Quantitative Verification Hilary Term 2015

AIMS Systems Verification
Quantitative Verification Part 1

Prof. Marta Kwiatkowska

UNIVERSITY OF

OXFORD

Department of Computer Science
University of Oxford

What is quantitative verification?

- Quantitative verification...

— is a formal verification technique
for modelling and analysing quantitative aspect of
probabilistic systems

— also called probabilistic model checking

Formal verification (aka model checking)...

— is the application of rigorous,
mathematics-based techniques
to establish the correctness
of computerised systems

Verification via model checking

Finite-state

model

Y

0@ —EF fail

= —
System Temporal logic
require- specification

ments

Model checker
e.g. SMV, Spin

\

Result

” VX

J

Counter-

—) example

—-0—+>0+>0—+0

Quantitative verification

Probabilistic model) Result
e.g. Markov chain

System /
—— 0.5 Y 0.4 x

’ 0.1

~ Quantitative
Probabilistic I results

model checker

—> eg.PRISM | =
O P, [Ffail] —
—>

System - Counter-
require- Probabilistic example
ments tempo#'al logic

specification +O»O<§>o

e.g. PCTL, CSL, LTL

4

Why probability?

Some systems are inherently probabilistic...

Randomisation, e.g. in wireless coordination protocols
— as a symmetry breaker
bool short_delay = Bernoulli(0.5) // short or long delay

Modelling uncertainty
— to quantify rate of failures
bool fail = Bernoulli(0.001) // success wp 0.999 or failure

Modelling performance

— queuing systems are naturally modelled in a stochastic
fashion

float arrival rate = exp(2.5) // exponentially distributed

Verifying probabilistic systems

- We are not just interested in correctness

- We want to be able to quantify:
— security, privacy, trust, anonymity, fairness
— safety, reliability, performance, dependability
— resource usage, e.g. battery life
— and much more...

- Quantitative, as well as qualitative requirements:
— how reliable is my car’s Bluetooth network?
— how efficient is my phone’s power management policy?
— is my bank’s web-service secure?
— what is the expected long-run percentage of protein X?

Probabilistic models

Fully probabilistic

Nondeterministic

Discrete-time

Markov decision
processes (MDPs)

Discrete Markov chains
time (DTMCs) Simple stochastic
games (SMGs)
Probabilistic timed
Continuous-time automata (PTAs)
COI’ltt_il’lUOUS Markov chains
ime

(CTMCs)

Interactive Markov
chains (IMCs)

NB can also consider continuous space...

Course material

- Quantitative Verification lecture slides and lab session

— http://www.prismmodelchecker.org/courses/aims1415/
Reading

— [DTMCs/CTMCs] Kwiatkowska, Norman and Parker. Stochastic
Model Checking. LNCS vol 4486, p220-270, Springer 2007.

— [MDPs/LTL] Forejt, Kwiatkowska, Norman and Parker.

Automated Verification Techniques for Probabilistic Systems.
LNCS vol 6659, p53-113, Springer 2011.

— [DTMCs/MDPs/LTL] Principles of Model Checking by Baier and
Katoen, MIT Press 2008

- See also

— 20 lecture course taught at Oxford
— http://www.prismmodelchecker.orqg/lectures/pmc/

PRISM website www.prismmodelchecker.org

Overview (Part 1)

- Probability basics

- Discrete-time Markov chains (DTMCs)

— definition, paths & probability spaces
- Temporal logic PCTL
- PCTL model checking

- Costs and rewards
- PRISM: overview

— Modelling language

— Properties

— GUI, etc

— Case study: Bluetooth device discovery

- Summary

Probability example

Modelling a 6-sided die using a fair coin
— algorithm due to Knuth/Yao:
— start at 0, toss a coin
— upper branch when H
— lower branch when T
— repeat until value chosen

Is this algorithm correct?
— e.g. probability of obtaining a 4?
— obtain as disjoint union of events
— THH, TTTHH, TTTTTHH, ...
— Pr(“eventually 47)
=(1/23+@0/2°>+@0/2)"+...=1/6

10

Example...

Other properties?
— “what is the probability of termination?”
e.g. efficiency?

— “what is the probability of needing
more than 4 coin tosses?”

— “on average, how many
coin tosses are needed?”’

Probabilistic model checking provides a framework for
these kinds of properties...

— modelling languages
— property specification languages
— model checking algorithms, techniques and tools

11

Discrete-time Markov chains

- Transitions

State-transition systems augmented with probabilities

States

— set of states representing possible configurations of the
system being modelled

— transitions between states model
evolution of system’s state;
occur in discrete time-steps

Probabilities

— probabilities of making transitions
between states are given by
discrete probability distributions

12

Simple DTMC example

Modelling a very simple communication protocol
— after one step, process starts trying to send a message
— with probability 0.01, channel unready so wait a step
— with probability 0.98, send message successfully and stop
— with probability 0.01, message sending fails, restart

13

Discrete-time Markov chains

Formally, a DTMC D is a tuple (S,s,;,P,L) where:
— S is a set of states (“state space”)
— Si,ir € S is the initial state
— P:S xS —[0,1] is the transition probability matrix
where 2., _c P(s,s’) = 1 forall s €S

— L:S — 2APis function labelling states with atomic
propositions (taken from a set AP)

14

Simple D

MC example

1

.0
0
0

1 0.01 0.98

D — (Sssinitspil—)

S =1{sg, S15 Sy, S3}

Sinit = S0

0 0 |

0 0
0 1

AP = {try, fail, succ}
L(So):@;
L(s;)={try},
L(s,)={fail},
L(s3)={succ}

15

Some more terminology

P is a stochastic matrix, meaning it satisifes:
— P(s,s’) € [0,1] for all s,s” € Sand 2., .c P(s,s’) = 1 forall s €S

- A sub-stochastic matrix satisfies:

— P(s,s’) € [0,1] for all s,s” € Sand 2., .c P(s,s’) < 1 foralls €S

- An absorbing state is a state s for which:
— P(s,s) = 1 and P(s,s’) = O for all s#5s’
— the transition from s to itself is sometimes called a self-loop

Note: Since we assume P is stochastic...
— every state has at least one outgoing transition
— i.e. no deadlocks (in model checking terminology)

16

DTMCs: An alternative definition

. Alternative definition... a DTMC is:

— a family of random variables { X(k) | k=0,1,2,... }
— where X(k) are observations at discrete time-steps
— i.e. X(k) is the state of the system at time-step k
— which satisfies...

- The Markov property (“memorylessness”)
— Pr(X(k)=s, | X(k-T1)=s,_4, ... , X(0)=5s;)
= Pr(X(k)=s, | X(k-1)=s,_;)
— for a given current state, future states are independent of past

- This allows us to adopt the “state-based” view presented so
far (which is better suited to this context)

17

Other assumptions made here

- We consider time-homogenous DTMCs

— transition probabilities are independent of time
— P(s_1,S1) = Pr(X(k)=s, | X(k-1)=s,_;)
— otherwise: time-inhomogenous

- We will (mostly) assume that the state space S is finite
— in general, S can be any countable set

Initial state s,,;, € S can be generalised...
— to an initial probability distribution s;,;, : S — [0,1]

Focus on path-based properties
— rather than steady-state

18

Paths and probabilities

. A (finite or infinite) path through a DTMC
— is a sequence of states s,5,5,55... such that P(s;,s;.;) > 0 Vi

— represents an execution (i.e. one possible behaviour) of the
system which the DTMC is modelling

- To reason (quantitatively) about this system
— need to define a probability space over paths

Intuitively: o

— sample space: Path(s) = set of all §3:::::

infinite paths from a state s
— events: sets of infinite paths from s
— basic events: cylinder sets (or “cones”)

— cylinder set C(w), for a finite path w
= set of infinite paths with the common finite prefix w

.
.
.
e

— for example: C(ss;5s>)

19

Probability space over paths

- Sample space Q = Path(s)

set of infinite paths with initial state s

- Event set 2p.s)

— the cylinder set C(w) = { w’ € Path(s) | w is prefix of w’ }

— Zpath(s) IS the least o-algebra on Path(s) containing C(w) for all
finite paths w starting in s

- Probability measure Pr,
— define probability P.(w) for finite path w = ss,...s, as:
- P,(w) = 1 if w has length one (i.e. w = s)
- P,(w) = P(s,s;) - ... - P(s,_y,S,,) otherwise
. define Pr(C(w)) = P,(w) for all finite paths- w
— Pry extends uniquely to a probability measure Prg 35— [0,1]

- See [FKNP11] for further details

20

Probability space - Example

Paths where sending fails the first time
— W = S5,
— C(w) = all paths starting s4s;5,...
— P ,o(w) = P(sy,s;) - P(sq,S5)
=1-0.01 =0.01
— Pr,(C(w)) = P,o(w) = 0.01

Paths which are eventually successful and with no failures
— C(55153) U C(545:5153) U C(5¢S15151S3) U ...
— Pro(C(spS:53) U C(s¢S1S7S3) U C(55575151S3) U ...)
= P.(50S1S3) + P.o(5¢5151S3) + P,o(S0515151S3) + -..
=1-0.98 + 1-0.01-0.98 + 1-0.01-0.01-0.98 + ...
= 0.9898989898...
= 98/99

21

Reachability

Key property: probabilistic reachability
— probability of a path reaching a state in some target set T = S
— e.g. “probability of the algorithm terminating successfully?”
— e.g. “probability that an error occurs during execution?”

Dual of reachability: invariance
— probability of remaining within some class of states
— Pr(“remain in set of states T") = 1 - Pr(“reach set S\T”)
— e.g. “probability that an error never occurs”

- We will also consider other variants of reachability
— time-bounded, constrained (“until’), ...

22

Reachability probabilities

Formally: ProbReach(s, T) = Pr,(Reach(s, T))
— where Reach(s, T) = { 5455, ... € Path(s) | s;in T for some i }

Is Reach(s, T) measurable forany T = S ? Yes...

— Reach(s, T) is the union of all basic cylinders
Cyl(sgs,...s,) where s,s,...s,, in Reachy (s, T)

— Reachy;,(s, T) contains all finite paths s;s;...s, such that:
So=S, Sg»--sSn.1 € T, S, € T (reaches T first time)

— set of such finite paths s,s,...s, is countable

Probability
— in fact, the above is a disjoint union
— so probability obtained by simply summing...

23

Computing reachability probabilities

- Compute as (infinite) sum...

- Example:

SQ,---,Sn € Reachfin(s, T) PrsO(Cyl(SOv"’Sn))

= ng sn € Reachfin(s, T) P(SO,...,Sn)

— ProbReach(s,, {4})

24

Computing reachability probabilities

- Compute as (infinite) sum...

- Example:

* Zso sn € Reachfin(s, T) PrsO(Cyl(SOv"’Sn))

= ng sn € Reachfin(s, T) P(SO,...,Sn)

— ProbReach(s,, {4})

= Pr.y(Reach(s,, {4}))

— Finite path fragments:
— S¢(S,56)"s,5:4 forn = 0
— P.(505,554) + P.((5055565,5:4) + P((5(55565,565,554) + ...
=1/22+0/2°>+0/2)"+...=1/6

25

Computing reachability probabilities

- Alternative: derive a linear equation system
— solve for all states simultaneously
— i.e. compute vector ProbReach(T)

- Let x, denote ProbReach(s, T)

- Solve:
1 ifseT
X, = 9 0 if T is not reachable from s
D P(s,s") - x. otherwise
L s'eS

26

Example

. Compute ProbReach(s,, {4})

27

Unique solutions

- Why the need to identify states that cannot reach T?

- Consider this simple DTMC:
— compute probability of reaching {s,} from s,

0 | g

1

— linear equation system: x,, = 1, X;, = X,

— multiple solutions: (x xS]) = (1,p) for any p € [0,1]

sQ!

28

Bounded reachability probabilities

- Probability of reaching T from s within k steps

- Formally: ProbReach=X(s, T) = Pr.(Reach=k(s, T)) where:
— Reach=k(s, T) = { 5s45;S, ... € Path(s) | s, in T for some i<k }

- ProbReach=K(T) = x%+1 from the previous fixed point
— which gives us...

] ifseT
ProbReach*(s, T) = 1 0 ifk=0&se T
ZP(s,s')- ProbReach='(s', T) ifk>0&se T
L s'eS

29

(Bounded) reachability

- ProbReach(s,, {1,2,3,4,5,6}) = 1

- ProbReach=k (s, {1,2,3,4,5,6}) = ...

1.00 - —o—0—0—0—=0

Probability
o
(V)]
o

30

Qualitative properties

- Quantitative properties:

— “what is the probability of event A?”

- Qualititative properties:

— “the probability of event Ais 1”7 (“almost surely A”)
— or: “the probability of event Ais > 0" (“possibly A”)

For finite DTMCs, qualititative properties do not depend on
the transition probabilities - only need underlying graph

— e.g. to determine “is target set T reached with probability 17"
(see DTMC model checking later)

31

Aside: Infinite Markov chains

- Infinite-state random walk

p p
T N~ Y~ 4
1-p C e @ @
- -

p
1-p p p
- Value of probability p does affect qualitative properties

— ProbReach(s, {so}) = 1 if p < 0.5

— ProbReach(s, {so}) < 1 if p > 0.5

32

Temporal logic

- Temporal logic

— formal language for specifying and reasoning about how the
behaviour of a system changes over time

— defined over paths, i.e. sequences of states s,5,5,55... such
that P(s;,S;,;) > 0 Vi

Logics used in this course are probabilistic extensions of

temporal logics devised for non-probabilistic systems (CTL,
LTL)

— So we revert briefly to (labelled) state-transition diagrams
{fail}

S

{succ}

33

CTL semantics

- Intuitive semantics:
— of quantifiers (A/E) and temporal operators (F/G/U)

EF red EG red E[yellow U red]

F & \T r o \T o l y
y 1 P N § Z A » l ’ '\ T
AF red AG red A [ye;_llow.U réd]
34

PCTL

- Temporal logic for describing properties of DTMCs
— PCTL = Probabilistic Computation Tree Logic [H]94]
— essentially the same as the logic pCTL of [ASB+95]

Extension of (non-probabilistic) temporal logic CTL
— key addition is probabilistic operator P
— quantitative extension of CTL’s A and E operators

Example
— send — P_, 45 [true U='0 deliver]

— “if a message is sent, then the probability of it being delivered
within 10 steps is at least 0.95”

35

PCTL syntax

P is true with

- PCTL syntax: / probability ~p

— ¢ =truela|dPAdP| D] P., [W] (state formulas)
—P =Xd | dUskd | dUP (path formulas)
................ o
A— T” E “bounded SSTSTIN HO—
next L until” ntil

..

— define F ¢ = true U ¢ (eventually), G & = —(F =) (globally)

— where a is an atomic proposition, used to identify states of
interest, p € [0,1] is a probability, ~ € {<,>,<,=}, k e N

- A PCTL formula is always a state formula

— path formulas only occur inside the P operator
36

PCTL semantics for DTMCs

- PCTL formulas interpreted over states of a DTMC

— s = ¢ denotes ¢ is “true in state s” or “satisfied in state s”

- Semantics of (non-probabilistic) state formulas:

- Examples

— for a state s of the DTMC (S,s;,,;;,P,L):

—skEa < a € L(s)
- SEP AP, < skE¢;, and s E ¢,
—sE -} < s kE ¢ is false

— S3 = succ
— s, = try A —fail

PCTL semantics for DTMCs

- Semantics of path formulas:

— for a path w = s4s;s,... in the DTMC:

—wEXod S S EQ

- wkE ¢, Uskdp, <« di<ksuchthats, = P, and Vj<i, s, = ¢,
- wEO Uod, < 3k=0 such that w = ¢; U=k d,

- Some examples of satisfying paths:

— X succ {try} {succ} {succ} {succ}

— —fail U succ
{try} {try} {succ} {succ}

38

PCTL semantics for DTMCs

- Semantics of the probabilistic operator P

— informal definition: s = P_, [@ | means that “the probability,
from state s, that P is true for an outgoing path satisfies ~p”

— example: s = P_g,: [X fail] & “the probability of atomic
proposition fail being true in the next state of outgoing paths
from s is less than 0.25”

— formally: s = P_, [w] < Prob(s, g) ~p
— where: Prob(s, @) = Pr,{ w € Path(s) | w = @ }
— (sets of paths satisfying @ are always measurable [Var85])

L k 39

More PCTL...

- Usual temporal logic equivalences:

— false = —true
— ¢, Vb, = (=P A —Py)
— ¢~ P =9, V P,

~-Fd=0p=trueU ¢
~-God=0¢=-(F -d)
— bounded variants: F=k ¢, G=k ¢

- Negation and probabilities
— e.q. _'P>p [CI)] U ¢2] = ng [CI)] U CI)Z]

~eg.P.,[Gdl=P, ,[F-d]

(false)
(disjunction)
(implication)

(eventually, “future”)
(always, “globally”)

40

Quantitative properties

Consider a PCTL formula P_, [W]
— if the probability is unknown, how to choose the bound p?
- When the outermost operator of a PTCL formula is P
— we allow the form P_, [@]
— “what is the probability that path formula @ is true?”

Model checking is no harder: compute the values anyway
Useful to spot patterns, trends

1

PRISM [21]

—o— AL =0.01
—a—)\ =0.02
—&— A =0.03
—— L =0.04
Analytical [7]
~H-e- 1-0.01

Example
— P_, [Ferr/total>0.1]
— “what is the probability

Probability

that 10% of the NAND v v
gate outputs are erroneous?’ < % 0.04

Number of restorative stages 4]

Reachability and invariance

Derived temporal operators, like CTL...

Probabilistic reachability: P_, [F ¢]
— the probability of reaching a state satisfying ¢
— Fd =truelU ¢
— “¢ is eventually true”

— bounded version: F<<¢ = true Usk ¢ .
. strictly speaking,

L _ : G ¢ cannot be
Probabilistic invariance: P_, [G ¢] . derived from the

— the probability of ¢ always remaining true i PCTL syntaxin
: this way since
-G =—~(F~¢) = ~(true U —¢) 4/ there is no

— “& is always true” . negation of path
' formulae '

— bounded version: G=k ¢ = —(F=k =) T

Qualitative vs. quantitative properties

- P operator of PCTL can be seen as a quantitative analogue
of the CTL operators A (for all) and E (there exists)

+ Qualitative PCTL properties

- P, [@] where p is either O or 1

- Quantitative PCTL properties

- P, [O] where p is in the range (0,1)

- P_o[Fd]isidentical to EF ¢
— there exists a finite path to a ¢-state

- P_, [F ¢]is (similar to but) weaker than AF ¢
— a ¢-state is reached "almost surely”
— see next slide...

43

Example: Qualitative/quantitative

- Toss a coin repeatedly until “tails” is thrown

Is “tails” always eventually thrown? 1 {heads}
— CTL: AF "“tails”
— Result: false
— Counterexample: 545,5,5:50S;---

Does the probability of eventually
throwing “tails” equal one?

— PCTL: P, [F "tails”]
— Result: true

— Infinite path s,5,575,5¢5;... has zero probability

44

Overview (Part 1)

- Probability basics
- Discrete-time Markov chains (DTMCs)

— definition, paths & probability spaces
- Temporal logic PCTL
- PCTL model checking

- Costs and rewards
- PRISM: overview

— Modelling language

— Properties

— GQUI, etc

— Case study: Bluetooth device discovery

- Summary

45

PC

L model checking for D

MCs

. Algorithm for PCTL model checking [CY88,HJ94,CY95]

— inputs: DTMC D=(S,s,,;,P,L), PCTL formula ¢

— output: Sat(d) ={s €S |s k&= ¢} = setof states satisfying ¢

- What does it mean for a DTMC D to satisfy a formula ¢?
— sometimes, want to check thats = ¢ V s €S, i.e. Sat(d) = S
— sometimes, just want to know if s, .. = ¢, i.e. if ;... € Sat(p)

- Sometimes, focus on quantitative results
— e.g. compute result of P=? [F error]
— e.g. compute result of P=? [F=k error] for 0<k<100

46

PC

L model checking for D

MCs

- Basic algorithm proceeds by induction on parse tree of ¢

— example: ¢ = (—fail A try) — P_yqs [—fail U succ]

— Sat(true) = S
— Sat(a) ={seS|aeclL(s)}

- For the non-probabilistic operators:

—

— Sat(—¢) = S \ Sat(d) /

— Sat(d; A d,) = Sat(d;) N Sat(d,)

A

- Forthe P_, [@ | operator B %D

— need to compute the

probabilities Prob(s,) @
for all states s € S

\
P [-U-]

Z

47

Probability computation

- Three temporal operators to consider:
- Next: PNp[X ¢]

- Bounded until: P_J[¢; U=k ¢,] (omitted)
— adaptation of bounded reachability for DTMCs

- Until: P_)[&, U ¢,]

— adaptation of reachability for DTMCs

— graph-based “precomputation” algorithms

— techniques for solving large linear equation systems

48

PCTL next for DTMCs

- Compute vector Prob(X ¢) of

- Computation of probabilities for PCTL next operator

— Sat(P_,[Xd]) ={s €S| Prob(s, X) ~p}
— need to compute Prob(s, X ¢) forall s € S

- Sum outgoing probabilities for
transitions to ¢-states

— Prob(s, X ¢) = 2;:csay4) P(s,S") O_,

probabilities for all states s
- Prob(X ¢) = P - ¢
— where ¢ is a 0-1 vector over S with ¢(s) = 1 iff s ¢
— computation requires a single matrix-vector multiplication

49

PCTL next - Example

- Model check: P_y4 [X (—try Vv succ)]

- Results:

— Sat (—try Vv succ) = (S \ Sat(try)) U Sat(succ)
= ({S¢,51,52,53} \ {s1D) U {s3} = {s(,5,,53}

— Prob(X (—try Vv succ)) = P - (=try V succ) = ...

0 1 0 o0 1[17To
|0 0.01 0.01 0.98] 0| [0.99
110 0 o ||1]] 1
0 0 0 1

— Prob(X (—try v succ)) = [0, 0.99, 1, 1]
— Sat(P.gq [X (—try Vv succ)]) = {sy, S5, S3}

50

PCTL until for DTMCs

- Computation of probabilities Prob(s, &, U ¢,) forall s € S
- First, identify all states where the probability is 1 or O

— Sves = Sat(P., [, U b,])

— S"° = Sat(P_,[¢, U P,])

- Then solve linear equation system for remaining states

- Running example:

51

Precomputation

- We refer to the first phase (identifying sets Sves and Sn°) as
“precomputation”

— two algorithms: ProbO (for S") and Prob1 (for Sves)
— algorithms work on underlying graph (probabilities irrelevant)

Important for several reasons
— ensures unique solution to linear equation system
. only need Prob0 for uniqueness, Probl1 is optional

— reduces the set of states for which probabilities must be
computed numerically

— gives exact results for the states in S¥¢sand S"° (no round-off)

— for model checking of qualitative properties (P_,[-] where p is
0 or 1), no further computation required

52

Precomputation - Prob0O

Prob0 algorithm to compute S" = Sat(P_,[¢, U ¢,]):
— first compute Sat(P.,[¢, U b,]) = Sat(E[o, U $,])

— i.e. find all states which can, with non-zero probability, reach
a ¢,-state without leaving ¢,-states

— i.e. find all states from which there is a finite path through
¢d,—-states to a ¢p,-state: simple graph-based computation

— subtract the resulting set from S

S = Sat(P_o[7aUb])0 3

Example:
P.og[maUb]
Sat®)o [aUb])

53

Precomputation - Prob]

Prob1 algorithm to compute S¥es = Sat(P., [¢, U ¢,]):
— first compute Sat(P_, [&, U &, 1), reusing Sm°

— this is equivalent to the set of states which have a non-zero
probability of reaching S"°, passing only through ¢,-states

— again, this is a simple graph-based computation
— subtract the resulting set from S

Example:

Qyes —
7 Sat(P.; [~aUb]))

54

PCTL until - linear equations

- Probabilities Prob(s, ¢, U ¢,) can now be obtained as the
unique solution of the following set of linear equations

— essentially the same as for probabilistic reachability

1 if s e S
PrOb(S; (D] U (])2) = 0 |f S e Sno
ZP(s,s')- Prob(s', ¢, U ¢,) otherwise
(s'eS

- Can also be reduced to a system in |S?’| unknowns instead

of |S| where S? = S\ (Sves U Sno)

PCTL until - linear equations

. Example: P.yg[-aUb] Sne =
. Let x; = Prob(s,, —a U b) Sat(P_o [-aUb])

Qyes —
7 Sat(P., [-aUb))

X; =X3=0 —(0
Xy = Xs = 1 e -
X5 = 0.1%,+0.1x3+0.3x:+0.5x, = 8/9

Xo = 0.1%,+0.9x, = 0.8

Prob(—a Ub) =x=1[0.8,0,8/9,0,1, 1]

Sat(P.os["aUDb]) ={s,,54,5¢}

56

PCTL Until - Example 2

. Example: P_,s [G—b] Sme =Sat(Po [Fb))
+ Prob(s;, G—b) -y

1 - Prob(s;, =(G—b))
1 - Prob(s;, F b)

Qyes —

Sat(P.; [Fb])
- Let x; = Prob(s;, F b)

X3 =0and x, = X5 =1
X5 = 0.1%,+0.1x3+0.3x:+0.5x, = 8/9

X; = 0.6x5+0.4%x, = 0.4x,

Xg = 0.1%,+0.9x, = 5/6 and x;=1/3
Prob(G—-b) = 1-x=[1/6,2/3,1/9,1,0, 0]
Sat(P.o< [G—b]) ={s,,53}

57

Linear equation systems

Solution of large (sparse) linear equation systems
— size of system (number of variables) typically O(|S|)
— state space S gets very large in practice

- Two main classes of solution methods:

— direct methods - compute exact solutions in fixed number of
steps, e.g. Gaussian elimination, L/U decomposition

— iterative methods, e.g. Power, Jacobi, Gauss-Seidel, ...
— the latter are preferred in practice due to scalability

General form: A-x =b 1S|—1
— indexed over integers, E A(i.7)-z(7) = b(i)

—i.e.assume S ={0,1,..,[S[-1} “—¢

58

Limitations of PCTL

PCTL, although useful in practice, has limited expressivity

— essentially: probability of reaching states in X, passing only
through states in Y (and within k time-steps)

More expressive logics can be used, for example:
— LTL [Pnu77] - (non-probabilistic) linear-time temporal logic
— PCTL* [ASB+95,BdA95] - which subsumes both PCTL and LTL
— both allow path operators to be combined
— (in PCTL, P.o [...] always contains a single temporal operator)
— supported by PRISM
— (not covered in this lecture)

- Another direction: extend DTMCs with costs and rewards...

59

Costs and rewards

- We augment DTMCs with rewards (or, conversely, costs)
— real-valued quantities assigned to states and/or transitions
— these can have a wide range of possible interpretations

- Some examples:

— elapsed time, power consumption, size of message queue,
number of messages successfully delivered, net profit, ...

- Costs? or rewards?
— mathematically, no distinction between rewards and costs
— when interpreted, we assume that it is desirable to minimise
costs and to maximise rewards
— we will consistently use the terminology “rewards” regardless

60

Reward-based properties

Properties of DTMCs augmented with rewards
— allow a wide range of quantitative measures of the system
— basic notion: expected value of rewards
— formal property specifications will be in an extension of PCTL

More precisely, we use two distinct classes of property...

Instantaneous properties
— the expected value of the reward at some time point

Cumulative properties
— the expected cumulated reward over some period

61

DTMC reward structures

For a DTMC (S,s,;,P,L), a reward structure is a pair (p,u)
— p:S — R_,is the state reward function (vector)
—1:S XS - R_,is the transition reward function (matrix)

Example (for use with instantaneous properties)

— “size of message queue”: p maps each state to the number of
jobs in the queue in that state, L is not used

Examples (for use with cumulative properties)

— “time-steps”: p returns 1 for all states and tis zero
(equivalently, p is zero and t returns 1 for all transitions)

— “number of messages lost”: p is zero and L maps transitions
corresponding to a message loss to 1

— “power consumption”: p is defined as the per-time-step
energy consumption in each state and L as the energy cost of
each transition 62

PCTL and rewards

Extend PCTL to incorporate reward-based properties
— add an R operator, which is similar to the existing P operator

. expected
. reward is ~r :

—¢ = .. | PoLlw] | RL[IFK] | RLIC=k] | R, [F]

— wherer € R, ~ € {<,>,<,2}, ke N

R.. [-] means “the expected value of - satisfies ~r”

63

Reward formula semantics

- Formal semantics of the three reward operators
— based on random variables over (infinite) paths

- Recall:

-sEP, [Y] & Pry{wePath(s) [wE=EY}~p

For a state s in the DTMC (see [KNPO7a] for full definition):
—sER_[IPK] < Exp(s, X,_,) ~r (instantaenous)
—sER.,[Ck] < Exp(s, Xco) ~r (cumulative)
—SER,[F®] < Exp(s, Xgp) ~r (reachability)

where: Exp(s, X) denotes the expectation of the random variable
X : Path(s) — R_, with respect to the probability measure Pr,

64

Reward formula semantics

- Definition of random variables:

— for an infinite path w= s4s,5,...
X (W) = p(s,)

Y (w) - 0 ifk=0
C<k - Z:(:_o] E(Si)‘H(Si’SiH) otherwise

0 if s, € Sat(d)
Xegp(W) =1 oo if s. ¢ Sat(e) for alli> 0
i Z:j;_]g(si)+t(5i,si+]) otherwise

— Where ky, =min{j | s, = ¢ }

65

PRISM

PRISM: Probabilistic symbolic model checker
— developed at Birmingham/Oxford University, since 1999
— free, open source software (GPL), runs on all major OSs

Construction/analysis of probabilistic models...

— discrete-time Markov chains, continuous-time Markov chains,
Markov decision processes, probabilistic timed automata,
stochastic multi-player games, ...

Simple but flexible high-level modelling language
— based on guarded commands; see later...

Many import/export options, tool connections
— in: (Bio)PEPA, stochastic tr-calculus, DSD, SBML, Petri nets, ...
— out: Matlab, MRMC, INFAMY, PARAM, ...

66

PRISM...

Model checking for various temporal logics...
— PCTL, CSL, LTL, PCTL*, rPATL, CTL, ... ‘
— quantitative extensions, costs/rewards, ...

Various efficient model checking engines and techniques
— symbolic methods (binary decision diagrams and extensions)
— explicit-state methods (sparse matrices, etc.)
— statistical model checking (simulation-based approximations)

— and more: symmetry reduction, quantitative abstraction
refinement, fast adaptive uniformisation, ...

Graphical user interface
— editors, simulator, experiments, graph plotting

See: http://www.prismmodelchecker.org/
— downloads, tutorials, case studies, papers, ...

67

PRISM modelling language

Simple, textual, state-based modelling language
— used for all probabilistic models supported by PRISM
— based on Reactive Modules [AH99]
Language basics
— system built as parallel composition of interacting modules
— state of each module given by finite-ranging variables
— behaviour of each module specified by guarded commands
. annotated with probabilities/rates and (optional) action label
— transitions are associated with state-dependent probabilities
— interactions between modules through synchronisation

[send] (s=2) -> p,,.. : (s'=3)&(lost’=lost+1) + (1-p,...) : (s'=4),

< > < > — < > — —
action guard probability update probability update

68

Simple example

dtmc

module M1
x :[0..3] init O;
[a] x=0 -> (X' =1);

[b] x=1 -> 0.5 : (x’=2) + 0.5 : (x' =3);

endmodule

module M2

y : [0..3] init O;

[a] y=0 -> (y' =1);

[bly=1->0.4:(y' =2) + 0.6 : (y =3);
endmodule

69

Probabilistic models

dtmc

module die

// local state s : [0..7] init O;

// value of the dice d : [0..6] init O;
[1s=0->0.5:(s'=1) + 0.5 : (s'=2);

[] s=3 ->
0.5:(s'=1)+0.5:(s'=7) & (d'=1);
[] s=4 ->
0.5:(s'=7) & (d'=2) + 0.5 : (s'=7) & (d'=3);

[l s=7 -> (s'=7);
endmodule

rewards "coin_flips"
[] s<7 : 1;
endrewards

Given in PRISM’s guarded commands modelling notation

Probabilistic models

ints, d;
s=0;d=0;
while (s < 7) {
bool coin = Bernoulli(0.5);
if (s=0)
if (coin) s =1 else s = 2;

else if (s = 3)
if (coin)s=1else{s=7;d=1}

else if (s = 4)
if (coin){s=7;d=2}else{s=7;d=3;}

}

return (d)

Given as a probabilistic program

/1

Rewards in the PRISM language

rewards “total_queue_size” rewards “time”
true : queuel +queue?; true: 1;
endrewards endrewards
(instantaneous, state rewards) (cumulative, state rewards)

rewards “power”

rewards "dropped" sleep=true : 0.%5;
[receive] g=gq_max : 1; sleep=false : 1.2 * up;
endrewards [wake] true : 3.2;
endrewards

(cumulative, transition rewards)
(g = queue size, g_max = max.
queue size, receive = action label)

(cumulative, state/trans. rewards)
(up = num. operational components,
wake = action label)

72

PRISM - Property specification

- Temporal logic property specification language
— subsumes PCTL, CSL, probabilistic LTL, PCTL*, ...

- Simple examples:
— P_g o1 [F “crash”] - “the probability of a crash is at most 0.01”
— S_0.999 [“Up”] - “long-run probability of availability is >0.999”

Usually focus on quantitative (numerical) properties:

— P_, [F “crash”]
“what is the probability et
of a crash occurring?”

— then analyse trends in
quantitative properties
as system parameters vary

Probability of choosing X

«alo
13

PRISM - Property specification

Properties can combine numerical + exhaustive aspects

— Poo [FE10 “fail”] - “worst-case probability of a failure
occurring within 10 seconds, for any possible scheduling of
system components”

— P_,[G=0-02 I“deploy” {"crash”{max}] - “the maximum
probability of an airbag failing to deploy within 0.02s,
from any possible crash scenario”

Reward-based properties (rewards = costs = prices)
— Ryimen—2 [F "end”] - “expected algorithm execution time”

— Resenergytmax=? [C=72%°] - “worst-case expected energy
consumption during the first 2 hours”

Properties can be combined with e.g. arithmetic operators
— e.g.P_,[Ffail;]/ P_[F failany] - “conditional failure prob.”

/74

PRISM GUI: Editing a model

Model: power_policyl.sm

@ Type: CTMC "

// Service Queue (5Q)
// Stores requests which arrive Into the system to be processed.

// Maximum queue size
const int g_max = 20;
init: 0
// Request arrival rate
const double rate_arrive = 1/0.72; // (mean Inter-arrival time is 8.72 seconds)
min: 0
max: 2 module 50
@ init: 0 2
M // q = number of requests currently In queue
@ 3 Constants q : [0..q_max] init 0;
© & g_max : int
@ & rate_arrive : double
© & rate_serve : double

// A request arrives
[request] true -> rate_arrive : (q'=min(g+1,q_max));

// A request Is served
: & rate_s2i double [servel g>1 -> (q'=q-1);
> 9 rate_izs '_do"b" // Last request Is served
< q_trigger : int [serve_last] g=1 -> (q'=g-1);

3| //

// Service Provider (SP)
// Processes requests from service queue.
// The SP has 3 power states: sleep, Idle and busy

// Rate of service (average service time = @.008s)
const double rate_serve = 1/0.008;
// Rate of switching from sleep to idle (average transition time = 1.6s)
const double rate_s2i = 1/1.6;

4| // Rate of switching from idle to sleep (average transition time = 8.67s)
const double rate_i2s = 1/0.67;

75

PRISM GUI: The Simulator

Left 0.006 lefin'=2 o
! Right 0.002 Iright_n'=0 i
Line 2.0E-4 |line_n'=false premium
Toleft 2.5E-4 |toleft_n'=false
[startLeft] 10.0 left'=true, r'=true
1
0 |0 true true true
R 1 |12.0649 4
ToR 2 12.0806 (false)
startR| 3 12.1674 true true
[repairRight) 4 | 12.2677 C %ﬁ
Left s 12.2809 (4
Left 6 123071
Left 7 |12.3446
Left 8 |12.3653
Right 12.4059 @
[startLeft) 12.4583 true
[repairLeft) 15.6657 (&) ®
[startLeft] 15.6834 true
[repairLeft] 15.7585 (@)
R 15.8505
Right 15.874
R 15.9084 false)| (false true false true false 4

PRISM GUI: Model checking and graphs

R SERE

P=? [F[T,T] a=q_max]
= s=7[q=q_max]
¥ R=?[I=T]
% R=7[5]
R<15 [1=T)
X R<2(S]

Expected queue size attime T

-+ q_trigger=3
- q_trigger=6
-¥-q_trigger=9
-=-q_trigger=12
—+q_trigger=15
-+ q_trigger=18

Expected reward

77

Bluetooth device discovery

Bluetooth: short-range low-power wireless protocol
— widely available in phones, PDAs, laptops, ...
— open standard, specification freely available
Uses frequency hopping scheme
— to avoid interference (uses unregulated 2.4GHz band)
— pseudo-random selection over 32 of 79 frequencies
Formation of personal area networks (PANSs)
— piconets (1 master, up to 7 slaves)
— self-configuring: devices discover themselves
Device discovery
— mandatory first step before any communication possible

— relatively high power consumption so performance is crucial
— master looks for devices, slaves listens for master

78

Master (sender) behaviour

- 28 bit free-running clock CLK, ticks every 312.5us

- Frequency hopping sequence determined by clock:

OOANNOOANNOOANNOONNANNOOANOONNOONNO O
A anlaslesh b ulesTasl b lesToash ok lesTasTasTash b mlasTash b wulesTash b las Tash ok ol

OO~ OO~ DD DD T~ LD —

TITITOOITITOOTITOOTITITTOOTTOOITITOOTTOOOO
T T TN T T OOMT T OO M MMM

[splsslerlerleplaslor]exIsplapleerlesler[epleslnrlelaples Il [opleplerlerieplssler [aplerT@))
AN AN AN AN AN AN AN AN N~ NN

VN0 0O NN G0 00 O\ (N G0 00 60 00 O\ (NIG0 00 NN 90 00 NN 00 60 NN NN 00 €0
NN = NN —NANNN— — NN == NN = NN ===

R e e] N
OO AN O AN AN AN N O~ OO

OOYWYWOOWWOOOOYWOWOOWOOOYWOOOWYWWOOWW
AN AN A A AN AN NN N Y

ooQQoolloRoolloolRoolloolo ool
0T GO TR G0 DT o DT 00 T 0000 TP/
QOO QSR QRS QRO RQ{QR
cofRovcoiifeciReeieoliiNee ooty
[oTTo)RPNTo b ToTTo D Np TS o DN N T ITo DR o I DT DND NI T o DN To AR
++QRQeTrTRQT TR+ QRrr++QR/+ <+ YI/+<{]

999 99 99 999 99 99 99
O O MO M O M O MO M
NINANE NN R NNE BN R B R R e 2 RN B Reuen X R

_ c = .
o) o nnm
~N <)) - - O s I
+ 2 wng = & |2

v N n = - = = 17
oM e =g = 3 |3
Bhke U -x O Y - mu.
+ € 2¢%s ZE3w L.
~ . g 3 S g |2
+o 90" Lo & 2
N e > 5+ < i |
e o v Q ¢ |e
5 L 0 S > c g =
V — 0O U n._uo - &
O C < 9w u v c |4
_ ™ . wn c ¢ o
TV EEN 2O & 12

I & £ <5 n n J | 58
O Q w = |3

| | S 2 c ¥ 1S
(a'a R ..nnm

Hll

mom [

Scan

* Send

' Send ' Scan

¢ Send

79

Aan

:.";(

Send

Scan

Slave (receiver) behaviour

Listens (scans) on frequencies for inquiry packets
— must listen on right frequency at right time

— cycles through frequency sequence at much slower speed
(every 1.28s)

}))) : P
' h / ™\ 4 A 1o random wait
sleep . scan hear response | reply :
628.75ms 4 max 11.25ms 0.625ms U
(e sy s N = Rand[0..127]

. 4 . i_/\ - 4 9 y

"o -

B

e —

On hearing packet, pause, send reply and then wait for a
random delay before listening for subsequent packets

— avoid repeated collisions with other slaves

80

Bluetooth - PRISM model

Modelled/analysed using PRISM model checker [DKNPOG6]
— model scenario with one sender and one receiver
— synchronous (clock speed defined by Bluetooth spec)
— model at lowest-level (one clock-tick = one transition)
— randomised behaviour so model as a DTMC
— use real values for delays, etc. from Bluetooth spec

Modelling challenges
— complex interaction between sender/receiver
— combination of short/long time-scales - cannot scale down

— sender/receiver not initially synchronised, so huge number of
possible initial configurations (17,179,869,184)

81

Bluetooth - Results

Huge DTMC - initially, model checking infeasible
— partition into 32 scenarios, i.e. 32 separate DTMCs
— on average, approx. 3.4 x 10 states (536,870,912 initial)
— can be built/analysed with PRISM's MTBDD engine

- We compute:

— R=?[F replies=K {“init"{max}]

— “worst-case expected time to hear K replies over all possible
initial configurations”

- Also look at:

— how many initial states for each possible expected time

— cumulative distribution function (CDF) for time, assuming
equal probability for each initial state

82

Bluetooth - Time to hear 1 reply

number of states

x

—_

o
—

2.5 gt TEE S : |_
: - @ ’___ll
: : £ 0.8f -
2 =
> 0.6
>0.6}
1.5 . ‘ rél
1 T2 1.93 - T 0.4
(93]
- <))
| 502
0.5 1} _8 .
A o
0 ‘ ; ‘ . ‘ 0 ‘ : ' : ‘
0 0.5 1 1.5 2 2.5 0 05 1 1.5 2 2.5
time to hear one reply (sec) T (sec)

- Worst-case expected time = 2.5716 sec
— in 921,600 possible initial states
— best-case = 635 us

83

Bluetooth — Time to hear 2 replies

number of states

>

-y

o
—y

- e S
Vi -
2 : g ——
! Q 1
1.5 ! | 5 [
| | @ T 0.6 :
: ; ©
{ : o) -
1 | ! i '
2.58 2.6 2.62 o 0.4 ym—-
o = :
0.5 1} E ool
B - 0.2
1 5 —exact
0 | | g_ -==derived
o 1 2 3 4 5 % 1 2. 3 4 5
expected time to hear two replies (sec) T (sec)

- Worst-case expected time = 5.177 sec
— in 444 possible initial states

— compare actual CDF with derived version which assumes times

to reply to first/second messages are independent

84

Beyond DTMCs

Continuous-time Markov chains
— transitions taken 3/2 3/2 3/2

with real-valued tempty}
rate (parameter of @ 6 e @
exponential distribution)

— suitable for reliability,
availability, performance modelling

- Temporal logic CSL - similar to PCTL, except real-valued
time
— P_, [F145-6] outOfPower] - the (transient) probability of being
out of power in time interval of 4.1 to 5.6 time units

— S_,[minQoS] - the steady-state probability of satisfying
minimum QoS

— R_;o [C=>] - cumulated reward up to time 5 is less than 10
Model checking via discretisation (uniformisation)
85

Summary (Part 1)

Introduced quantitative verification

— to analyse path-based properties of probabilistic systems
Discrete-time Markov chains (DTMCs)

— state transition systems + discrete probabilistic choice

— probability space over paths through a DTMC
Property specifications

— probabilistic extensions of temporal logic, e.g. PCTL

— also: expected value of costs/rewards
Model checking algorithms

— graph-based algorithms + numerical computation
Case study: Bluetooth device discovery

Next: Markov decision processes (MDPs)

86

