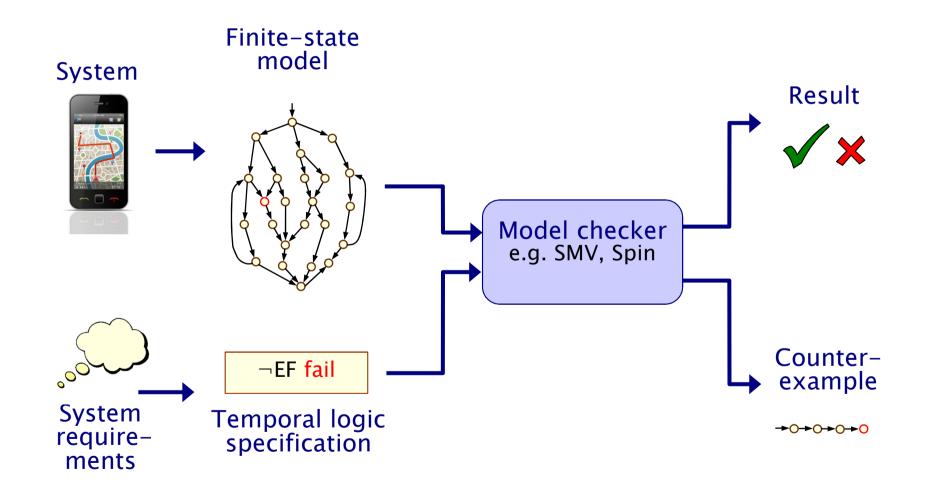
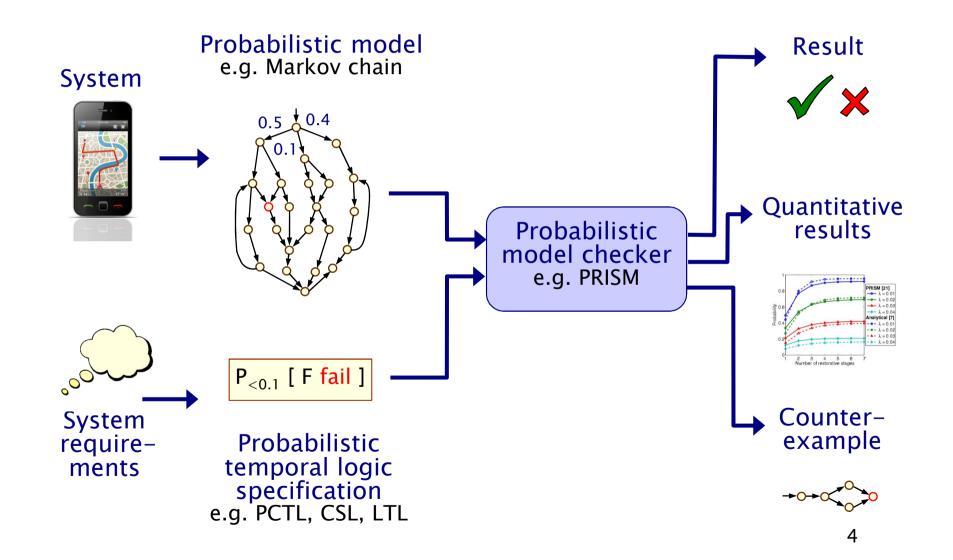
AIMS Systems Verification Quantitative Verification Part 1

Prof. Marta Kwiatkowska



Department of Computer Science University of Oxford


What is quantitative verification?

- Quantitative verification...
 - is a formal verification technique for modelling and analysing quantitative aspect of probabilistic systems
 - also called probabilistic model checking
- Formal verification (aka model checking)...
 - is the application of rigorous, mathematics-based techniques to establish the correctness of computerised systems

Verification via model checking

Quantitative verification

Why probability?

- Some systems are inherently probabilistic...
- Randomisation, e.g. in wireless coordination protocols
 - as a symmetry breaker

bool short_delay = Bernoulli(0.5) // short or long delay

- Modelling uncertainty
 - to quantify rate of failures

bool fail = Bernoulli(0.001) // success wp 0.999 or failure

- Modelling performance
 - queuing systems are naturally modelled in a stochastic fashion

float arrival_rate = exp(2.5) // exponentially distributed

Verifying probabilistic systems

- We are not just interested in correctness
- We want to be able to quantify:
 - security, privacy, trust, anonymity, fairness
 - safety, reliability, performance, dependability
 - resource usage, e.g. battery life
 - and much more...
- Quantitative, as well as qualitative requirements:
 - how reliable is my car's Bluetooth network?
 - how efficient is my phone's power management policy?
 - is my bank's web-service secure?
 - what is the expected long-run percentage of protein X?

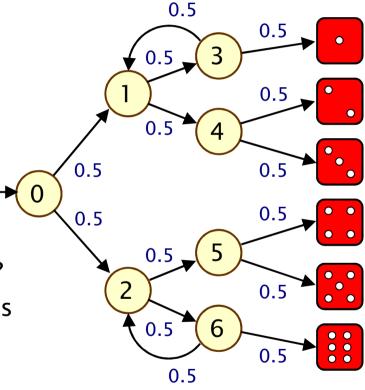
Probabilistic models

	Fully probabilistic	Nondeterministic
Discrete time	Discrete-time Markov chains (DTMCs)	Markov decision processes (MDPs)
		Simple stochastic games (SMGs)
Continuous time	Continuous-time Markov chains (<mark>CTMCs</mark>)	Probabilistic timed automata (PTAs)
		Interactive Markov chains (IMCs)

NB can also consider continuous space...

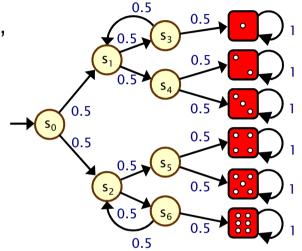
Course material

- Quantitative Verification lecture slides and lab session
 - <u>http://www.prismmodelchecker.org/courses/aims1415/</u>
- Reading
 - [DTMCs/CTMCs] Kwiatkowska, Norman and Parker. Stochastic Model Checking. LNCS vol 4486, p220–270, Springer 2007.
 - [MDPs/LTL] Forejt, Kwiatkowska, Norman and Parker.
 Automated Verification Techniques for Probabilistic Systems.
 LNCS vol 6659, p53-113, Springer 2011.
 - [DTMCs/MDPs/LTL] Principles of Model Checking by Baier and Katoen, MIT Press 2008
- See also
 - 20 lecture course taught at Oxford
 - <u>http://www.prismmodelchecker.org/lectures/pmc/</u>
- PRISM website www.prismmodelchecker.org


Overview (Part 1)

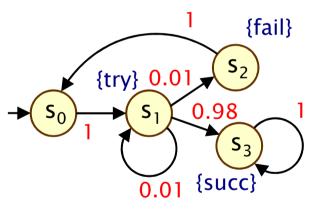
- Probability basics
- Discrete-time Markov chains (DTMCs)
 - definition, paths & probability spaces
- Temporal logic PCTL
- PCTL model checking
- Costs and rewards
- PRISM: overview
 - Modelling language
 - Properties
 - GUI, etc
 - Case study: Bluetooth device discovery
- Summary

Probability example

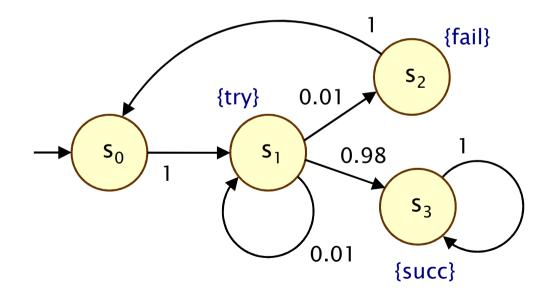

- Modelling a 6-sided die using a fair coin
 - algorithm due to Knuth/Yao:
 - start at 0, toss a coin
 - upper branch when H
 - lower branch when T
 - repeat until value chosen
- Is this algorithm correct?
 - e.g. probability of obtaining a 4?
 - obtain as disjoint union of events
 - THH, TTTHH, TTTTTHH, ...
 - Pr("eventually 4")

$$= (1/2)^3 + (1/2)^5 + (1/2)^7 + ... = 1/6$$

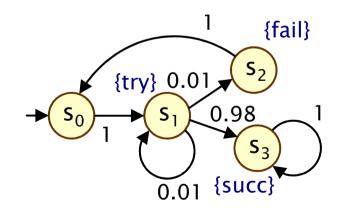
Example...


- Other properties?
 - "what is the probability of termination?"
- e.g. efficiency?
 - "what is the probability of needing more than 4 coin tosses?"
 - "on average, how many coin tosses are needed?"

- Probabilistic model checking provides a framework for these kinds of properties...
 - modelling languages
 - property specification languages
 - model checking algorithms, techniques and tools


Discrete-time Markov chains

- State-transition systems augmented with probabilities
- States
 - set of states representing possible configurations of the system being modelled
- Transitions
 - transitions between states model evolution of system's state; occur in discrete time-steps
- Probabilities
 - probabilities of making transitions between states are given by discrete probability distributions


Simple DTMC example

- Modelling a very simple communication protocol
 - after one step, process starts trying to send a message
 - with probability 0.01, channel unready so wait a step
 - with probability 0.98, send message successfully and stop
 - with probability 0.01, message sending fails, restart

Discrete-time Markov chains

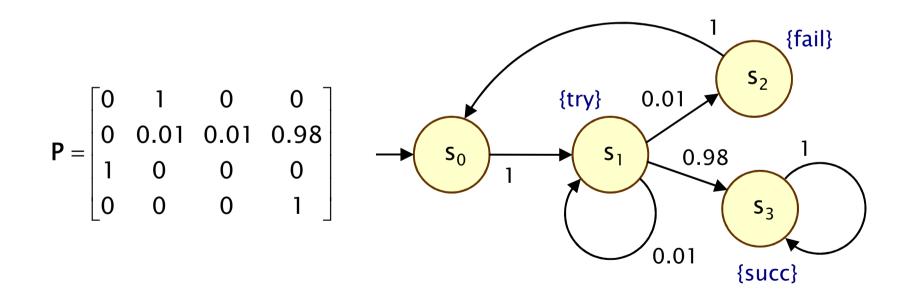
- Formally, a DTMC D is a tuple (S,s_{init},P,L) where:
 - S is a set of states ("state space")
 - $\boldsymbol{s}_{init} \in \boldsymbol{S}$ is the initial state
 - P : S × S → [0,1] is the transition probability matrix where Σ_{s'∈S} P(s,s') = 1 for all s ∈ S
 - L : S \rightarrow 2^{AP} is function labelling states with atomic propositions (taken from a set AP)

Simple DTMC example

$$D = (S, s_{init}, P, L)$$

$$S = \{s_0, s_1, s_2, s_3\}$$

$$s_{init} = s_0$$


$$AP = \{try, fail, succ\}$$

$$L(s_0) = \emptyset,$$

$$L(s_1) = \{try\},$$

$$L(s_2) = \{fail\},$$

$$L(s_3) = \{succ\}$$

Some more terminology

• P is a stochastic matrix, meaning it satisifes:

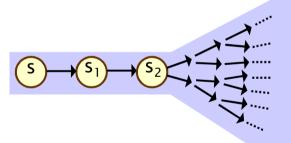
- $P(s,s') \in [0,1]$ for all $s,s' \in S$ and $\Sigma_{s' \in S}$ P(s,s') = 1 for all $s \in S$

- A sub-stochastic matrix satisfies:
 - $P(s,s') \in [0,1]$ for all $s,s' \in S$ and $\Sigma_{s' \in S}$ $P(s,s') \leq 1$ for all $s \in S$
- An absorbing state is a state s for which:
 - P(s,s) = 1 and P(s,s') = 0 for all $s \neq s'$
 - the transition from s to itself is sometimes called a self-loop
- Note: Since we assume P is stochastic...
 - every state has at least one outgoing transition
 - i.e. no deadlocks (in model checking terminology)

DTMCs: An alternative definition

- Alternative definition... a DTMC is:
 - a family of random variables { X(k) | k=0,1,2,... }
 - where X(k) are observations at discrete time-steps
 - i.e. X(k) is the state of the system at time-step k
 - which satisfies...
- The Markov property ("memorylessness")
 - Pr(X(k)=s_k | X(k-1)=s_{k-1}, ..., X(0)=s₀)
 - = Pr(X(k)=s_k | X(k-1)=s_{k-1})
 - for a given current state, future states are independent of past
- This allows us to adopt the "state-based" view presented so far (which is better suited to this context)

Other assumptions made here


- We consider time-homogenous DTMCs
 - transition probabilities are independent of time
 - $P(s_{k-1},s_k) = Pr(X(k)=s_k | X(k-1)=s_{k-1})$
 - otherwise: time-inhomogenous
- We will (mostly) assume that the state space S is finite
 - in general, S can be any countable set
- Initial state $s_{init} \in S$ can be generalised...

– to an initial probability distribution $s_{init} : S \rightarrow [0,1]$

- Focus on path-based properties
 - rather than steady-state

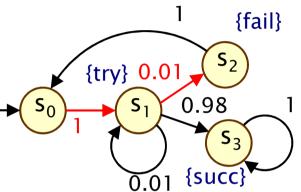
Paths and probabilities

- A (finite or infinite) path through a DTMC
 - is a sequence of states $s_0s_1s_2s_3...$ such that $P(s_i,s_{i+1}) > 0 \forall i$
 - represents an execution (i.e. one possible behaviour) of the system which the DTMC is modelling
- To reason (quantitatively) about this system
 - need to define a probability space over paths
- Intuitively:
 - sample space: Path(s) = set of all infinite paths from a state s
 - events: sets of infinite paths from s
 - basic events: cylinder sets (or "cones")
 - cylinder set C(ω), for a finite path ω = set of infinite paths with the common finite prefix ω
 - for example: $C(ss_1s_2)$

Probability space over paths

- Sample space $\Omega = Path(s)$
 - set of infinite paths with initial state s
- Event set $\Sigma_{Path(s)}$
 - the cylinder set $C(\omega) = \{ \omega' \in Path(s) \mid \omega \text{ is prefix of } \omega' \}$
 - $\Sigma_{Path(s)}$ is the least $\sigma\text{-algebra}$ on Path(s) containing C(w) for all finite paths ω starting in s
- Probability measure Pr_s
 - define probability $P_s(\omega)$ for finite path $\omega = ss_1...s_n$ as:
 - + $P_s(\omega) = 1$ if ω has length one (i.e. $\omega = s$)
 - $\mathbf{P}_{s}(\omega) = \mathbf{P}(s,s_{1}) \cdot \ldots \cdot \mathbf{P}(s_{n-1},s_{n})$ otherwise
 - · define $Pr_s(C(\omega)) = P_s(\omega)$ for all finite paths · ω
 - Pr_s extends uniquely to a probability measure $Pr_s: \Sigma_{Path(s)} \rightarrow [0,1]$
- See [FKNP11] for further details

Probability space – Example


• Paths where sending fails the first time

$$-\omega = s_0 s_1 s_2$$

 $- C(\omega) = all paths starting s_0 s_1 s_2 ...$

$$- \mathbf{P}_{s0}(\omega) = \mathbf{P}(s_0, s_1) \cdot \mathbf{P}(s_1, s_2)$$

= 1 \cdot 0.01 = 0.01

 $- Pr_{s0}(C(\omega)) = P_{s0}(\omega) = 0.01$

Paths which are eventually successful and with no failures

$$- C(s_0s_1s_3) \cup C(s_0s_1s_1s_3) \cup C(s_0s_1s_1s_1s_3) \cup \dots \\- Pr_{s0}(C(s_0s_1s_3) \cup C(s_0s_1s_1s_3) \cup C(s_0s_1s_1s_1s_3) \cup \dots) \\= P_{s0}(s_0s_1s_3) + P_{s0}(s_0s_1s_1s_3) + P_{s0}(s_0s_1s_1s_1s_3) + \dots \\= 1 \cdot 0.98 + 1 \cdot 0.01 \cdot 0.98 + 1 \cdot 0.01 \cdot 0.01 \cdot 0.98 + \dots \\= 0.9898989898.\dots \\= 98/99$$

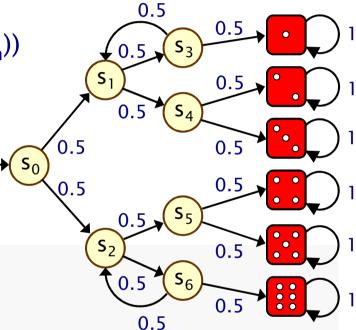
Reachability

- Key property: probabilistic reachability
 - probability of a path reaching a state in some target set $\mathsf{T} \subseteq \mathsf{S}$
 - e.g. "probability of the algorithm terminating successfully?"
 - e.g. "probability that an error occurs during execution?"
- Dual of reachability: invariance
 - probability of remaining within some class of states
 - Pr("remain in set of states T") = 1 Pr("reach set $S \setminus T$ ")
 - e.g. "probability that an error never occurs"
- We will also consider other variants of reachability
 - time-bounded, constrained ("until"), ...

Reachability probabilities

Formally: ProbReach(s, T) = Pr_s(Reach(s, T))

- where Reach(s, T) = { $s_0s_1s_2 \dots \in Path(s) \mid s_i \text{ in } T \text{ for some } i$ }

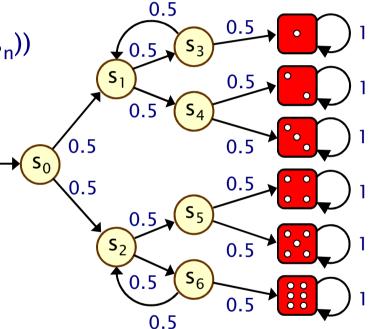

- Is Reach(s, T) measurable for any $T \subseteq S$? Yes...
 - Reach(s, T) is the union of all basic cylinders $Cyl(s_0s_1...s_n)$ where $s_0s_1...s_n$ in $Reach_{fin}(s, T)$
 - Reach_{fin}(s, T) contains all finite paths $s_0s_1...s_n$ such that: $s_0=s, s_0,...,s_{n-1} \notin T, s_n \in T$ (reaches T first time)
 - set of such finite paths $s_0s_1...s_n$ is countable
- Probability
 - in fact, the above is a disjoint union
 - so probability obtained by simply summing...

Computing reachability probabilities

- Compute as (infinite) sum...
- $\Sigma_{s_0,...,s_n \in \text{Reachfin}(s, T)} \Pr_{s_0}(Cyl(s_0,...,s_n))$

 $= \Sigma_{s_0,\ldots,s_n \ \in \ Reachfin(s, \ T)} \ \textbf{P}(s_0,\ldots,s_n)$

- Example:
 - ProbReach(s₀, {4})



Computing reachability probabilities

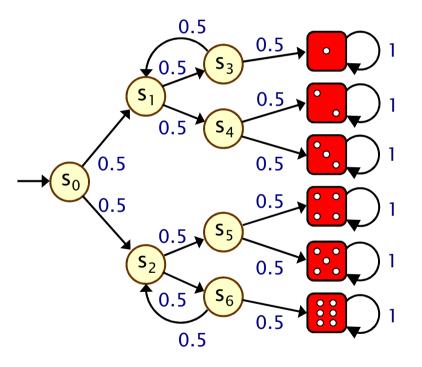
- Compute as (infinite) sum...
- $\Sigma_{s_0,...,s_n \in \text{Reachfin}(s, T)} \Pr_{s_0}(Cyl(s_0,...,s_n))$

 $= \Sigma_{s_0,\ldots,s_n \in \text{Reachfin}(s, T)} P(s_0,\ldots,s_n)$

- Example:
 - ProbReach(s₀, {4})
 - $= Pr_{s0}(Reach(s_0, \{4\}))$
 - Finite path fragments:
 - $s_0(s_2s_6)^ns_2s_54$ for $n \ge 0$
 - $P_{s0}(s_0s_2s_54) + P_{s0}(s_0s_2s_6s_2s_54) + P_{s0}(s_0s_2s_6s_2s_6s_2s_54) + \dots$
 - $= (1/2)^3 + (1/2)^5 + (1/2)^7 + \dots = 1/6$

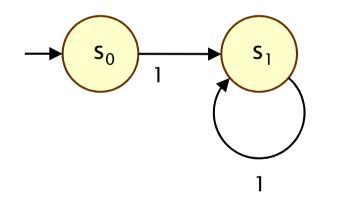
Computing reachability probabilities

- Alternative: derive a linear equation system
 - solve for all states simultaneously
 - i.e. compute vector <u>ProbReach</u>(T)
- Let x_s denote ProbReach(s, T)


(

• Solve:

$$x_{s} = \begin{cases} 1 & \text{if } s \in T \\ 0 & \text{if } T \text{ is not reachable from s} \\ \sum_{s' \in S} P(s, s') \cdot x_{s'} & \text{otherwise} \end{cases}$$


Example

Compute ProbReach(s₀, {4})

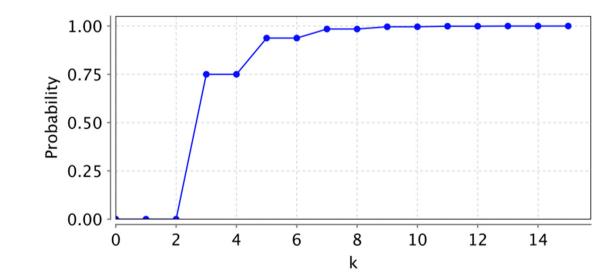
Unique solutions

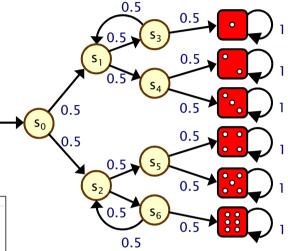
- Why the need to identify states that cannot reach T?
- Consider this simple DTMC:
 - compute probability of reaching $\{s_0\}$ from s_1

- linear equation system: $x_{s_0} = 1$, $x_{s_1} = x_{s_1}$
- multiple solutions: $(x_{s_0}, x_{s_1}) = (1,p)$ for any $p \in [0,1]$

Bounded reachability probabilities

• Probability of reaching T from s within k steps

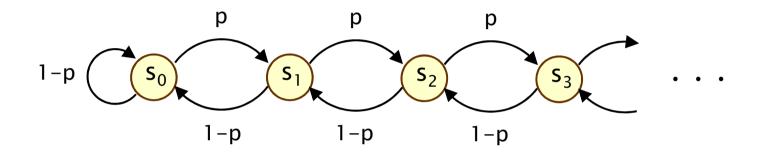

ſ


- Formally: ProbReach^{$\leq k$}(s, T) = Pr_s(Reach^{$\leq k$}(s, T)) where:
 - Reach^{$\leq k$}(s, T) = { s₀s₁s₂ ... \in Path(s) | s_i in T for some i $\leq k$ }
- <u>ProbReach</u>≤k(T) = <u>x</u>(k+1) from the previous fixed point
 which gives us...

$$ProbReach^{\leq k}(s, T) = \begin{cases} 1 & \text{if } s \in T \\ 0 & \text{if } k = 0 \& s \notin T \\ \sum_{s' \in S} P(s,s') \cdot ProbReach^{\leq k-1}(s', T) & \text{if } k > 0 \& s \notin T \end{cases}$$

(Bounded) reachability

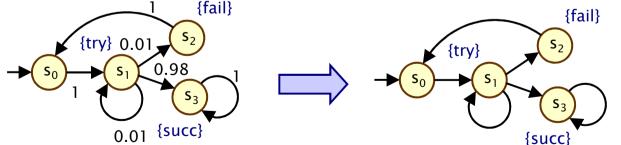
- ProbReach(s_0 , {1,2,3,4,5,6}) = 1
- ProbReach^{$\leq k$} (s₀, {1,2,3,4,5,6}) = ...



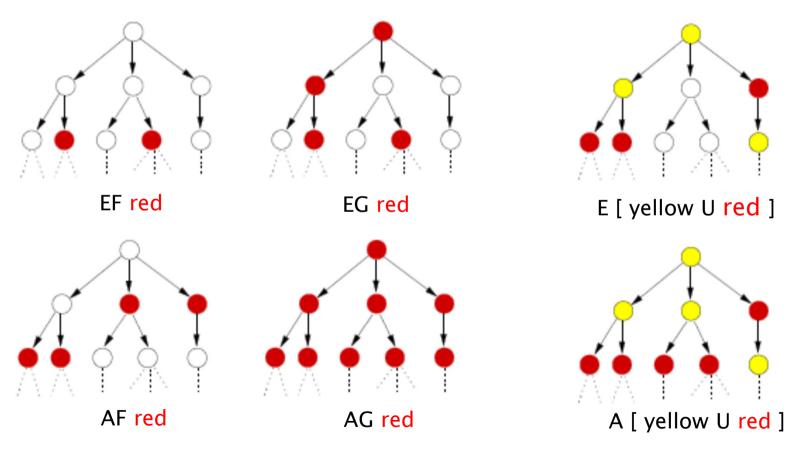
Qualitative properties

- Quantitative properties:
 - "what is the probability of event A?"
- Qualititative properties:
 - "the probability of event A is 1" ("almost surely A")
 - or: "the probability of event A is > 0" ("possibly A")
- For finite DTMCs, qualititative properties do not depend on the transition probabilities – only need underlying graph
 - e.g. to determine "is target set T reached with probability 1?" (see DTMC model checking later)

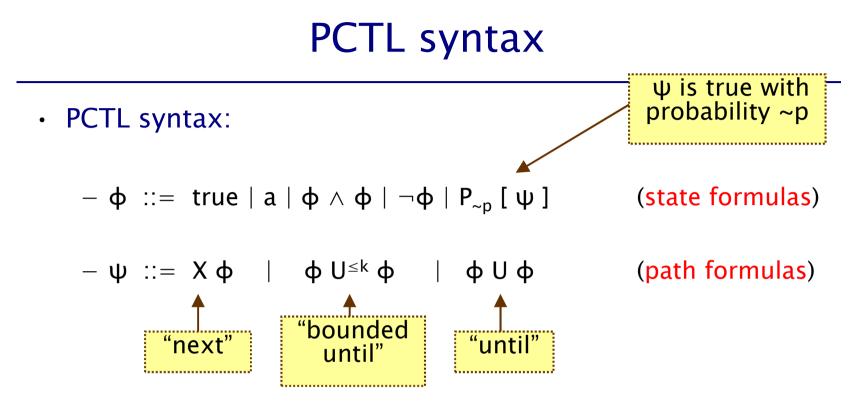
Aside: Infinite Markov chains


Infinite-state random walk

- Value of probability p does affect qualitative properties
 - ProbReach(s, {s₀}) = 1 if p \leq 0.5
 - ProbReach(s, {s₀}) < 1 if p > 0.5


Temporal logic

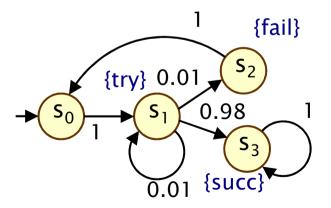
- Temporal logic
 - formal language for specifying and reasoning about how the behaviour of a system changes over time
 - defined over paths, i.e. sequences of states $s_0s_1s_2s_3...$ such that $P(s_i,s_{i+1}) > 0 \forall i$
- Logics used in this course are probabilistic extensions of temporal logics devised for non-probabilistic systems (CTL, LTL)
 - So we revert briefly to (labelled) state-transition diagrams


CTL semantics

- Intuitive semantics:
 - of quantifiers (A/E) and temporal operators (F/G/U)

PCTL

- Temporal logic for describing properties of DTMCs
 - PCTL = Probabilistic Computation Tree Logic [HJ94]
 - essentially the same as the logic pCTL of [ASB+95]
- Extension of (non-probabilistic) temporal logic CTL
 - key addition is probabilistic operator P
 - quantitative extension of CTL's A and E operators
- Example
 - send → $P_{\geq 0.95}$ [true U^{≤10} deliver]
 - "if a message is sent, then the probability of it being delivered within 10 steps is at least 0.95"



- define F φ = true U φ (eventually), G φ = \neg (F $\neg\varphi)$ (globally)

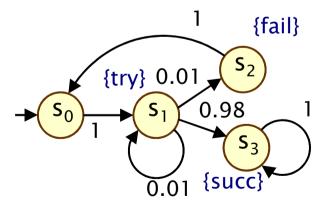
- where a is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
- A PCTL formula is always a state formula
 - path formulas only occur inside the P operator

PCTL semantics for DTMCs

- PCTL formulas interpreted over states of a DTMC
 - $s \models \varphi$ denotes φ is "true in state s" or "satisfied in state s"
- Semantics of (non-probabilistic) state formulas:
 - for a state s of the DTMC (S, s_{init}, P, L):
 - $s \vDash a \iff a \in L(s)$
 - $\ s \vDash \varphi_1 \land \varphi_2 \qquad \Leftrightarrow \ s \vDash \varphi_1 \ \text{and} \ s \vDash \varphi_2$
 - $s \models \neg \varphi \qquad \Leftrightarrow s \models \varphi \text{ is false}$
- Examples
 - $s_3 \models succ$
 - $s_1 \models try \land \neg fail$

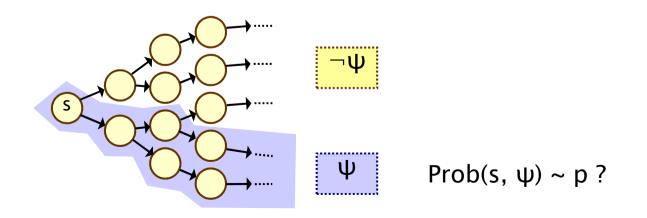
PCTL semantics for DTMCs

- Semantics of path formulas:
 - for a path $\omega = s_0 s_1 s_2 \dots$ in the DTMC:


$$\begin{array}{ll} - \omega \vDash X \varphi & \Leftrightarrow & s_1 \vDash \varphi \\ - \omega \vDash \varphi_1 \ U^{\leq k} \varphi_2 & \Leftrightarrow & \exists i \leq k \text{ such that } s_i \vDash \varphi_2 \text{ and } \forall j < i, \ s_j \vDash \varphi_1 \\ - \omega \vDash \varphi_1 \ U \ \varphi_2 & \Leftrightarrow & \exists k \geq 0 \text{ such that } \omega \vDash \varphi_1 \ U^{\leq k} \ \varphi_2 \end{array}$$

- Some examples of satisfying paths:
 - $X \text{ succ} \{\text{try}\} \{\text{succ}\} \{\text$

 $-\neg$ fail U succ


{try} {try} {succ} {succ}

$$S_0 \rightarrow S_1 \rightarrow S_1 \rightarrow S_3 \rightarrow S_3 \rightarrow \cdots$$

PCTL semantics for DTMCs

- Semantics of the probabilistic operator P
 - informal definition: $s \models P_{\sim p} [\Psi]$ means that "the probability, from state s, that Ψ is true for an outgoing path satisfies $\sim p$ "
 - example: $s \models P_{<0.25}$ [X fail] \Leftrightarrow "the probability of atomic proposition fail being true in the next state of outgoing paths from s is less than 0.25"
 - formally: $s \models P_{\sim p} [\psi] \Leftrightarrow Prob(s, \psi) \sim p$
 - where: Prob(s, ψ) = Pr_s { $\omega \in Path(s) \mid \omega \models \psi$ }
 - (sets of paths satisfying ψ are always measurable [Var85])

More PCTL...

Usual temporal logic equivalences:

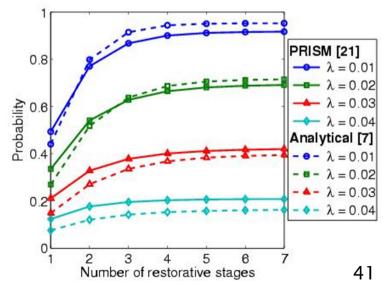
- false =
$$\neg$$
true
- $\phi_1 \lor \phi_2 \equiv \neg(\neg \phi_1 \land \neg \phi_2)$
- $\phi_1 \rightarrow \phi_2 \equiv \neg \phi_1 \lor \phi_2$

 $- \ F \ \varphi \equiv \diamondsuit \ \varphi \equiv true \ U \ \varphi$

$$- \mathsf{G} \mathbf{\phi} \equiv \Box \mathbf{\phi} \equiv \neg(\mathsf{F} \neg \mathbf{\phi})$$

- bounded variants: $F^{\leq k} \phi$, $G^{\leq k} \phi$

(false) (disjunction) (implication)


(eventually, "future") (always, "globally")

Negation and probabilities

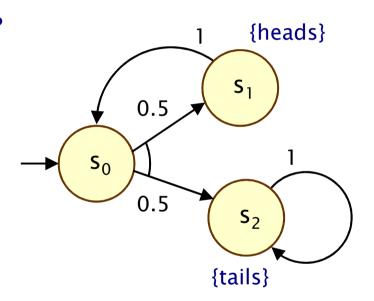
$$\begin{array}{l} - \text{ e.g. } \neg P_{>p} \left[\begin{array}{c} \varphi_1 \ U \ \varphi_2 \end{array} \right] \equiv P_{\leq p} \left[\begin{array}{c} \varphi_1 \ U \ \varphi_2 \end{array} \right] \\ - \text{ e.g. } P_{>p} \left[\begin{array}{c} G \ \varphi \end{array} \right] \equiv P_{<1-p} \left[\begin{array}{c} F \ \neg \varphi \end{array} \right] \end{array}$$

Quantitative properties

- Consider a PCTL formula P_{-p} [ψ]
 - if the probability is unknown, how to choose the bound p?
- When the outermost operator of a PTCL formula is P
 - we allow the form $P_{=?}$ [ψ]
 - "what is the probability that path formula $\boldsymbol{\psi}$ is true?"
- Model checking is no harder: compute the values anyway
- Useful to spot patterns, trends
- Example
 - $P_{=?}$ [F err/total>0.1]
 - "what is the probability that 10% of the NAND gate outputs are erroneous?"

Reachability and invariance

- Derived temporal operators, like CTL...
- Probabilistic reachability: P_{-p} [F ϕ]
 - the probability of reaching a state satisfying $\boldsymbol{\varphi}$
 - $F \varphi \equiv true U \varphi$
 - "φ is eventually true"
 - bounded version: $F^{\leq k} \; \varphi \equiv true \; U^{\leq k} \; \varphi$
- Probabilistic invariance: P_{-p} [G φ]
 - the probability of φ always remaining true
 - $G \varphi \equiv \neg(F \neg \varphi) \equiv \neg(true U \neg \varphi)$
 - "φ is always true"
 - bounded version: $G^{\leq k} \varphi \equiv \neg(F^{\leq k} \neg \varphi)$


strictly speaking, G φ cannot be derived from the PCTL syntax in this way since there is no negation of path formulae

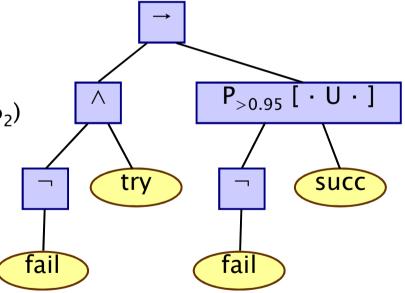
Qualitative vs. quantitative properties

- P operator of PCTL can be seen as a quantitative analogue of the CTL operators A (for all) and E (there exists)
- Qualitative PCTL properties
 - $P_{\sim p}$ [ψ] where p is either 0 or 1
- Quantitative PCTL properties
 - $P_{-p} [\psi]$ where p is in the range (0,1)
- $P_{>0}$ [F φ] is identical to EF φ
 - there exists a finite path to a $\varphi\text{-state}$
- $P_{\geq 1}$ [F φ] is (similar to but) weaker than AF φ
 - a ϕ -state is reached "almost surely"
 - see next slide...

Example: Qualitative/quantitative

- Toss a coin repeatedly until "tails" is thrown
- Is "tails" always eventually thrown?
 - CTL: AF "tails"
 - Result: false
 - Counterexample: $s_0s_1s_0s_1s_0s_1...$
- Does the probability of eventually throwing "tails" equal one?
 - PCTL: $P_{\geq 1}$ [F "tails"]
 - Result: true
 - Infinite path $s_0s_1s_0s_1s_0s_1...$ has zero probability

Overview (Part 1)


- Probability basics
- Discrete-time Markov chains (DTMCs)
 - definition, paths & probability spaces
- Temporal logic PCTL
- PCTL model checking
- Costs and rewards
- PRISM: overview
 - Modelling language
 - Properties
 - GUI, etc
 - Case study: Bluetooth device discovery
- Summary

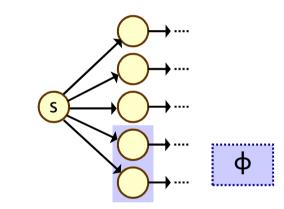
PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,HJ94,CY95]
 - inputs: DTMC D=(S,s_{init},P,L), PCTL formula ϕ
 - output: Sat(ϕ) = { s \in S | s $\models \phi$ } = set of states satisfying ϕ
- What does it mean for a DTMC D to satisfy a formula $\varphi?$
 - sometimes, want to check that $s \vDash \varphi \forall s \in S$, i.e. $Sat(\varphi) = S$
 - sometimes, just want to know if $s_{init} \models \phi$, i.e. if $s_{init} \in Sat(\phi)$
- Sometimes, focus on quantitative results
 - e.g. compute result of P=? [F error]
 - e.g. compute result of P=? [$F^{\leq k}$ error] for $0 \leq k \leq 100$

PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of $\boldsymbol{\varphi}$
 - example: $\phi = (\neg fail \land try) \rightarrow P_{>0.95}$ [$\neg fail U succ$]
- For the non-probabilistic operators:
 - Sat(true) = S
 - $\ Sat(a) = \{ \ s \in S \ | \ a \in L(s) \ \}$
 - $Sat(\neg \varphi) = S \setminus Sat(\varphi)$
 - $\ Sat(\varphi_1 \ \land \ \varphi_2) = Sat(\varphi_1) \ \cap \ Sat(\varphi_2)$
- For the $P_{\sim p}$ [ψ] operator
 - need to compute the probabilities $Prob(s, \psi)$ for all states $s \in S$

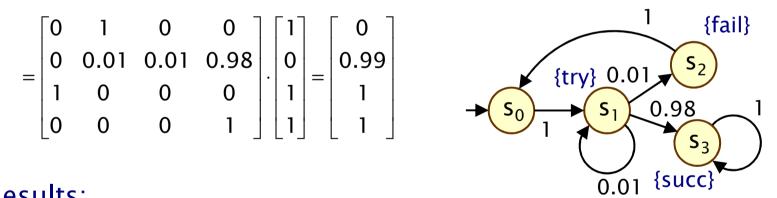
Probability computation


- Three temporal operators to consider:
- Next: $P_{-p}[X \varphi]$
- Bounded until: $P_{\sim p}[\phi_1 U^{\leq k} \phi_2]$ (omitted)
 - adaptation of bounded reachability for DTMCs
- Until: $P_{-p}[\phi_1 \cup \phi_2]$
 - adaptation of reachability for DTMCs
 - graph-based "precomputation" algorithms
 - techniques for solving large linear equation systems

PCTL next for DTMCs

- Computation of probabilities for PCTL next operator
 - $\operatorname{Sat}(P_{\sim p}[X \varphi]) = \{ s \in S \mid \operatorname{Prob}(s, X \varphi) \sim p \}$
 - need to compute Prob(s, X ϕ) for all s \in S
- Sum outgoing probabilities for transitions to φ-states

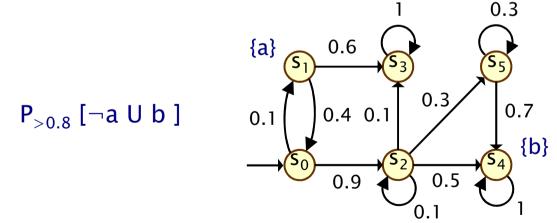
- Prob(s, X
$$\phi$$
) = $\Sigma_{s' \in Sat(\phi)} P(s,s')$


- Compute vector <u>Prob</u>(X φ) of probabilities for all states s
 - $\underline{Prob}(X \varphi) = \mathbf{P} \cdot \underline{\varphi}$
 - where $\underline{\Phi}$ is a 0-1 vector over S with $\underline{\Phi}(s) = 1$ iff $s \models \overline{\Phi}$
 - computation requires a single matrix-vector multiplication

PCTL next - Example

- Model check: $P_{\geq 0.9}$ [X (\neg try \lor succ)]
 - $\text{ Sat } (\neg try \lor succ) = (S \setminus \text{ Sat(try)}) \cup \text{ Sat(succ)} \\ = (\{s_0, s_1, s_2, s_3\} \setminus \{s_1\}) \cup \{s_3\} = \{s_0, s_2, s_3\}$

$$- \underline{Prob}(X (\neg try \lor succ)) = \mathbf{P} \cdot \underline{(\neg try \lor succ)} = \dots$$

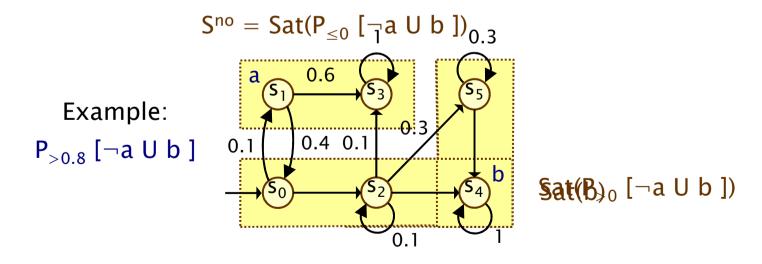

- Results:
 - <u>Prob</u>(X (\neg try \lor succ)) = [0, 0.99, 1, 1]
 - Sat(P_{≥ 0.9} [X (\neg try \lor succ)]) = {s₁, s₂, s₃}

PCTL until for DTMCs

- Computation of probabilities Prob(s, $\phi_1 \cup \phi_2$) for all $s \in S$
- First, identify all states where the probability is 1 or 0

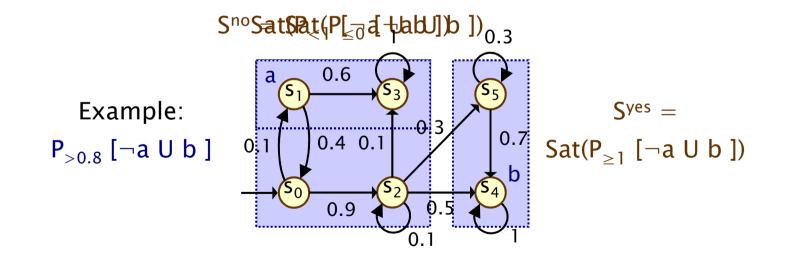
$$- S^{yes} = Sat(P_{\geq 1} [\varphi_1 \cup \varphi_2])$$

- $S^{no} = Sat(P_{\leq 0} [\varphi_1 U \varphi_2])$
- Then solve linear equation system for remaining states
- Running example:



Precomputation

- We refer to the first phase (identifying sets S^{yes} and S^{no}) as "precomputation"
 - two algorithms: Prob0 (for S^{no}) and Prob1 (for S^{yes})
 - algorithms work on underlying graph (probabilities irrelevant)
- Important for several reasons
 - ensures unique solution to linear equation system
 - · only need Prob0 for uniqueness, Prob1 is optional
 - reduces the set of states for which probabilities must be computed numerically
 - gives exact results for the states in S^{yes} and S^{no} (no round-off)
 - for model checking of qualitative properties $(P_{-p}[\cdot]$ where p is 0 or 1), no further computation required

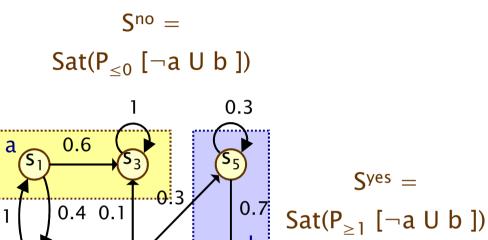

Precomputation – Prob0

- Prob0 algorithm to compute $S^{no} = Sat(P_{\leq 0} [\varphi_1 \cup \varphi_2])$:
 - first compute Sat(P_{>0} [$\varphi_1 \cup \varphi_2$]) = Sat(E[$\varphi_1 \cup \varphi_2$])
 - i.e. find all states which can, with non-zero probability, reach a ϕ_2 -state without leaving ϕ_1 -states
 - i.e. find all states from which there is a finite path through ϕ_1 -states to a ϕ_2 -state: simple graph-based computation
 - subtract the resulting set from S

Precomputation – Prob1

- Prob1 algorithm to compute $S^{yes} = Sat(P_{\geq 1} [\phi_1 \cup \phi_2])$:
 - first compute Sat(P_{<1} [$\varphi_1 U \varphi_2$]), reusing S^{no}
 - this is equivalent to the set of states which have a non-zero probability of reaching S^{no}, passing only through ϕ_1 -states
 - again, this is a simple graph-based computation
 - subtract the resulting set from S

PCTL until – linear equations


- Probabilities Prob(s, $\phi_1 \cup \phi_2$) can now be obtained as the unique solution of the following set of linear equations
 - essentially the same as for probabilistic reachability

$$Prob(s, \phi_1 \cup \phi_2) = \begin{cases} 1 & \text{if } s \in S^{yes} \\ 0 & \text{if } s \in S^{no} \\ \sum_{s' \in S} P(s,s') \cdot Prob(s', \phi_1 \cup \phi_2) & \text{otherwise} \end{cases}$$

- Can also be reduced to a system in $|S^{?}|$ unknowns instead of |S| where $S^{?} = S \setminus (S^{yes} \cup S^{no})$

PCTL until - linear equations

- Example: P_{>0.8} [¬a U b]
- Let $x_i = Prob(s_i, \neg a \cup b)$

$$x_{1} = x_{3} = 0$$

$$x_{4} = x_{5} = 1$$

$$x_{2} = 0.1x_{2} + 0.1x_{3} + 0.3x_{5} + 0.5x_{4} = \frac{8}{9}$$

$$x_{0} = 0.1x_{1} + 0.9x_{2} = \frac{0.8}{9}$$
Prob(\gamma a U b) = \frac{x}{x} = [0.8, 0, 8/9, 0, 1, 1]
Sat(P_{>0.8} [\gamma a U b]) = { s_{2}, s_{4}, s_{5} }

PCTL Until – Example 2

- Example: $P_{>0.5}$ [$G \neg b$]
- $Prob(s_i, G \neg b)$ = 1 - $Prob(s_i, \neg(G \neg b))$ = 1 - $Prob(s_i, F b)$

• Let
$$x_i = Prob(s_i, F b)$$

 $x_3 = 0$ and $x_4 = x_5 = 1$

$$S^{no} = Sat(P_{\leq 0} [Fb])$$

$$1 \qquad 0.3$$

$$1 \qquad 0.3$$

$$0.1 \qquad 0.4 \qquad 0.1$$

$$5^{1} \qquad 0.4 \qquad 0.1$$

$$5^{2} \qquad 0.5 \qquad 5^{4}$$

$$\begin{split} S^{yes} = \\ Sat(P_{\geq 1} \text{ [F b]}) \end{split}$$

$$x_{2} = 0.1x_{2}+0.1x_{3}+0.3x_{5}+0.5x_{4} = 8/9$$

$$x_{1} = 0.6x_{3}+0.4x_{0} = 0.4x_{0}$$

$$x_{0} = 0.1x_{1}+0.9x_{2} = 5/6 \text{ and } x_{1} = 1/3$$

Prob(G¬b) = 1-x = [1/6, 2/3, 1/9, 1, 0, 0]
Sat(P_{>0.5} [G¬b]) = { s_{1}, s_{3} }

Linear equation systems

- Solution of large (sparse) linear equation systems
 - size of system (number of variables) typically O(|S|)
 - state space S gets very large in practice
- Two main classes of solution methods:
 - direct methods compute exact solutions in fixed number of steps, e.g. Gaussian elimination, L/U decomposition
 - iterative methods, e.g. Power, Jacobi, Gauss-Seidel, ...
 - the latter are preferred in practice due to scalability
- General form: $\mathbf{A} \cdot \underline{\mathbf{x}} = \underline{\mathbf{b}}$
 - indexed over integers,

$$\sum_{j=0}^{|S|-1} \mathbf{A}(i,j) \cdot \underline{x}(j) = \underline{b}(i)$$

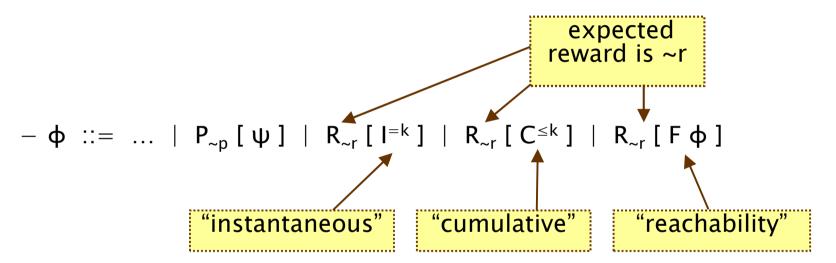
Limitations of PCTL

- PCTL, although useful in practice, has limited expressivity
 - essentially: probability of reaching states in X, passing only through states in Y (and within k time-steps)
- More expressive logics can be used, for example:
 - LTL [Pnu77] (non-probabilistic) linear-time temporal logic
 - PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL
 - both allow path operators to be combined
 - (in PCTL, P_{-p} [...] always contains a single temporal operator)
 - supported by PRISM
 - (not covered in this lecture)
- Another direction: extend DTMCs with costs and rewards...

Costs and rewards

- We augment DTMCs with rewards (or, conversely, costs)
 - real-valued quantities assigned to states and/or transitions
 - these can have a wide range of possible interpretations
- Some examples:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...
- Costs? or rewards?
 - mathematically, no distinction between rewards and costs
 - when interpreted, we assume that it is desirable to minimise costs and to maximise rewards
 - we will consistently use the terminology "rewards" regardless

Reward-based properties


- Properties of DTMCs augmented with rewards
 - allow a wide range of quantitative measures of the system
 - basic notion: expected value of rewards
 - formal property specifications will be in an extension of PCTL
- More precisely, we use two distinct classes of property...
- Instantaneous properties
 - the expected value of the reward at some time point
- Cumulative properties
 - the expected cumulated reward over some period

DTMC reward structures

- For a DTMC (S, s_{init} , P,L), a reward structure is a pair (ρ , ι)
 - $-\underline{\rho}: S \rightarrow \mathbb{R}_{>0}$ is the state reward function (vector)
 - $-\iota: S \times S \rightarrow \mathbb{R}_{>0}$ is the transition reward function (matrix)
- Example (for use with instantaneous properties)
 - "size of message queue": $\underline{\rho}$ maps each state to the number of jobs in the queue in that state, ι is not used
- Examples (for use with cumulative properties)
 - "time-steps": $\underline{\rho}$ returns 1 for all states and ι is zero (equivalently, $\underline{\rho}$ is zero and ι returns 1 for all transitions)
 - "number of messages lost": $\underline{\rho}$ is zero and ι maps transitions corresponding to a message loss to 1
 - "power consumption": ρ is defined as the per-time-step energy consumption in each state and ι as the energy cost of each transition

PCTL and rewards

- Extend PCTL to incorporate reward-based properties
 - add an R operator, which is similar to the existing P operator

- where $r \in \mathbb{R}_{\geq 0}$, ~ $\thicksim \in \{<,>,\leq,\geq\},~k \in \mathbb{N}$

• R_{r} [•] means "the expected value of • satisfies ~r"

Reward formula semantics

- Formal semantics of the three reward operators
 - based on random variables over (infinite) paths
- Recall:

 $- \ s \vDash P_{\text{-p}} \left[\ \psi \ \right] \ \Leftrightarrow \ Pr_{s} \left\{ \ \omega \in Path(s) \ | \ \omega \vDash \psi \right\} \text{-} p$

• For a state s in the DTMC (see [KNP07a] for full definition):

$$\begin{array}{l} - s \vDash R_{\sim r} \left[I^{=k} \right] \iff Exp(s, X_{I=k}) \sim r \quad (instantaenous) \\ - s \vDash R_{\sim r} \left[C^{\leq k} \right] \iff Exp(s, X_{C\leq k}) \sim r \quad (cumulative) \end{array}$$

 $- s \models R_{r} [F \Phi] \iff Exp(s, X_{F\Phi}) \sim r$ (reachability)

where: Exp(s, X) denotes the expectation of the random variable X : Path(s) $\rightarrow \mathbb{R}_{\geq 0}$ with respect to the probability measure Pr_s

Reward formula semantics

- Definition of random variables:
 - for an infinite path $\omega = s_0 s_1 s_2 \dots$

$$X_{l=k}(\omega) = \underline{\rho}(s_k)$$

$$X_{C \le k}(\omega) = \begin{cases} 0 & \text{if } k = 0\\ \sum_{i=0}^{k-1} \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise} \end{cases}$$

$$X_{F\varphi}(\omega) = \begin{cases} 0 & \text{if } s_0 \in Sat(\varphi) \\ \\ \infty & \text{if } s_i \notin Sat(\varphi) \text{ for all } i \ge 0 \\ \\ \sum_{i=0}^{k_{\varphi}-1} \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise} \end{cases}$$

- where $k_{\varphi} = \min\{ j \mid s_j \vDash \varphi \}$

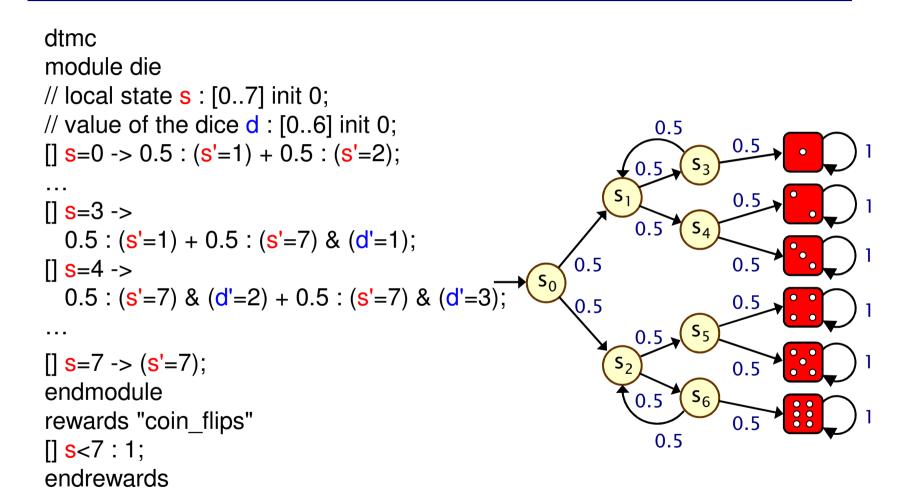
PRISM

- PRISM: Probabilistic symbolic model checker
 - developed at Birmingham/Oxford University, since 1999
 - free, open source software (GPL), runs on all major OSs
- Construction/analysis of probabilistic models...
 - discrete-time Markov chains, continuous-time Markov chains, Markov decision processes, probabilistic timed automata, stochastic multi-player games, ...
- Simple but flexible high-level modelling language
 - based on guarded commands; see later...
- Many import/export options, tool connections
 - in: (Bio)PEPA, stochastic π -calculus, DSD, SBML, Petri nets, ...
 - out: Matlab, MRMC, INFAMY, PARAM, ...

PRISM...

- Model checking for various temporal logics...
 - PCTL, CSL, LTL, PCTL*, rPATL, CTL, ...
 - quantitative extensions, costs/rewards, \dots
- Various efficient model checking engines and techniques
 - symbolic methods (binary decision diagrams and extensions)
 - explicit-state methods (sparse matrices, etc.)
 - statistical model checking (simulation-based approximations)
 - and more: symmetry reduction, quantitative abstraction refinement, fast adaptive uniformisation, ...
- Graphical user interface
 - editors, simulator, experiments, graph plotting
- See: <u>http://www.prismmodelchecker.org/</u>
 - downloads, tutorials, case studies, papers, ...

PRISM modelling language


- Simple, textual, state-based modelling language
 - used for all probabilistic models supported by PRISM
 - based on Reactive Modules [AH99]
- Language basics
 - system built as parallel composition of interacting modules
 - state of each module given by finite-ranging variables
 - behaviour of each module specified by guarded commands
 - $\cdot\,$ annotated with probabilities/rates and (optional) action label
 - transitions are associated with state-dependent probabilities
 - interactions between modules through synchronisation

Simple example

```
dtmc
module M1
  x : [0..3] init 0;
  [a] x=0 \rightarrow (x'=1);
   [b] x=1 \rightarrow 0.5 : (x'=2) + 0.5 : (x'=3);
endmodule
module M2
  y : [0..3] init 0;
  [a] y=0 \rightarrow (y'=1);
   [b] y=1 \rightarrow 0.4 : (y'=2) + 0.6 : (y'=3);
endmodule
```

Probabilistic models

Given in PRISM's guarded commands modelling notation

70

Probabilistic models

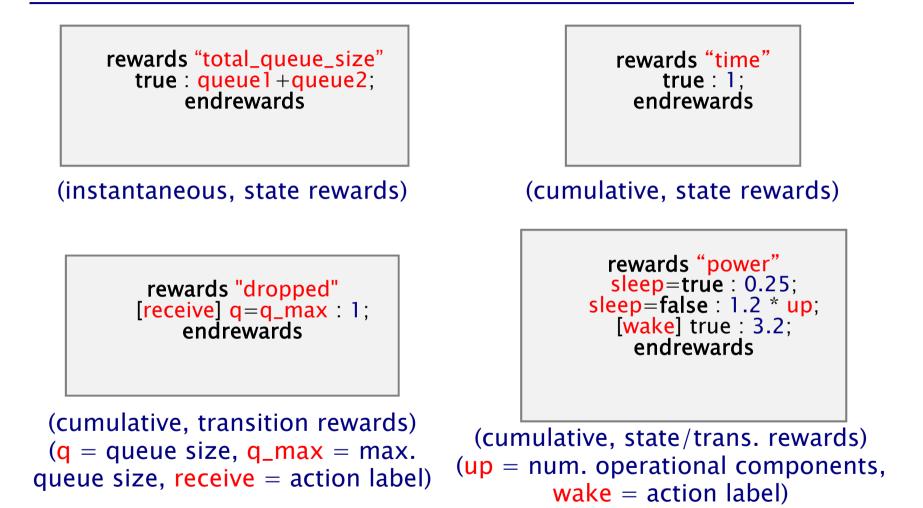
```
int s, d;
s = 0; d = 0;
while (s < 7) {
                                                                          0.5
  bool coin = Bernoulli(0.5);
  if (s = 0)
                                                                        05
     if (coin) s = 1 else s = 2;
                                                                        0.5
. . .
 else if (s = 3)
                                                                0.5
                                                           S<sub>0</sub>)
     if (coin) s = 1 else {s = 7; d = 1;}
                                                                0.5
 else if (s = 4)
                                                                       0.5 (S<sub>5</sub>)
     if (coin) {s = 7; d = 2} else {s = 7; d = 3;}
                                                                     S<sub>2</sub>
                                                                        0.5
                                                                          0.5
return (d)
```

Given as a probabilistic program

0.5

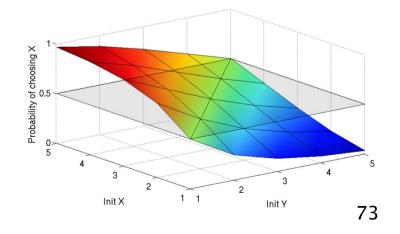
ر 0.5

0.5


0.5

0.5

0.5


S₆

Rewards in the PRISM language

PRISM - Property specification

- Temporal logic property specification language
 - subsumes PCTL, CSL, probabilistic LTL, PCTL*, ...
- Simple examples:
 - $P_{\leq 0.01}$ [F "crash"] "the probability of a crash is at most 0.01"
 - $-S_{>0.999}$ ["up"] "long-run probability of availability is >0.999"
- Usually focus on quantitative (numerical) properties:
 - P_{=?} [F "crash"]
 "what is the probability of a crash occurring?"
 - then analyse trends in quantitative properties as system parameters vary

PRISM - Property specification

- Properties can combine numerical + exhaustive aspects
 - $P_{max=?}$ [$F^{\leq 10}$ "fail"] "worst-case probability of a failure occurring within 10 seconds, for any possible scheduling of system components"
 - $P_{=?}$ [$G^{\leq 0.02}$!"deploy" {"crash"}{max}] "the maximum probability of an airbag failing to deploy within 0.02s, from any possible crash scenario"
- Reward-based properties (rewards = costs = prices)
 - R_{{"time"}=?} [F "end"] "expected algorithm execution time"
 - $R_{\{"energy"\}max=?}$ [$C^{\leq 7200}$] "worst-case expected energy consumption during the first 2 hours"
- Properties can be combined with e.g. arithmetic operators
 - e.g. P_{=?} [F fail₁] / P_{=?} [F fail_{any}] "conditional failure prob."

PRISM GUI: Editing a model

キャッショ 🛐 🙀 🔶		
RISM Model File: /Users/dxp/prism-	www/tutorial/examples/power/power_policy1.sm	
Model: power_policy1.sm Type: CTMC Modules	<pre>// // Service Queue (SQ) // Stores requests which arrive into the system to be processed. // Maximum queue size const int q_max = 20; // Request arrival rate const double rate_arrive = 1/0.72; // (mean inter-arrival time is 0.72 seconds) module S0 // q = number of requests currently in queue q : [0q_max] init 0; // A request arrives [request] true -> rate_arrive : (q'=min(q+1,q_max)); // A request is served [serve] q=1 -> (q'=q-1); // Last request is served [serve_last] q=1 -> (q'=q-1); endmodule //</pre>	
Built Model	<pre>42 // Rate of switching from sleep to idle (average transition time = 1.6s) 43 const double rate s2i = 1/1.6;</pre>	
Initial states: 1	44 // Rate of switching from idle to sleep (average transition time = $0.67s$)	
Transitions: 81	45 const double rate_i2s = 1/0.67; 46	-

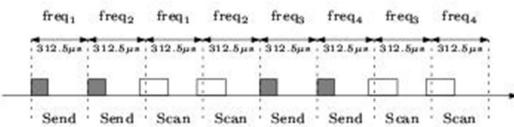
PRISM GUI: The Simulator

Steps 1 Right 0 Backtrack Ime	Rate 0.006 0.002 2.0E-4 2.5E-4 10.0 Image: state	Repair	e lse r'=true		ToLef	ft oleft_n	h formula ToR toright	ight	"perce 100 90	Rewards	s ["num
Simulate Module/[action] Steps 1 Backtracking Left Steps 1 Steps 1 Steps 1 Steps 1 Steps 1 Path Time Left Left Action # Time (+) left_n 0 0 Step Time (+) left_n I 12.0649 ToRight 12.1674 [startRight] 3 12.1674 Left Left 5 Left 5 Left 6 Left 7 Left 7 Left 7 Left 8 Left 8 Left 8	0.006 0.002 2.0E-4 2.5E-4 10.0 Right right_n right S faise (4) U	left_n'=2 right_n'=0 line_n'=fals toleft_n'=fa left'=true, r enerate time a Repair r (false) (e Ise se se se se se se se se se se se se s		K init deadlo minim premiu ToLef	ft oleft_n	ToR toright	ight toright_r	"perce (100)	Rewards	["num
Steps 1 Backtracking Cine Steps 1 Backtrack Cine Steps 1 Steps 1 Path Time Left Action # Time (+) left n Action # Time (+) left n Right 1 12.0649 I Right 1 12.0649 I Right 1 12.0649 I Extrema for the steps I I I Image: the steps Image: the steps Image: the steps Image: the steps Right 1 12.0649 Image: the steps Image: the steps Image: the steps Right 1 12.0649 Image: the steps Image: the steps Image: the steps Image: the steps Image: the steps Image: the steps Image: the steps Image: the steps Left 5 12.2809 4 Image: the steps Image: the steps Image: the steps </th <th>0.006 0.002 2.0E-4 2.5E-4 10.0 Right right_n right S faise (4) U</th> <th>left_n'=2 right_n'=0 line_n'=fals toleft_n'=fa left'=true, r enerate time a Repair r (false) (</th> <th>e Ise se se se se se se se se se se se se s</th> <th></th> <th>K init deadlo minim premiu ToLef</th> <th>ft oleft_n</th> <th>ToR toright</th> <th>ight toright_r</th> <th>"perce (100)</th> <th>Rewards</th> <th>["num</th>	0.006 0.002 2.0E-4 2.5E-4 10.0 Right right_n right S faise (4) U	left_n'=2 right_n'=0 line_n'=fals toleft_n'=fa left'=true, r enerate time a Repair r (false) (e Ise se se se se se se se se se se se se s		K init deadlo minim premiu ToLef	ft oleft_n	ToR toright	ight toright_r	"perce (100)	Rewards	["num
Steps 1 Steps 1 Backtracking Control of the second sec	0.002 2.0E-4 2.5E-4 10.0 Right right_n right \$ <u>faise</u> 4 <u>true</u>	right_n'=0 line_n'=fals toleft_n'=fa left'=true, r cenerate time a Repair r (false) (e Ise s'=true v automatically	_n to	K deadlo minim premiu ToLef	um um ft	toright	toright_n	(100)	"time	["num
Steps Time Left Action # Time (+) left_n Action # Time (+) left_n Right 1 12.0649 1 Tokight 2 12.0806 1 Image: Steps 1 12.0649 1 Image: Steps 1 12.0677 1 Image: Steps 1 12.2677 1 Image: Steps 1 12.2677 1 Image: Steps 1 12.3677 1 Image: Steps 1 12.3446 1 Image: Steps 1 12.3446 1 Image: Steps 1 12.3653 1	2.0E-4 2.5E-4 10.0 Right right_n right \$ <u>faise</u> 4 <u>true</u>	line_n'=fals toleft_n'=fa left'=true, r enerate time a Repair r (false) (Ise '= true • automatically Line line line_	_n to	minimum premiu ToLef oleft to	um um ft	toright	toright_n	(100)	"time	["num
Step Time Left Steps 1 Path Right 1 12.0649 Right 1 12.0649 ToRight 2 12.0806 [startRight] 3 12.1674 Left 5 12.2809 Left 5 12.2809 Left 6 12.3071 Left 7 12.3446 Left 8 12.3653	2.5E-4 10.0 Right right_n right (4) (4) (True)	toleft_n'=fa left'=true, r Repair r (false) (Ise '= true • automatically Line line line_	_n to	ToLef	ft	toright	toright_n	(100)	"time	["num
Steps 1 [startLeft] 1 Steps 1 [startLeft] 1 Action # Time (+) left_n left Action # Time (+) left_n left 0 0 5 faise Right 2 12.0649 1 ToRight 2 12.0806 1 [startRight] 3 12.1674 1 Left 5 12.2809 4 1 Left 6 12.3071 3 1 Left 7 12.3446 2 1 Left 8 12.3653 1 1	10.0 Right right_n right (4) (1) (1) (1) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2	Repair	t'= true automatically Line line line_	_n to	ToLef	ft	toright	toright_n	(100)	"time	["num
Steps 1 Steps 1 Steps Time Left Action # Time (+) left_n left Right 1 12.0649 Image: 100 minute (+) left ToRight 2 12.0806 Image: 100 minute (+) left	Right right_n right (false) (fuller)	Repair r (false) (Line line_	_n to	ToLef	ft	toright	toright_n	(100)	"time	["num
Step Time Left Action # Time (+) left_n left 0 0 \$ faise Right 1 12.0649 Image: constraint of the state of the s	Right right_n right \$ false 4	Repair r (false) (Line line line_	_n to	ToLef	ft	toright	toright_n	(100)	"time	["num
Step Time Left Action # Time (+) left_n left 0 0 \$	right_n right () (false) (4) (true)	Repair r (false) (Line line line_	_n to	ToLef	ft	toright	toright_n	(100)	"time	["num
Step Time Left_n Action # Time (+) left_n left 0 0 \$\$ false Right 1 12.0649 \$\$ \$\$ ToRight 2 12.0806 \$\$ \$\$ [startRight] 3 12.1674 \$\$ \$\$ Left 5 12.2809 \$\$ \$\$ Left 6 12.3071 \$\$ \$\$ Left 7 12.3446 \$\$ \$\$ Left 8 12.3653 \$\$ \$\$	right_n right () (false) (4) (true)	r (false) (line line_		oleft to	oleft_n	toright	toright_n	(100)	"time	["num
Action # Time (+) left_n left 0 0 (5) (faise) Right 1 12.0649 ToRight 2 12.0806 [startRight] 3 12.1674 [repairRight] 4 12.2677 Left 5 12.2809 4 Left 6 12.3071 3 Left 7 12.3446 2 Left 8 12.3653 1	right_n right () (false) (4) (true)	r (false) (line line_		oleft to	oleft_n	toright	toright_n	(100)	"time	["num
0 0 (5) (faise) Right 1 12.0649 ToRight 2 12.0806 [startRight] 3 12.1674 [repairRight] 4 12.2677 Left 5 12.2809 Left 6 12.3071 Left 7 12.3446 Left 8 12.3653	5 (faise) 4 (true)								(100)		
Right 1 12.0649 Image: Constraint of the system ToRight 2 12.0806 Image: Constraint of the system Image: Constraint of the system [startRight] 3 12.1674 Image: Constraint of the system Image: Constraint of the system [repairRight] 4 12.2677 Image: Constraint of the system Image: Constraint of the system Left 5 12.2809 Image: Constraint of the system Image: Constraint of the system Left 6 12.3071 Image: Constraint of the system Image: Constraint of the system Left 7 12.3446 Image: Constraint of the system Image: Constraint of the system Left 8 12.3653 Image: Constraint of the system Image: Constraint of the system	(true)		false) (true		alse) (true)	(false)	(true)	(100) (90)	Ó	Ó
ToRight 2 12.0806 [startRight] 3 12.1674 [repairRight] 4 12.2677 Left 5 12.3071 3 Left 6 12.3071 3 Left 7 12.3446 2 Left 8 12.3653 1	(true)	(true)							<u>(</u>		
[startRight] 3 12.1674 [repairRight] 4 12.2677 Left 5 12.3071 Left 6 12.3071 Left 7 12.3446 Left 8 12.3653		(true)				_					
IrepairRight 4 12.2677 Left 5 12.2809 4 Left 6 12.3071 3 Left 7 12.3446 2 Left 8 12.3653 1		(true)						(false)			
Left 5 12.2809 4 Left 6 12.3071 3 Left 7 12.3446 2 Left 8 12.3653 1	(E) (falco)										(†) (†)
Left 7 12.3446 (2) Left 8 12.3653 (1)	G (laise)	false							100		Φ
Left 7 12.3446 (2) Left 8 12.3653 (1)									(90)		
Left 8 12.3653											
						_	_		(70)	1	
0 10 10 0									(50)		
Right 9 12.4059 [startLeft] 10 12.4583 (true)	4	(true)							60		
[startLeft] 10 12.4583 (true) [repairLeft] 11 15.6657 (2) (false)		(false)							(60)		8
[startLeft] 12 15.6834 (true)		(true)		_							- X
[repairLeft] 13 15.7585 3 (false)		(false)							(70)	Ó	
Right 14 15.8505	3								ō	T	Ť
Right 15 15.874	3 2 1 1 (1) faise								70 60 50 40		
Right 16 15.9084 3 false	1 false	(false) (false) (true	e) (fa	alse) (true) ((false)	(false)	40	0	
odel Properties Simulator Log											
ling model done.											

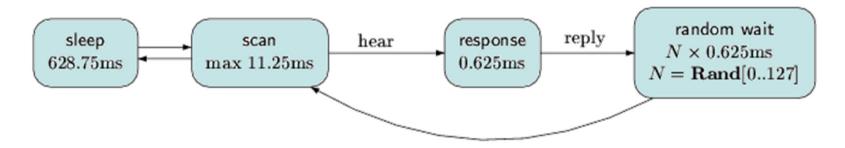
PRISM GUI: Model checking and graphs

e O O Eile Edit Model Properties Simulator Log Options	PRISM 4.					
roperties list: /Users/dxp/prism-www/tutorial/examples/power/power.cs	; *					
Properties	4 - Ex	periments				
P=? [F[T,T] q=q_max]		0				
S=? [q=q_max]		Property	Defined Const	Prograss	Status	Method
√x R=? [I=T]		=? [I=T]	T=0:1:40	Progress	Done	Verification
x R=? [S]		=?[I=T]	q_trigger=3:3	246/246 (100%)	Done	Verification
✓ R<1.5 [I=T]		=? [I=T]	q_trigger=5,T	41/41 (100%)	Done	Verification
💥 R<2 [S]		=?[I=T]	q_trigger=5,T	41/41 (100%)	Done	Verification
		=?[S]	q_trigger=2:1	29/29 (100%)	Done	Verification
		=?[S]	q_trigger=2:1	49/99 (49%)	Stopped	Verification
Name Type Value T int			Expected	d queue size	at time T	
		12.5	\square	-		
	1 reward	7.5	AN	and the second		<pre> q_trigger=3 q_trigger=6</pre>
Labels	Cted reward	7.5	A	and the second		
Labels Definition	Expected reward	7.5	\wedge	<u></u>		q_trigger=6 q_trigger=9 q_trigger=12 q_trigger=15
	Expected reward	7.5 5.0 2.5 0.0 0	5 10 15	20 25 3 T	0 35 40	q_trigger=6 q_trigger=9 q_trigger=12
	Expected reward	7.5 5.0 2.5 0.0	5 10 15		0 35 40	q_trigger=6 q_trigger=9 q_trigger=12 q_trigger=15

77


Bluetooth device discovery

- Bluetooth: short-range low-power wireless protocol
 - widely available in phones, PDAs, laptops, ...
 - open standard, specification freely available
- Uses frequency hopping scheme
 - to avoid interference (uses unregulated 2.4GHz band)
 - pseudo-random selection over 32 of 79 frequencies
- Formation of personal area networks (PANs)
 - piconets (1 master, up to 7 slaves)
 - self-configuring: devices discover themselves
- Device discovery
 - mandatory first step before any communication possible
 - relatively high power consumption so performance is crucial
 - master looks for devices, slaves listens for master

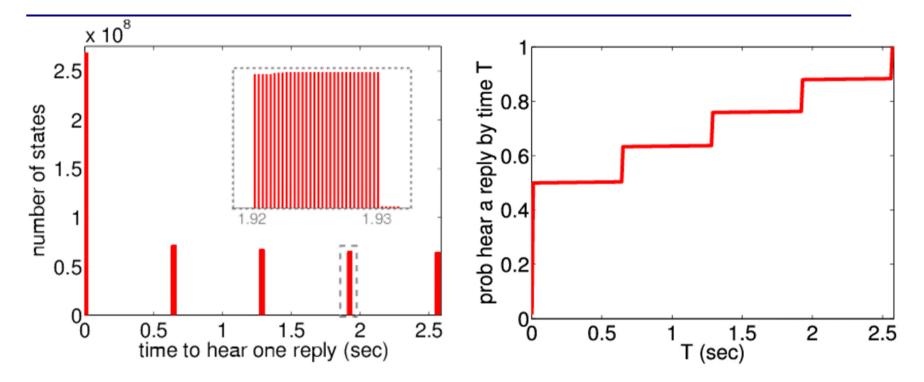

Master (sender) behaviour

- 28 bit free-running clock CLK, ticks every 312.5µs
- Frequency hopping sequence determined by clock:
 - freq = $[CLK_{16-12}+k+(CLK_{4-2,0}-CLK_{16-12}) \mod 16] \mod 32$
 - 2 trains of 16 frequencies (determined by offset k), 128 times each, swap between every 2.56s
- Broadcasts "inquiry packets" on two consecutive frequencies, then listens on the same two

Slave (receiver) behaviour

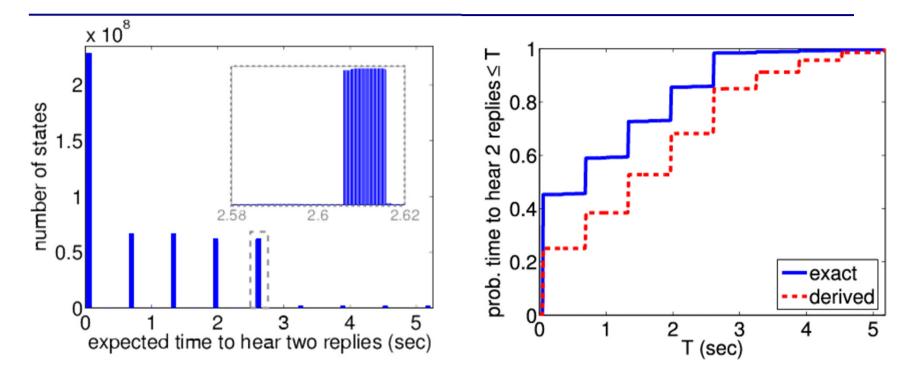
- Listens (scans) on frequencies for inquiry packets
 - must listen on right frequency at right time
 - cycles through frequency sequence at much slower speed (every 1.28s)

- On hearing packet, pause, send reply and then wait for a random delay before listening for subsequent packets
 - avoid repeated collisions with other slaves


Bluetooth – PRISM model

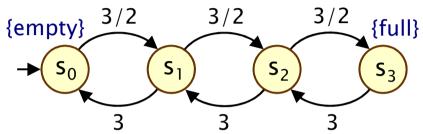
- Modelled/analysed using PRISM model checker [DKNP06]
 - model scenario with one sender and one receiver
 - synchronous (clock speed defined by Bluetooth spec)
 - model at lowest-level (one clock-tick = one transition)
 - randomised behaviour so model as a DTMC
 - use real values for delays, etc. from Bluetooth spec
- Modelling challenges
 - complex interaction between sender/receiver
 - combination of short/long time-scales cannot scale down
 - sender/receiver not initially synchronised, so huge number of possible initial configurations (17,179,869,184)

Bluetooth – Results


- Huge DTMC initially, model checking infeasible
 - partition into 32 scenarios, i.e. 32 separate DTMCs
 - on average, approx. 3.4×10^9 states (536,870,912 initial)
 - can be built/analysed with PRISM's MTBDD engine
- We compute:
 - R=? [F replies=K {"init"}{max}]
 - "worst-case expected time to hear K replies over all possible initial configurations"
- Also look at:
 - how many initial states for each possible expected time
 - cumulative distribution function (CDF) for time, assuming equal probability for each initial state

Bluetooth – Time to hear 1 reply

- Worst-case expected time = 2.5716 sec
 - in 921,600 possible initial states
 - best-case = 635 µs


Bluetooth – Time to hear 2 replies

- Worst-case expected time = 5.177 sec
 - in 444 possible initial states
 - compare actual CDF with derived version which assumes times to reply to first/second messages are independent

Beyond DTMCs

- Continuous-time Markov chains
 - transitions taken
 with real-valued
 rate (parameter of
 exponential distribution)

- suitable for reliability, availability, performance modelling
- Temporal logic CSL similar to PCTL, except real-valued time
 - $P_{=?}$ [$F^{[4,5.6]}$ outOfPower] the (transient) probability of being out of power in time interval of 4.1 to 5.6 time units
 - $S_{=?}$ [minQoS] the steady-state probability of satisfying minimum QoS
 - $R_{<10}$ [$C^{\leq 5}$] cumulated reward up to time 5 is less than 10
- Model checking via discretisation (uniformisation)

Summary (Part 1)

- Introduced quantitative verification
 - to analyse path-based properties of probabilistic systems
- Discrete-time Markov chains (DTMCs)
 - state transition systems + discrete probabilistic choice
 - probability space over paths through a DTMC
- Property specifications
 - probabilistic extensions of temporal logic, e.g. PCTL
 - also: expected value of costs/rewards
- Model checking algorithms
 - graph-based algorithms + numerical computation
- Case study: Bluetooth device discovery
- Next: Markov decision processes (MDPs)