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Tutorial overview

• Part I - Probabilistic Model Checking

− Discrete-time Markov chains, Markov decision processes, 
temporal logic (PCTL), model checking algorithms, 
probabilistic timed automata

• Part II - Tool Support: PRISM

− Tools, PRISM: functionality, modelling language, property 
specifications, tool demo, implementation

• Part III - Case Studies

− Overview, device discovery in Bluetooth, FireWire root 
contention, contract signing protocols, Zeroconf protocol



Part I

Probabilistic Model 

Checking



Overview

• What is probabilistic model checking?

• Motivation: Why probability?

• Discrete-time probabilistic models

− discrete-time Markov chains (DTMCs)

− Markov decision processes (MDPs)

− the logic PCTL + costs/rewards

− model checking for DTMCs, MDPs

• Real-time probabilistic models

− probabilistic timed automata (PTAs)

− model checking for PTAs



Verification via model checking

Model checker

Temporal logic specification

send → ◊deliver 

����
or

����
Error trace:

Line 5: …
Line 21: …
Line 15: …
…

Line 27: …
Line 45: ...

The model



Probabilistic model checking

Probabilistic
model checker

����
or

����
The probability
State 5: 0.6789
State 6: 0.9789
State 7: 1.0
…

State 12: 0
State 13: 
0.1245

or

Probabilistic model

0.4
0.3

Probabilistic temporal 
logic specification

send → P>0.9 [◊deliver]



Motivation - Why probability?

• In distributed co-ordination algorithms

− Elegant and efficient algorithms for symmetry breaking

� “leader election is eventually resolved with probability 1”

− In gossip-based routing and multicasting

� “the message will be delivered to all nodes with high probability”

• When modelling uncertainty in the environment

− To quantify failures, express soft deadlines, QoS

� “the chance of shutdown is at most 0.1%”

� “the probability of a frame being delivered within 5ms is at least 0.95”

− To quantify environmental factors in decision support

� “the expected cost of reaching the goal is 100”

• When analyzing system performance

− To quantify arrivals, service, etc, characteristics

� “in the long run, mean waiting time in a lift queue is 30 sec”



Application domains

• Communication protocols, ubiquitous computing

− e.g. Bluetooth, FireWire, WiFi, …

• Security protocols

− e.g. anonymity, contract signing, PIN cracking, …

• And many others:

− e.g. computational biology models,

dynamic power management systems,

randomized distributed algorithms, …

• More in Part III…



Probabilistic models - Discrete time

• Labelled transition systems

− discrete time-steps

− labelling with atomic propositions

• Probabilistic transitions

− move to state with given probability

− represented as a discrete probability distribution

• Model types:

− discrete time Markov chains (DTMCs): probability only

− Markov decision processes (MDPs): probability + nondeterminism

. . .

∑∑∑∑i pi = 1

p1

p2

pn



• Formally, (S,s0,P,L): 

− S finite set of states

− s0 initial state

− P : S × S → [0,1]

probability matrix, s.t. ∑s’ P(s,s’) = 1, for all s

− L : S → 2AP labelling with atomic propositions

• Unfold into infinite paths s0s1s2s3s4… s.t. P(si,si+1) > 0, for all i

• Probability for finite paths, multiply along path

e.g. P(s0 s1 s1 s2) is 1 ···· 0.01 ···· 0.97 = 0.0097

Discrete-time Markov chains (DTMCs)

s2

s0

s3

s1

1

1

0.01

0.02

0.97

1

init
try

fail

succ



• Intuitively:

− Sample space = infinite set of paths Paths from a state s

− Event = set of paths

− Basic event = cone

• Formally, (Paths,Ω,Prs) [KSK76]

− For finite path ω = ss1…sn, define probability: P(ω) = …

� 1 if ω has length one

� P(s,s1) ···· … ···· P(sn-1,sn) otherwise

− Take Ω as the least σ-algebra containing cones 

� C(ω) = { π ∈ Paths | ω is prefix of π}

− Define Prs (C(ω)) = P(ω), for all ω

− Prs extends uniquely to measure on Paths

Probability space

ss1s2…sk



Markov decision processes (MDPs)

• Generalisation of DTMCs

− incorporate both probabilistic and nondeterministic choice

• Motivation – many uses in probabilistic modelling

− Concurrency - parallel composition of DTMCs

e.g. communication protocols, randomised algorithms, ...

− Under-specification - some behaviour/parameters unknown

− Unknown environment - e.g. probabilistic security protocols



• Formally, (S,s0,Steps,L): 

− S finite set of states

− s0 initial state

− Steps maps states s to sets of
probability distributions µ over S

− L: S → 2AP atomic propositions

• Unfold into infinite paths s0µ0s1 µ1s2µ2s3… s.t. µi(si,si+1) > 0, all i

• Probability space induced on Paths by adversary (strategy, policy)

− resolves all nondeterminism

− mapping from finite paths s0µ0s1µ1…sn to a distribution from state sn

Markov decision processes (MDPs)

s2
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Properties of DTMCs and MDPs: PCTL

• PCTL: Probabilistic Computation Tree Logic [HJ94,BdA95]

− extension of (non-probabilistic) temporal logic CTL

− new probabilistic operator, e.g. send → P>0.9 [F deliver]

− “if a message is sent, probability eventually delivered is >0.9”

• Syntax:

− φ ::= true | a | φ Æ φ | ¬φ | P~p [α] (state formulas)

− α ::= X φ | φ U φ (path formulas)

− where a is an atomic proposition, p ∈ [0,1], ~ ∈ {<,>,≤,≥}

• Also:

− “bounded until” (φ U≤k φ), “eventually” (F φ = true U φ)

− “quantitative form” P=? [α] (more in Part II)



• Semantics of (non-probabilistic) state formulas:

− for a state s of the DTMC:

− s � a ⇔ a ∈ L(s)

− s � φ1 ∧ φ2 ⇔ s � φ1 and s � φ2  

− s � ¬φ ⇔ s � φ is false

• Semantics of path formulas:

− for a path π = s0s1s2� in the DTMC

− π � X φ ⇔ s1 � φ (“next”)

− π � φ1 U φ2 ⇔ ∃k s.t. sk � φ2 and (“until”)

sj � φ1 for all j<k

PCTL - Semantics for DTMCs



• Semantics of the probabilistic operator P

− quantitative analogue of  ∀, ∃

− s  � P~p [α] ⇔ Prs { π ∈ Paths | π � α } ~ p

− subsumes the qualitative variants P=1 [α], P>0 [α]

PCTL – Semantics for DTMCs

threshold level p
S

αααα-paths

< 1 - p

≥≥≥≥ p



• Semantics is parameterised by a class of adversaries Adv

− e.g. Adv is “all adversaries” or “all fair adversaries”

− reasoning about worst-case/best-case scenario

• Non-probabilistic state formulas, path formulas – as before

• The probabilistic operator:

− s �Adv P~p [α] ⇔ Prs
A { π ∈ Paths | π �Adv α } ~p ∀A∈Adv

− “probability meets the bound ~p for all adversaries in Adv”

− PrAs= probability measure for adversary A over paths Paths

PCTL – Semantics for MDPs



Costs and Rewards

• Augment DTMC/MDP with reward structure: (r,R)

− vector r of state rewards, matrix R matrix of transition rewards

• Analysis of reward-based properties

− instantaneous, e.g. “queue size”, “number of active hosts”, …

− cumulative, e.g. “power consumed”, “number of messages lost”, …

• Extend PCTL with rewards:

− R~r [ I=T ] : expected reward at time T is ~r

− R~r [ F φ ] : expected reward to reach a state satisfying φ is ~r

− R~r [ C≤T ] : expected reward accumulated by time T is ~ r



• Compute Sat(φ), i.e. set of states satisfying formula φ, by 
induction on structure of φ (like for CTL)

• For the non-probabilistic operators:

Sat(a) = L(a),  Sat(¬φ) = S\Sat(φ), Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

• For the probabilistic operator:

Sat(P~p[α]) = {s ∈ S | Prs(α) ∼ p}

where Prs(α) = Prs{π ∈ Paths | π � α}

• Computation of probabilities Prs(α)

− next operator: Prs(X φ) = ∑s’ ∈ Sat(φ) P(s,s’)

− until operator: Prs(φ1 U φ2) from solution of linear equation system

• (computation of costs/rewards for R~r[F φ] similar to until)

PCTL model checking for DTMCs



• Let xs= Prs(φ1 U φ2) be probabilities for until operator

• (xs)s ∈ S can be obtained from the recursive linear equation:

− xs = 0 if s ∈ Sno

− xs = 1 if s ∈ Syes

− xs = ∑s’ ∈ S P(s,s’) · xs’ if s ∈ S?

where:

− Syes = states that satisfy φ1 U φ2 with probability exactly 1

− Sno = states that satisfy φ1 U φ2 with probability exactly 0 

− S? = S\(Sno ∪ Syes)

• Syes, Sno can be computed by graph traversal algorithms

− for qualitative PCTL (e.g. P>0[φ1Uφ2]) no computation needed

• Linear equation systems typically solved with

− iterative numerical solution algorithms, e.g. Gauss-Seidel

PCTL until for DTMCs



• As for DTMCs, proceed by induction on structure of formula φ

− and non-probabilistic operators are trivial

• For probabilistic operator, compute min or max values, e.g.:

Sat(P>p[α]) = { s ∈ S | Prs
min (α) > p }

where Prs
min(α) = min { Prs

A (α) : A ∈ Adv }

• Probabilities for until: Prs
min (φ1Uφ2) or Prs

max (φ1Uφ2) :

− (as for DTMCs, combination of graph traversal algorithms and 
numerical computation algorithms)

− iterative solution technique, form of Bellman equation

� also known as “value iteration” (from dynamic programming)

− or: linear optimisation problems

� direct solution via e.g. Simplex, Ellipsoid method

PCTL model checking for MDPs



• Iterative solution for min until probabilities (max similar):

• Prs(φ1 U φ2) = lim n→→→→∞ xs
(n) where:

− xs
(n) = 0 if s ∈ Sno

− xs
(n) = 1 if s ∈ Syes

− xs
(n) = 0 if s ∈ S? and n=0

− xs
(n) = minµ ∈ Steps(s) ∑s’ ∈ S µ(s’) · xs’

(n-1) if s ∈ S? and n>0

where:

− Syes = states satisfying φ1Uφ2 with prob. 1 for all adversaries

− Sno = states satisfying φ1Uφ2 with prob. 0 for some adversary

− S? = S\(Sno ∪ Syes)

• Syes, Sno can again be computed by graph traversal algorithms

• (similar formulation to compute costs/rewards for R~r[F φ])

PCTL until for MDPs (iterative)



PCTL until for MDPs (linear 
optimisation)

• Solution for min/max until probabilities via linear programming

• xs=0 for s ∈ S
no,, xs = 1 for s ∈ S

yes

• For s ∈ S?, solve linear optimisation problem:

• Minimise ∑s ∈ S? xs subject to the constraints:

− xs ≤ ∑s’ ∈ S? µ(s’) · xs + ∑s’ ∈ Syes µ(s’) 

for all s ∈ S? and all µ ∈ Steps(s)

(above is for min, the max prob.s computed similarly)

(similar formulation to compute costs/rewards for R~r[F φ])



Probabilistic models – Continuous time

• Assumptions on time and probability

− Continuous passage of time

− Continuous randomly distributed delays

• Model types

− Probabilistic timed automata (PTAs): dense time, 
(usually) discrete probability, admit nondeterminism

− Continuous time Markov chains (CTMCs): exponentially 
distributed delays, discrete space, no nondeterminism

time

∫∫∫∫ f(x) dx = 1



Time, clocks and zones

• Dense real-time, t ∈ RRRR≥≥≥≥0

• Finite set XXXX of clocks take values from time domain RRRR≥≥≥≥0

− clocks increase at the same rate as real time

− v : X →X →X →X → RRRR≥≥≥≥0 is called a clock valuation

� v+t is clock valuation where all clocks incremented by t

� v[X:=0] is the clock valuation where all clock in X are reset

• Clock Constraints, for x,y ∈ XXXX, c ∈ NNNN, ~ ∈ {<,>,≤,≥}

ζζζζ ::= x ~ c  | x-y ~ c  | ζζζζ ∧ ζζζζ | ζζζζ ∨∨∨∨ ζζζζ | ¬¬¬¬ ζζζζ

− closed, diagonal-free if do not feature x < c, x > c, x-y ~ c

− CC(X) set of clock constraints over XXXX

− v � ζζζζ if substituting the values of the clocks from v in ζζζζ yields true



Probabilistic timed automata - Syntax

• Features:

− Clocks, x, real-valued

− Can be reset, e.g. {x:=0}

− Invariants, e.g. x≤8

− Probabilistic transitions, guarded e.g. x≥4, x=8

• Formally, PTA=(Loc,l0,inv,prob,L)

− Loc finite set of locations, l0 initial location

− inv : Loc → CC(X) maps locations to invariant clock constraints

− (l,g,p) ∈ prob ⊆ Loc×CC(X)×Dist(2X×Loc) probabilistic edge relation

� l is the source location

� g is the guard

� p(l’,X) is the probability of moving to location l’ and resetting the clocks X  

− L: S → 2AP atomic propositions

0.01

0.99

{x:=0} x=8

x≥≥≥≥4

wait

x≤8

send

true
1

fail

true



Probabilistic timed automata -
Semantics

• PTA=(Loc,l0,inv,prob,L)

• MDPPTA=(S,s0,Steps,L’) where

− S={(l,v) | l∈ Loc ∧∧∧∧ v � inv(l)}

− s0=(lo,0), L’(l,v)=L(l)

− µ ∈  Steps(l,v) if one of the following conditions is satisfied: 

� time transition: ∃t ∈ R≥0 such that µ(l,v+t)=1 and 

inv(l) satisfied by v+t’ for all 0 ≤ t’ ≤ t

� discrete transition: ∃(l,g,p)∈prob such that v � g and 

for any (l’,v’) ∈ S: µ (l’,v’) = ∑∑∑∑{ p(l’,X) | X ⊆ X ∧∧∧∧ v[X:=0]=v’ }

0.01

0.99

{x:=0} x=8

x≥≥≥≥4

wait

x≤8

send

true
1

fail

true



Probabilistic timed automata -
Properties

• Probabilistic reachability

− What is the maximum probability a data packet lost in the first 5 
seconds of operation?

− What is minimum probability that a message is sent with at most 4 
retransmissions?

• Expected reachability

− What is the maximum expected time until a data packet is delivered?

− What is the minimum number of packets sent before a failure occurs?

• Probabilistic Timed CTL based on TCTL [AD94]

− example:  z.[P≥ 0.98 (♦ delivered ∧ z < 5)]

“under any scheduling, with probability ≥ 0.98 the message

is correctly delivered within 5 ms”



PTA model checking - Digital clocks

• Time domain restricted to NNNN

− based on digitisation of timed automata [HMP92]

− restricted to closed, diagonal-free PTAs 

� not important for many case studies

− integer-valued clocks and only integer-valued time elapse allowed

− t ∈ NNNN clock x increment by min{v(x)+t, kmax+1)

� kmax: largest constant in the clock constraints of the PTA

− finiteness of state space immediate

− preserves a subset of properties [KNPS06]:

� Probabilistic reachability and expected reachability

− Does not preserve PTCTL

− Inefficiency: large constants yield very large state spaces



PTA model checking – Zone based

• Symbolic (zone based) approaches

− Based on the notation of symbolic states (l, ζζζζ)

� l is location and ζ ζ ζ ζ is a clock constraint

� Encodes the set of states { (l,v) | v � ζζζζ }

− Region graph approach [KNSS02,ACD93]

� Allows verification of full PTCTL

� Prohibitively large state spaces for realistic systems

− Forward exploration [KNSS02]

� Approximate results: upper bound on maximum reachability probabilities

� Efficient operations on symbolic states

− Backwards exploration [KNSW04]

� Allows for the verification of full PTCTL

� Requires complex operations on symbolic states



Other research topics

• More expressive logics: LTL, PCTL*, … see e.g. [CY95]

• Fairness considerations for MDP verification [BK98,Bai98]

• Long run average properties for MDPs [dAl97]

• Probabilistic process algebras, e.g. [Han94,Hil96]

• Probabilistic verification for other model types:

− continuous-time Markov chains (CTMCs) [BHHK03]

− continuous-time MDPs (CTMDPs) [BHKH06]

− labelled Markov processes (LMPs) [DEP02]

− interactive Markov chains [Her02]
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