ψ) = supσ Prs

σ(ψ)

− Prs
min(ψ) = infσ Prs

σ(ψ)

• We have:

− if ~ ∈ {≥,>}, then s ⊨ P~p [ψ] ⇔ Prs
min(ψ) ~ p

− if ~ ∈ {<,≤}, then s ⊨ P~p [ψ] ⇔ Prs
max(ψ) ~ p

• Model checking P~p[ψ] reduces to the computation over all
strategies of either:

− the minimum probability of ψ holding

− the maximum probability of ψ holding

• Crucial result for model checking PCTL on MDPs

− memoryless strategies suffice, i.e. there are always
memoryless strategies σmin and σmax for which:

− Prs
σmin(ψ) = Prs

min(ψ) and Prs
σmax(ψ) = Prs

min(ψ)

22

Quantitative properties

• For PCTL properties with P as the outermost operator

− quantitative form (two types): Pmin=? [ψ] and Pmax=? [ψ]

− i.e. “what is the minimum/maximum probability (over all
adversaries) that path formula ψ is true?”

− corresponds to an analysis of best-case or worst-case
behaviour of the system

− model checking is no harder since compute the values of
Prs

min(ψ) or Prs
max(ψ) anyway

− useful to spot patterns/trends

• Example: CSMA/CD protocol

− “min/max probability

that a message is sent

within the deadline”

23

Some real PCTL examples

• Byzantine agreement protocol

− Pmin=? [F (agreement ∧ rounds≤2)]

− “what is the minimum probability that agreement is reached
within two rounds?”

• CSMA/CD communication protocol

− Pmax=? [F collisions=k]

− “what is the maximum probability of k collisions?”

• Self-stabilisation protocols

− Pmin=? [F≤t stable]

− “what is the minimum probability of reaching a stable state
within k steps?”

24

PCTL model checking for MDPs

• Algorithm for PCTL model checking [BdA95]

− inputs: MDP M=(S,sinit,α,δ,L), PCTL formula φ

− output: Sat(φ) = { s ∈ S | s ⊨ φ } = set of states satisfying φ

• Basic algorithm same as PCTL model checking for DTMCs

− proceeds by induction on parse tree of φ

− non-probabilistic operators (true, a, ¬, ∧) straightforward

• Only need to consider P~p [ψ] formulas

− reduces to computation of Prs
min(ψ) or Prs

max(ψ) for all s ∈ S

− dependent on whether ~ ∈ {≥,>} or ~ ∈ {<,≤}

− these slides cover the case Prs
min(φ1 U φ2), i.e. ~ ∈ {≥,>}

− case for maximum probabilities is very similar

− next (X φ) and bounded until (φ1 U≤k φ2) are straightforward
extensions of the DTMC case 25

PCTL until for MDPs

• Computation of probabilities Prs
min(φ1 U φ2) for all s ∈ S

• First identify all states where the probability is 1 or 0

− “precomputation” algorithms, yielding sets Syes, Sno

• Then compute (min) probabilities for remaining states (S?)

− either: solve linear programming problem

− or: approximate with an iterative solution method

− or: use policy iteration

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Example:

P≥p [F a]

≡

P≥p [true U a]

26

PCTL until - Precomputation

• Identify all states where Prs
min(φ1 U φ2) is 1 or 0

− Syes = Sat(P≥1 [φ1 U φ2]), Sno = Sat(¬ P>0 [φ1 U φ2])

• Two graph-based precomputation algorithms:

− algorithm Prob1A computes Syes

• for all strategies the probability of satisfying φ1 U φ2 is 1

− algorithm Prob0E computes Sno

• there exists a strategy for which the probability is 0

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes = Sat(P≥1 [F a])

Sno = Sat(¬P>0 [F a])

Example:

P≥p [F a]

27

Method 1 - Linear programming

• Probabilities Prs
min(φ1 U φ2) for remaining states in the set

S? = S \ (Syes ∪ Sno) can be obtained as the unique solution
of the following linear programming (LP) problem:

• Simple case of a more general problem known as the
stochastic shortest path problem [BT91]

• This can be solved with standard techniques

− e.g. Simplex, ellipsoid method, branch-and-cut

maximize xs subject to the constraints :
s∈ S ?∑

xs ≤ µ(s')⋅ xs' +

s'∈S ?

∑ µ(s')
s'∈S yes

∑

for all s ∈ S? and for all (a, µ) ∈ δ(s)

28

Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 0.25·x0 + 0.5

● x1 ≤ 0.1·x0 + 0.5·x1 + 0.4

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

29

Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0

x1

0
0

1

12/3
x0

x1

0
0

1

1

0.8

x0

x1

0
0

1

1

x0 ≤ x1

x0 ≤ 2/3 x1 ≤ 0.2·x0

+ 0.8

30

Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0
0

1

1

0.8

2/3

max

Solution:

(x0, x1)

=

(2/3, 14/15)

31

Example - PCTL until (LP)

Let xi = Prsi
min(F a)

Syes: x2=1, Sno: x3=0

For S? = {x0, x1} :

Maximise x0+x1 subject to constraints:

● x0 ≤ x1

● x0 ≤ 2/3

● x1 ≤ 0.2·x0 + 0.8

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0
0

1

1

0.8

2/3

max

Two memoryless
adversaries

x1 ≤ 0.2·x0 + 0.8

x0 ≤ x1

x0 ≤ 2/3

32

Method 2 – Value iteration

• For probabilities Prs
min(φ1 U φ2) it can be shown that:

− Prs
min(φ1 U φ2) = limn→∞ xs

(n) where:

• This forms the basis for an (approximate) iterative solution

− iterations terminated when solution converges sufficiently

xs

(n)

=

1 if s ∈ Syes

0 if s ∈ Sno

0 if s ∈ S? and n = 0

min(a,µ)∈Steps(s) µ(s')⋅ xs'

(n−1)

s'∈S

∑



 




  if s ∈ S? and n > 0















33

Example - PCTL until (value iteration)

Compute: Prsi
min(F a)

Syes = {x2}, S
no ={x3}, S

? = {x0, x1}

[x0
(n),x1

(n),x2
(n),x3

(n)]

n=0: [0, 0, 1, 0]

n=1: [min(0,0.25·0+0.5),

0.1·0+0.5·0+0.4, 1, 0]

= [0, 0.4, 1, 0]

n=2: [min(0.4,0.25·0+0.5),

0.1·0+0.5·0.4+0.4, 1, 0]

= [0.4, 0.6, 1, 0]

n=3: …

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

34

Example - PCTL until (value iteration)

[x0
(n),x1

(n),x2
(n),x3

(n)]

n=0: [0.000000, 0.000000, 1, 0]

n=1: [0.000000, 0.400000, 1, 0]

n=2: [0.400000, 0.600000, 1, 0]

n=3: [0.600000, 0.740000, 1, 0]

n=4: [0.650000, 0.830000, 1, 0]

n=5: [0.662500, 0.880000, 1, 0]

n=6: [0.665625, 0.906250, 1, 0]

n=7: [0.666406, 0.919688, 1, 0]

n=8: [0.666602, 0.926484, 1, 0]

n=9: [0.666650, 0.929902, 1, 0]

…

n=20: [0.666667, 0.933332, 1, 0]

n=21: [0.666667, 0.933332, 1, 0]

≈ [2/3, 14/15, 1, 0]

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

35

Example - Value iteration + LP

[x0
(n),x1

(n),x2
(n),x3

(n)]

n=0: [0.000000, 0.000000, 1, 0]

n=1: [0.000000, 0.400000, 1, 0]

n=2: [0.400000, 0.600000, 1, 0]

n=3: [0.600000, 0.740000, 1, 0]

n=4: [0.650000, 0.830000, 1, 0]

n=5: [0.662500, 0.880000, 1, 0]

n=6: [0.665625, 0.906250, 1, 0]

n=7: [0.666406, 0.919688, 1, 0]

n=8: [0.666602, 0.926484, 1, 0]

n=9: [0.666650, 0.929902, 1, 0]

…

n=20: [0.666667, 0.933332, 1, 0]

n=21: [0.666667, 0.933332, 1, 0]

≈ [2/3, 14/15, 1, 0]

x0

x1

0
0

2/3

1

36

Method 3 - Policy iteration

• Value iteration:

− iterates over (vectors of) probabilities

• Policy iteration:

− iterates over strategies (“policies”)

• 1. Start with an arbitrary (memoryless) strategy σ

• 2. Compute the reachability probabilities Prσ (F a) for σ

• 3. Improve the strategy in each state

• 4. Repeat 2/3 until no change in strategy

• Termination:

− finite number of memoryless strategies

− improvement in (minimum) probabilities each time

37

Method 3 - Policy iteration

• 1. Start with an arbitrary (memoryless) strategy σ

− pick an element of δ(s) for each state s ∈ S

• 2. Compute the reachability probabilities Prσ(F a) for σ

− probabilistic reachability on a DTMC

− i.e. solve linear equation system

• 3. Improve the strategy in each state

• 4. Repeat 2/3 until no change in strategy

σ' (s) = argmin µ(s') ⋅ Prs'
σ(F a)

s'∈S

∑ | (a,µ) ∈ δ(s)




 





 

38

Example - Policy iteration

Arbitrary strategy σ:

Compute: Prσ(F a)

Let xi = Prsi
σ(F a)

x2=1, x3=0 and:

• x0 = x1

• x1 = 0.1·x0 + 0.5·x1 + 0.4

Solution:

Prσ(F a) = [1, 1, 1, 0]

Refine σ in state s0:

min{1(1), 0.5(1)+0.25(0)+0.25(1)}

= min{1, 0.75} = 0.75

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

39

Example - Policy iteration

Refined strategy σ’:

Compute: Prσ’(F a)

Let xi = Prsi
σ’(F a)

x2=1, x3=0 and:

• x0 = 0.25·x0 + 0.5

• x1 = 0.1·x0 + 0.5·x1 + 0.4

Solution:

Prσ’(F a) = [2/3, 14/15, 1, 0]

This is optimal

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

40

Example - Policy iteration

s0

s1 s2

s3

0.5

0.25

1

1

1

{a}

0.4

0.5

0.1

0.25

1

Syes

Sno

x0 x0

x1

0
0

1

1

0.8

2/3

σx1 = 0.2·x0 + 0.8

x0 = x1

x0 = 2/3

σ’

41

Costs and rewards for MDPs

• We can augment MDPs with rewards (or, conversely, costs)

− real-valued quantities assigned to states and/or transitions

− these can have a wide range of possible interpretations

• Some examples:

− elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit

• Extend logic PCTL with R operator, for “expected reward”

− as for PCTL, either R~r […], Rmin=? […] or Rmax=? […]

• Some examples:

− Rmin=? [I=90], Rmax=? [C≤60], Rmax=? [F “end”]

− “the minimum expected queue size after exactly 90 seconds”

− “the maximum expected power consumption over one hour”

− the maximum expected time for the algorithm to terminate
42

Case study: FireWire root contention

• FireWire (IEEE 1394)

− high-performance serial bus for networking
multimedia devices; originally by Apple

− "hot-pluggable" - add/remove
devices at any time

− no requirement for a single PC (but need acyclic topology)

• Root contention protocol

− leader election algorithm, when nodes join/leave

− symmetric, distributed protocol

− uses randomisation (electronic coin tossing) and timing delays

− nodes send messages: "be my parent"

− root contention: when nodes contend leadership

− random choice: "fast"/"slow" delay before retry

43

FireWire example

44

FireWire leader election

R

45

FireWire root contention

Root
contention

46

FireWire root contention

Root
contention

R

47

FireWire analysis

• Probabilistic model checking

− model constructed and analysed using PRISM

− timing delays taken from IEEE standard

− model includes:

• concurrency: messages between nodes and wires

• underspecification of delays (upper/lower bounds)

− max. model size: 170 million states

• Analysis:

− verified that root contention always
resolved with probability 1

− investigated time taken for leader election

− and the effect of using biased coin

• based on a conjecture by Stoelinga

48

FireWire: Analysis results

“minimum probability
of electing leader

by time T”

49

FireWire: Analysis results

“minimum probability
of electing leader

by time T”

(short wire length)

Using a biased coin

50

FireWire: Analysis results

“maximum expected
time to elect a leader”

(short wire length)

Using a biased coin

51

FireWire: Analysis results

“maximum expected
time to elect a leader”

(short wire length)

Using a biased coin
is beneficial!

52

Overview (Part 2)

• Markov decision processes (MDPs)

− MDPs: definition

− Paths, strategies & probability spaces

• PCTL model checking

• Costs and rewards

• Case study: Firewire root contention

• Strategy synthesis for MDPs

− Properties and objectives

− Verification vs synthesis

• Case study: Dynamic power management

• Summary

53

From verification to synthesis

• Shift towards quantitative model synthesis from specification

− begin with simpler problems: strategy synthesis, template-based
synthesis, etc

− advantage: correct-by-construction

• Here consider the problem of strategy (controller) synthesis

− i.e. “can we construct a strategy to guarantee that a given
quantitative property is satisfied?”

− instead of “does the model satisfy a given quantitative property?”

− also parameter synthesis: “find optimal value for parameter to
satisfy quantitative objective”

• Many application domains

− robotics (controller synthesis from LTL/PCTL)

− dynamic power management (optimal policy synthesis) 54

Quantitative verification & synthesis

Probabilistic model
e.g. Markov chain

Probabilistic temporal
logic specification
e.g. PCTL, CSL, LTL

Result

Quantitative
results

System

Strategy

System
require-
ments

P<0.01 [F≤t fail]

Probabilistic
model checker

e.g. PRISM

0.5

0.1

0.4

55

Running example

• Example MDP

− robot moving through terrain divided into 3 x 2 grid

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

States:

s0, s1, s2, s3, s4, s5

Actions:

north, east, south,
west, stuck

Labels

(atomic propositions):

hazard, goal1, goal2

56

Properties and objectives

• The syntax:

− φ ::= P~p [ψ] | R~r [ρ]

− ψ ::= true | a | ψ ∧ ψ | ¬ ψ | X ψ | ψ U≤k ψ | ψ U ψ

− ρ ::= F b | C | C≤k

− where b is an atomic proposition, used to identify states of
interest, p ∈ [0,1] is a probability, ~ ∈ {<,>,≤,≥}, k ∈ ℕ,
and r ∈ ℝ≥0

− F b ≡ true U b

• We refer to φ as property, ψ and ρ as objectives

− (branching time more challenging for synthesis)

“until”

ψ is true with
probability ~p

“bounded
until”

“next”

expected
reward is ~r

“reachability” “cumulative”

57

Properties and objectives

• Semantics of the probabilistic operator P

− can only define probabilities for a specific strategy σ

− s ⊨ P~p [ψ] means “the probability, from state s, that ψ is
true for an outgoing path satisfies ~p for all strategies σ”

− formally s ⊨ P~p [ψ] ⇔ Prs
σ(ψ) ~ p for all strategies σ

− where we use Prs
σ(ψ) to denote Prs

σ { ω ∈ Paths
σ | ω ⊨ ψ }

• R~r [·] means “the expected value of · satisfies ~r”

• Some examples:

− P≥0.4 [F “goal”] “probability of reaching goal is at least 0.4”

− R<5 [C≤60] “expected power consumption over one hour is
below 5”

− R≤10 [F “end”] “expected time to termination is at most 10”

58

Verification and strategy synthesis

• The verification problem is:

− Given an MDP M and a property φ, does M satisfy φ under any
possible strategy σ?

• The synthesis problem is dual:

− Given an MDP M and a property φ, find, if it exists, a strategy
σ such that M satisfies φ under σ

• Verification and strategy synthesis is achieved using the
same techniques, namely computing optimal values for
probability objectives:

− Prs
min(ψ) = infσ Prs

σ (ψ)

− Prs
max(ψ) = supσ Prs

σ (ψ)

− and similarly for expectations

59

Computing reachability for MDPs

• Computation of probabilities Prs
max(F b) for all s ∈ S

• Step 1: pre-compute all states where probability is 1 or 0

− graph-based algorithms, yielding sets Syes, Sno

• Step 2: compute probabilities for remaining states (S?)

− (i) solve linear programming problem

− (i) approximate with value iteration

− (iii) solve with policy (strategy) iteration

• 1. Precomputation:

− algorithm Prob1E computes Syes

• there exists a strategy for which the probability of "F b" is 1

− algorithm Prob0A computes Sno

• for all strategies, the probability of satisfying "F b" is 0
60

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Example:

P≥0.4 [F goal1]

So compute:

Prs
max(F goal1)

Example - Reachability

61

Syes

Sno

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

Example:

P≥0.4 [F goal1]

So compute:

Prs
max(F goal1)

Example - Precomputation

62

Reachability for MDPs

• 2. Numerical computation

− compute probabilities Prs
max(F b)

− for remaining states in S? = S \ (Syes ∪ Sno)

− obtained as the unique solution of the linear programming
(LP) problem:

• This can be solved with standard techniques

− e.g. Simplex, ellipsoid method, branch-and-cut

)s()(a, allfor and Ss allfor

)’(x)’(x

:sconstraint thesubject to x minimize

?

Ss’Ss’

s’s

Ss s

yes?

?

δµ

µµ

∈∈

+⋅≥ ∑∑
∑

∈∈

∈

ss

63

Example – Reachability (LP)

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Let xi = Prsi
max(F goal1)

Syes: x4=x5=1

Sno: x2=x3=0

For S? = {x0, x1} :

Minimise x0+x1 subject to:

● x0 ≥ 0.4·x0 + 0.6·x1 (east)

● x0 ≥ 0.1·x1 + 0.1 (south)

● x1 ≥ 0.5 (south)

● x1 ≥ 0 (east)

Example:

P≥0.4 [F goal1]

So compute:

Prs
max(F goal1)

64

Example - Reachability (LP)

x0

x1

0
0

1

1

x0 ≥ x1

x1 ≥ 0.5

x0

x1

0
0

1

1
x0

x1

0
0

1

12/3

x0 ≥ 0.1·x1

+ 0.1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Let xi = Prsi
max(F goal1)

Syes: x4=x5=1

Sno: x2=x3=0

For S? = {x0, x1} :

Minimise x0+x1 subject to:

● x0 ≥ x1 (east)

● x0 ≥ 0.1·x1 + 0.1 (south)

● x1 ≥ 0.5 (south)

65

Example - Reachability (LP)

x0

x1

0
0

1

12/3

min

Solution:

(x0, x1) = (0.5, 0.5)

i.e.

Prs0
max(F goal1) = 0.5

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

Let xi = Prsi
max(F goal1)

Syes: x4=x5=1

Sno: x2=x3=0

For S? = {x0, x1} :

Minimise x0+x1 subject to:

● x0 ≥ x1

● x0 ≥ 0.1·x1 + 0.1

● x1 ≥ 0.5

66

Reachability for MDPs

• 2. Numerical computation (alternative method)

− value iteration

− it can be shown that: Prs
max(F b) = limn→∞ xs

(n) where:

• Approximate iterative solution technique

− iterations terminated when solution converges sufficiently














>∈








∈⋅

=∈

∈

∈

=

∑
∈

−
0nandSsifs)()a,(|x)s’(max

0nandSsif0

Ssif0

Ssif1

x

?

Ss’

1)(n

s’

?

o

yes

(n)

s

δµµ

n

67

Example – Reachability (val. iter.)

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Compute: Prs
max(F goal1)

Syes: x4=x5=1

Sno: x2=x3=0

S? = {x0, x1}

[x0
(n),x1

(n),x2
(n),x3

(n),x4
(n),x5

(n)]

n=0: [0, 0, 0, 0, 1, 1]

n=1: [max(0.6·0+0.4·0, 0.1·0+0.1·1+0.8·0), max(0, 0.5), 0, 0, 1, 1]

= [0.1, 0.5, 0, 0, 1, 1]

n=2: [max(0.6·0.5+0.4·0.1, 0.1·0.5+0.1·1+0.8·0), max(0, 0.5), 0, 0, 1, 1]

= [0.34, 0.5, 0, 0, 1, 1]

68

Example – Reachability (val. iter.)

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

[x0
(n),x1

(n),x2
(n),x3

(n),x4
(n),x5

(n]

n=0: [0, 0, 0, 0, 1, 1]

n=1: [0.1, 0.5, 0, 0, 1, 1]

n=2: [0.34, 0.5, 0, 0, 1, 1]

n=3: [0.436, 0.5, 0, 0, 1, 1]

n=4: [0.4744, 0.5, 0, 0, 1, 1]

n=5: [0.48976, 0.5, 0, 0, 1, 1]

n=6: [0.495904, 0.5, 0, 0, 1, 1]

n=7: [0.4983616, 0.5, 0, 0, 1, 1]

n=8: [0.49934464, 0.5, 0, 0, 1, 1]

…

n=16: [0.49999957, 0.5, 0, 0, 1, 1]

n=17: [0.49999982, 0.5, 0, 0, 1, 1]

… ≈ [0.5 0.5, 0, 0, 1, 1]

x0

x1

0
0

1

1

min

69

Memoryless strategies

• Memoryless strategies suffice for probabilistic reachability

− i.e. there exist memoryless strategies σmin & σmax such that:

− Probσmin(s, F a) = pmin(s, F a) for all states s ∈ S

− Probσmax(s, F a) = pmax(s, F a) for all states s ∈ S

• Construct strategies from optimal solution:









∈⋅= ∑
∈

(s))(a,|)aF,s’(p)s’(argmin(s)
Ss’

minmin δµµσ









∈⋅= ∑
∈

(s))(a,|)aF,s’(p)s’(argmax(s)
Ss’

maxmax δµµσ

70

Strategy synthesis

• Compute optimal probabilities Prs
max(F b) for all s ∈ S

• To compute the optimal strategy σ*, choose the locally
optimal action in each state

− must guarantee progress towards target states

− in general depends on the method used to compute the
optimal probabilities

• For reachability

− memoryless strategies suffice

• For step-bounded reachability

− need finite-memory strategies

− typically requires backward computation for a fixed number of
steps

71

Example - Strategy

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

x0

x1

0
0

1

12/3

min

x0 ≥ x1

(east)

x1 ≥ 0.5

(south)

Optimal strategy:

s0 : east

s1 : south

s2 : -

s3 : -

s4 : east

s5 : -

72

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Example:

Pmax=? [F≤3 goal2]

So compute:

Prs
max(F≤3 goal2) = 0.99

Optimal strategy

is finite-memory:

s4 (after 1 step): east

s4 (after 2 steps): west

Example – Bounded reachability

73

Strategy synthesis for LTL objectives

• Reduce to the problem of reachability on the product of
MDP M and an omega-automaton representing ψ

− for example, deterministic Rabin automaton (DRA)

• Need only consider computation of maximum probabilities
Prs

max(ψ)

− since Prs
min(ψ) = 1 - Prs

max(¬ψ)

• To compute the optimal strategy σ*

− find memoryless deterministic strategy on the product

− convert to finite-memory strategy with one mode for each
state of the DRA for ψ

74

Example - LTL

• P≥0.05 [(G ¬hazard) ∧ (GF goal1)]

− avoid hazard and visit goal1 infinitely often

• Prs0
max((G ¬hazard) ∧ (GF goal1)) = 0.1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

Optimal strategy:

(in this instance,

memoryless)

s0 : south

s1 : -

s2 : -

s3 : -

s4 : east

s5 : west

75

Multi-objective strategy synthesis

• Consider conjunctions of probabilistic LTL formulas P~p [ψ]

− require all conjuncts to be satisfied

• Reduce to a multi-objective reachability problem on the
product of MDP M and the omega-automata representing
the conjuncts

− convert (by negation) to formulas with upper probability

bounds (≥, >), then to DRA

− need to consider all combinations of objectives

• The problem can be solved using LP methods [TACAS07] or
via approximations to Pareto curve [ATVA12]

− strategies may be finite memory and randomised

• Continue as for single-objectives to compute the strategy σ*

− find memoryless deterministic strategy on the product

− convert to finite-memory strategy

76

Example – Multi-objective

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

• Multi-objective formula
− P≥0.7 [G ¬hazard] ∧ P≥0.2 [GF goal1] ? True (achievable)

• Numerical query
− Pmax=? [GF goal1] such that P≥0.7 [G ¬hazard] ? ~0.2278

• Pareto query
− for Pmax=? [G ¬hazard] ∧ Pmax=? [GF goal1] ?

0.80.60.4 10.20
0

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

77

Example – Multi-objective strategies

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

Strategy 1

(deterministic)

s0 : east

s1 : south

s2 : -

s3 : -

s4 : east

s5 : west

0.80.60.4 10.20
0

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

78

Example – Multi-objective strategies

Strategy 2

(deterministic)

s0 : south

s1 : south

s2 : -

s3 : -

s4 : east

s5 : west

0.80.60.4 10.20
0

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east
0.1

0.9

north

79

Example – Multi-objective strategies

Optimal strategy:

(randomised)

s0 : 0.3226 : east

0.6774 : south

s1 : 1.0 : south

s2 : -

s3 : -

s4 : 1.0 : east

s5 : 1.0 : west

0.80.60.4 10.20
0

0.2

0.4

0.5

0.3

0.1

ψ1

ψ2

ψ1 = G ¬hazard
ψ2 = GF goal1

s0

s4s3

0.5

east s1

south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6

0.4

stuck

east

stuck

0.4

0.6west

west

east
0.1

0.9

north

80

Case study: Dynamic power management

• Synthesis of dynamic power management schemes

− for an IBM TravelStar VP disk drive

− 5 different power modes: active, idle, idlelp, stby, sleep

− power manager controller bases decisions on current power
mode, disk request queue, etc.

• Build controllers that

− minimise energy
consumption, subject to
constraints on e.g.

− probability that a request
waits more than K steps

− expected number of
lost disk requests

• See: lab and http://www.prismmodelchecker.org/files/tacas11/81

Summary (Part 2)

• Markov decision processes (MDPs)

− extend DTMCs with nondeterminism

− to model concurrency, underspecification, …

• Property specifications

− PCTL: exactly same syntax as for DTMCs

− but quantify over all strategies

• Model checking algorithms

− covered three basic techniques for MDPs: linear programming,
value iteration, or policy iteration

• Strategy synthesis

− can reuse model checking algorithms

82

PRISM: Recent & new developments

• New features:

1. parametric model checking

2. strategy synthesis

3. real-time: probabilistic timed automata (PTAs)

• Further new additions:

− enhanced statistical model checking
(approximations + confidence intervals, acceptance sampling)

− efficient CTMC model checking
(fast adaptive uniformisation)

− benchmark suite & testing functionality

− www.prismmodelchecker.org

− Beyond PRISM…

83

1. Parametric model checking

• Can specify models in parametric form [TASE13]

− parameters expressed as unevaluated constants

− e.g. const double x;

− transition probabilities specified as expressions over

parameters, e.g. 0.5 + x

• Properties are given in PCTL, with parameter constants

− new construct constfilter (min, x1*x2, prop)

− filters over parameter values, rather than states

• Determine parameter valuations to guarantee satisfaction
of given properties, useful for model repair

• Two methods implemented in PRISM (‘explicit’ engine)

− constraints-based approach is a reimplementation of PARAM
2.0 [Hahn et al]

− sampling-based approaches are new implementation

84

2. Controller (strategy) synthesis

• Can synthesise controllers using machine learning [ATVA14]

− partial exploration of the state space, with guarantees of
accuracy

− combines real-time dynamic programming (RTDP) with value
iteration

− focus on updating “most important parts” = most often visited
by good strategies

− speeds up value iteration

• Implemented in PRISM

− for both MDPs and stochastic games

− not yet integrated into the main release, subject of ongoing
research

85

3. Probabilistic timed automata (PTAs)

• Probability + nondeterminism + real-time

− timed automata + discrete probabilistic choice, or…

− probabilistic automata + real-valued clocks

• PTA example: message transmission over faulty channel

“init”

x≤2

0.9

retry

“done”

true

“lost”

x≤5

“fail”

true

quit

send
x≥3

x:=0

0.1

x≥1∧tries≤N

tries:=0

tries>N

x:=0,
tries:=tries+1

States
• locations + data variables

Transitions
• guards and action labels

Real-valued clocks
• state invariants, guards, resets

Probability
• discrete probabilistic choice

86

Model checking PTAs in PRISM

• Properties for PTAs:

− min/max probability of reaching X (within time T)

− min/max expected cost/reward to reach X

(for “linearly-priced” PTAs, i.e. reward gain linear with time)

• PRISM has two different PTA model checking techniques…

• “Digital clocks” – conversion to finite-state MDP

− preserves min/max probability + expected cost/reward/price

− (for PTAs with closed, diagonal-free constraints)

− efficient, in combination with PRISM’s symbolic engines

• Quantitative abstraction refinement

− zone-based abstractions of PTAs using stochastic games

− provide lower/upper bounds on quantitative properties

− automatic iterative abstraction refinement
87

Case study: Energy management

• Energy management protocol for Microgrid

− Microgrid: local energy management

− randomised demand management protocol
[Hildmann/Saffre'11]

− probability: randomisation, demand model, …

• Existing analysis

− simulation-based

− assumes all clients are unselfish

• Our analysis

− stochastic multi-player game

− clients can cheat (and cooperate)

− exposes protocol weakness

− propose/verify simple fix

All follow alg.

No use of alg.

Deviations of
varying size

Automatic Verification of Competitive Stochastic Systems, Chen et al., In Proc TACAS 2012

Case study: Autonomous urban driving

• Inspired by DARPA challenge

− represent map data as a stochastic
game, with environment active,
able to select hazards

− express goals as conjunctions of
probabilistic and reward properties

− e.g. “maximise probability of
avoiding hazards and minimise time
to reach destination”

• Solution (PRISM-games 2.0)

− synthesise a probabilistic strategy
to achieve the multi-objective goal

− enable the exploration of trade-offs between subgoals

− applied to synthesise driving strategies for English villages

Synthesis for Multi-Objective Stochastic Games: An Application to Autonomous Urban
Driving, Chen et al., In Proc QEST 2013

Case study: UAV path planning

• Human operator

− sensor tasks

− high-level commands for
piloting

• UAV autonomy

− low-level piloting function

• Quantitative mission objectives

− road network surveillance with
the minimal time, fuel, or
restricted operating zone visits

• Analysis of trade-offs

− consider operator fatigue and
workload

− multi-objective, MDP and SMG
models

Controller Synthesis for Autonomous Systems Interacting with Human Operators. L. Feng
et al, In Proc. ICCPS 2015, ACM

Case study: Control improvisation

• Synthesise a control strategy blending data and models

− hard constraints (that must always be satisfied)

− soft constraints (that must be “mostly satisfied”)

− and randomness requirements on system behavior

• Applied PRISM to synthesise strategies for home appliances

− use PCTL for soft constraints

− http://arxiv.org/pdf/1511.02279.pdf

91

Case study: Personalisation

• Personalisation of wearable devices

− estimate parameters for a heart model based on ECG data

− generate synthetic ECG

− useful for model-based development of personalised devices

• Devoloped HeartVerify based on Simulink/Stateflow

− variety of tools and techniques

− http://www.veriware.org/pacemaker.php

92

Case study: Cardiac pacemaker

• Hybrid model-based framework

− timed automata model for pacemaker
software

− hybrid heart models in Simulink, adopt
synthetic ECG model (non-linear ODE)

• Properties

− (basic safety) maintain
60-100 beats per minute

− (advanced) detailed analysis
energy usage, plotted against
timing parameters of the
pacemaker

− parameter synthesis: find values
for timing delays that optimise
energy usage

Synthesising robust and optimal parameters for cardiac pacemakers using symbolic and
evolutionary computation techniques. Kwiatkowska, Mereacre, Paoletti and Patane, HSB’16

DNA computation

• Cardelli’s DNA transducer gate

− inputs/outputs single strands

− two transducers connected

• PRISM identifies a bug: 5-step trace to a
“bad” deadlock state

− previously found manually [Cardelli’10]

− detection now fully automated

• Bug is easily fixed

− (and verified)

Counterexample:
(1,1,1,1,1,1,1,1,1,0)
(0,1,1,0,1,1,1,1,1,1,1,0)
(0,0,1,0,1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0)
(0,0,1,0,1,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0)

reactive gates

Design and Analysis of DNA Strand Displacement Devices using Probabilistic Model
Checking, Lakin et al, Journal of the Royal Society Interface, 9(72), 1470-1485, 2012

DNA origami tiles

• DNA origami tiles: molecular breadboard [Turberfield lab]

50nm

Aim to understand how to control the folding pathways

• formulate an abstract Markov chain model

• obtain model predictions using Gillespie simulation

• perform a range of experiments, consistent with preditions

Guiding the folding pathway of DNA origami. Dunne, Dannenberg, Ouldridge, Kwiatkowska,
Turberfield & Bath, Nature 525, pages 82–86, 2015.

50nm

Perception software

Credits: Oxford Robotics Institute

Things that can go wrong…

• …in perception software

- sensor failure

- object detection
failure

• Machine learning
software

- not clear how it
works

- does not offer
guarantees

- Yet end-to-end
solutions are being
considered…

Motivating example

Street sign

• Deep neural network
− employed as a perception module of an autonomous car

− must be resilient to image imperfections, change of camera
angle, weather, lighting conditions, …

Motivating example

Street sign Birdhouse

• Deep neural network
− employed as a perception module of an autonomous car

− must be resilient to image imperfections, change of camera
angle, weather, lighting conditions, …

Deep neural networks can be fooled!

• They are unstable wrt adversarial perturbations

− often imperceptible changes to the image [Szegedy et al 2014]

− sometimes artificial white noise

− potential security risk

• Substantial growth in techniques to evaluate robustness

− variety of robustness measures, different from risk [Vapnik’91]

− tools DeepFool [CVPR’16] and constraint-based [NIPS’16]

• This talk: focus on safety and automated verification framework

− visible and human-recognisable perturbations

− should not result in class changes

− tool DLV based on Satisfiability Modulo Theory

− https://128.84.21.199/abs/1610.06940

Projects

• Several possible topics, happy to discuss

• Modelling, analysis and synthesis

− driver modelling using PRISM-games

− autonomous driving using PRISM-games

− energy –aware protocols using PRISM-games

− DNA circuits using DSD and PRISM

• Software tool development

− strategy synthesis using machine learning

• Theory

− algorithms for model synthesis

• http://www.cs.ox.ac.uk/people/marta.kwiatkowska/research.html

101

