
Marktoberdorf, August 2011

Probabilistic models

Discrete
time

Continuous
time

Nondeterministic Fully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)

(probabilistic automata)

CTMDPs/IMCs

Probabilistic timed
automata (PTAs)

Overview

•  Lecture 3

−  Introduction
−  1 – Discrete time Markov chains
−  2 – Markov decision processes
−  3 – Compositional probabilistic verification
−  4 – Probabilistic timed automata

•  Course materials available here:
−  http://www.prismmodelchecker.org/courses/marktoberdorf11/
−  lecture slides, reference list, exercises

Compositional
probabilistic verification

Part 3

Overview (Part 3)

•  Compositional verification
−  assume-guarantee reasoning 

•  Markov decision processes
−  probabilistic safety properties
−  multi-objective model checking 

•  Probabilistic assume guarantee
−  semantics, model checking
−  assume-guarantee proof rules
−  quantitative approaches
−  implementation & experimental results
−  assumption generation with learning

Compositional verification

•  Goal: scalability through modular verification
−  e.g. decide if M1|| M2 ⊨ G
−  by analysing M1 and M2 separately

•  Assume-guarantee (AG) reasoning
−  use assumptions A about the context of a component M
−  ⟨A⟩ M ⟨G⟩ – “whenever M is part of a system that satisfies A,

then the system must also guarantee G”
−  example of asymmetric (non-circular) AG rule:

⟨true⟩ M1 ⟨A⟩

⟨A⟩ M2 ⟨G⟩

⟨true⟩ M1 || M2 ⟨G⟩

[Pasareanu/Giannakopoulou/et al.]

AG rules for probabilistic systems

•  How to formulate AG rules 
for Markov decision processes?

•  Questions:
−  What form do assumptions and guarantees take?

−  What does ⟨A⟩ M ⟨G⟩ mean? How to check it?

−  Any restriction on parallel composition M1 || M2?

−  Can we do this in a “quantitative” way?

−  How do we generate suitable assumptions?

⟨true⟩ M1 ⟨A⟩

⟨A⟩ M2 ⟨G⟩

⟨true⟩ M1 || M2 ⟨G⟩

AG rules for probabilistic systems

•  How to formulate AG rules 
for Markov decision processes?

•  Questions:
−  What form do assumptions and guarantees take?

•  probabilistic safety properties
−  What does ⟨A⟩ M ⟨G⟩ mean? How to check it?

•  reduction to multi-objective probabilistic model checking
−  Any restriction on parallel composition M1 || M2?

•  no: arbitrary parallel composition
−  Can we do this in a “quantitative” way?

•  yes: generate lower/upper bounds on probabilities
−  How do we generate suitable assumptions?

•  learning techniques (L* algorithm)

⟨true⟩ M1 ⟨A⟩

⟨A⟩ M2 ⟨G⟩

⟨true⟩ M1 || M2 ⟨G⟩

Overview (Part 3)

•  Compositional verification
−  assume-guarantee reasoning 

•  Markov decision processes
−  probabilistic safety properties
−  multi-objective model checking 

•  Probabilistic assume guarantee
−  semantics, model checking
−  assume-guarantee proof rules
−  quantitative approaches
−  implementation & experimental results
−  assumption generation with learning

Recap: Markov decision processes

•  Markov decision processes (MDPs)
−  model probabilistic and nondeterministic behaviour

•  An MDP is a tuple M = (S, sinit, αM, δM, L):
−  S is the state space
−  sinit ∈ S is the initial state
−  αM is the action alphabet
−  δM ⊆ S × (αM∪τ) × Dist(S) is the  

transition probability relation
−  L : S → 2AP labels states 

with atomic propositions
•  Notes:

−  αM, δM have subscripts to avoid confusion with other automata
−  transitions can also be labelled with a “silent” τ action
−  we write s-a→µ as shorthand for (s,a,µ) ∈ δM
−  MDPs, here, are identical to probabilistic automata [Segala]

t1

0.1

warn

t2 t3

shutdown 0.9
shutdown

t0

fail off

Recap: Adversaries for MDPs

•  Adversaries resolves the nondeterminism in MDPs
−  also called “schedulers”, “strategies”, “policies”, …
−  make a (possibly randomised) choice, based on history

•  An adversary σ for an MDP M
−  induces probability measure PrM,s

σ over (infinite) paths PathM,s
σ

−  we will abbreviate PrM,sinit
σ to PrM

σ (and PathM,sinit
σ to PathM

σ)

•  For adversary σ, we can compute the probability…
−  … of some measurable property φ of paths
−  here, we use either temporal logic (LTL) over state labels

•  e.g. ◊err – “an error eventually occurs”
•  e.g. □(req → ◊ack) – “req is always followed by ack”

−  or automata over action labels (see later)
•  e.g. deterministic finite automata (DFAs)

Recap: Model checking for MDPs

•  Property specifications: quantify over all adversaries
−  e.g. M ⊨ P≥p[φ] ⇔ PrM

σ(φ) ≥ p for all adversaries σ ∈ AdvM

−  corresponds to best-/worst-case behaviour analysis
−  requires computation of PrM

min (φ) = infσ { PrM,s
σ (φ) }  

or PrM
max (φ) = supσ { PrM,s

σ (φ) }
−  or in a more quantitative fashion:
−  just ask e.g. Pmin=?

 (φ) or Pmax=?
 (φ)

•  Model checking: efficient algorithms exist
−  for reachability, graph-based analysis + linear programming
−  in practice, for scalability, often approximate (value iteration)
−  for LTL, first do reachability an automaton-MDP product
−  implemented in tools like PRISM, Liquor, RAPTURE

Parallel composition for MDPs

•  The parallel composition of M1 and M2 is denoted M1 || M2
−  CSP style: synchronise over all common (non-τ) actions
−  when synchronising, transition probabilities are multiplied

•  Formally, if Mi = (Si, sinit,i, αMi
, δMi

, Li) for i=1,2, then:
•  M1||M2 = (S1×S2, (sinit,1,sinit,2), αM1

∪αM2
, δM1||M2

, L12) where:

−  L12(s1,s2) = L1(s1) ∪ L2(s2)
−  δM1||M2

 is defined such that (s1,s2)-a→µ1×µ2 iff one of:
•  s1-a→µ1, s2-a→µ2 and a ∈ αM1

∩αM2
(synchronous)

•  s1-a→µ1, µ2=ηs2
 and a ∈ (αM1

\αM2
) ∪ {τ}

(asynchronous)

•  s2-a→µ2, µ1=ηs1
 and a ∈ (αM2

\αM1
) ∪ {τ}

(asynchronous)

−  where µ1×µ2 denotes the product of distributions µ1, µ2
−  and ηs ∈ Dist(S) is the Dirac (point) distribution on s ∈ S

Running example

•  Two components, each a Markov decision process:
−  M1: controller which shuts down devices (after warning first)
−  M2: device to be shut down (may fail if no warning sent)

MDP M2 (“device”) MDP M1 (“controller”)

t1

0.1

warn

t2 t3

shutdown 0.9
shutdown

t0

fail off

s0

0.2

detect

s3

s1 0.8
shutdown

warn

off

s2

Running example

s0,t0

0.2

detect
0.8

warn
s1,t0

s2,t0

s2,t1

shutdown

0.1

shutdown

0.9 s1,t2

s2,t3

off

fail

s3,t2 off

MDP M2 (“device”) MDP M1 (“controller”)

Parallel composition: M1 || M2

system failure:
PrM1||M2

max (◊err) = 0.02

t1

0.1

warn

t2 t3

shutdown 0.9
shutdown

t0

fail off

s0

0.2

detect

s3

s1 0.8
shutdown

warn

off

s2

{err}

Safety properties

•  Safety property: language of infinite words (over actions)
−  characterised by a set of “bad prefixes” (or “finite violations”)
−  i.e. finite words of which any extension violates the property

•  Regular safety property
−  bad prefixes are represented by a regular language
−  property A stored as deterministic finite automaton (DFA) Aerr

“a fail action 
never occurs”

“warn occurs 
before shutdown”

“at most 2 time steps 
pass before termination”

fail

fail

q0

q1

shutdown warn

q0

q1 q0 warn,  
shutdown

warn,  
shutdown

time time,  
end

q0

q1

q1
time

q2 time

q1

end

end
end

time,  
end

Probabilistic safety properties

•  A probabilistic safety property P≥p [A] comprises
−  a regular safety property A + a rational probability bound p
−  “the probability of satisfying A must be at least p”
−  M ⊨ P≥p[A] ⇔ PrM

σ(A) ≥ p for all σ ∈ AdvM ⇔ PrM
min(A) ≥p

•  Examples:
−  “warn occurs before shutdown with probability at least 0.8”
−  “the probability of a failure occurring is at most 0.02”
−  “probability of terminating within k time-steps is at least 0.75”

•  Model checking: PrM
min(A) = 1 - PrM⊗Aerr

max(◊errA)
−  where errA denotes “accept” states for DFA A
−  i.e. construct (synchronous) MDP-DFA product M⊗Aerr
−  then compute reachability probabilities on product MDP

Running example

•  Does probabilistic safety property P≥0.8 [A] hold in M1?

MDP M1 (“controller”)

s0

0.2

detect

s3

s1 0.8
shutdown

warn

off

s2

A (“warn occurs 
before shutdown”)

shutdown warn

q0

q2 q1 warn,  
shutdown

warn,  
shutdown

Running example

•  Does probabilistic safety property P≥0.8 [A] hold in M1?

MDP M1 (“controller”)

s0

0.2

detect

s3

s1 0.8
shutdown

warn

off

s2

A (“warn occurs 
before shutdown”)

shutdown warn

q0

q2 q1 warn,  
shutdown

warn,  
shutdown

Product MDP M1⊗Aerr
 PrM1

min(A)
 = 1 – PrM1⊗Aerr

max(◊errA)
 = 1 – 0.2
 = 0.8
 → M1 ⊨ P≥0.8 [A]

s0,q0

0.2
detect

0.8

shutdown

warn
s1,q0

s2,q0

s2,q1 s3,q1

shutdown

off

off

s3,q2

{errA}

Multi-objective MDP model checking

•  Consider multiple (linear-time) objectives for an MDP M
−  LTL formulae Φ1,…,Φk and probability bounds ~1p1,…,~k pk

−  question: does there exist an adversary σ ∈ AdvM such that:

•  Motivating example:
−  PrM

σ(□(queue_size<10)) > 0.99 ∧ PrM
σ(◊flat_battery) < 0.01

•  Multi-objective MDP model checking [EKVY07]
−  construct product of automata for M, Φ1,…,Φk
−  then solve linear programming (LP) problem
−  the resulting adversary σ can obtained from LP solution
−  note: σ may be randomised (unlike the single objective case)

PrM
σ(φ1) ~1p1 ∧ … ∧ PrM

σ(φk) ~k pk

Multi-objective MDP model checking

•  Consider the objectives ◊D and ◊E in the MDP below
−  i.e. the probability of reaching either state D or E
−  a (randomised) adversary resolves the choice between a/b/c
−  increasing the probability of reaching one target decreases the

probability of reaching the other

c a

s0

s3 s2

b

0.4
0.6

0.5 0.5
0.8

0.2

s5 E D

s1

s4

choose a Pr(◊D)

Pr(◊E) 0.8 0.5

0.5
0.6

0
0

choose b

choose c

Multi-objective MDP model checking

•  Consider the objectives ◊D and ◊E in the MDP below
−  i.e. the probability of reaching either state D or E
−  a (randomised) adversary resolves the choice between a/b/c
−  increasing the probability of reaching one target decreases the

probability of reaching the other

•  Considering also randomised adversaries…
−  we obtain a Pareto curve, showing trade-off of optimal solutions

c a

s0

s3 s2

b

0.4
0.6

0.5 0.5
0.8

0.2

s5 E D

s1

s4

0.5 a, 0.5 b Pr(◊D)

Pr(◊E) 0.8 0.5

0.5
0.6

0
0

0.5 a, 0.5 c

0.5 b, 0.5 c

Overview (Part 3)

•  Compositional verification
−  assume-guarantee reasoning 

•  Markov decision processes
−  probabilistic safety properties
−  multi-objective model checking 

•  Probabilistic assume guarantee
−  semantics, model checking
−  assume-guarantee proof rules
−  quantitative approaches
−  implementation & experimental results
−  assumption generation with learning

Probabilistic assume guarantee

•  Assume-guarantee triples ⟨A⟩≥pA
 M ⟨G⟩≥pG

 where:
−  M is a Markov decision process
−  P≥pA

[A] and P≥pG
[G] are probabilistic safety properties

•  Informally:
−  “whenever M is part of a system satisfying A with probability

at least pA, then the system is guaranteed to satisfy G with
probability at least pG”

•  Formally:

−  where M[αA] is M with its alphabet extended to include αA

⟨A⟩≥pA
 M ⟨G⟩≥pG

⇔

∀σ ∈ AdvM[αA] (PrM[αA]
σ (A) ≥ pA → PrM[αA]

σ (G) ≥ pG)

Assume-guarantee model checking

•  Checking whether ⟨A⟩≥pA
 M ⟨G⟩≥pG

 is true
−  reduces to multi-objective model checking
−  on the product MDP M’ = M[αA]⊗Aerr⊗Gerr

•  More precisely:
−  check no adv. of M satisfying PrM

σ (A)≥pA but not PrM
σ (G)≥pG

−  solve via LP problem, i.e. in time polynomial in |M|·|Aerr|·|Gerr|

•  Note: ⟨true⟩ M ⟨G⟩≥pG
 denotes the absence of an assumption

−  reduces to standard model checking (since a safety property)

⟨A⟩≥pA
 M ⟨G⟩≥pG

⇔

¬∃σ’ ∈ AdvM’ (PrM’
σ’ (◊errA) ≤ 1-pA ∧ PrM’

σ’ (◊errG) > 1-pG)

An assume-guarantee rule

•  The following asymmetric proof rule holds
−  (symmetric = uses a single assumption about one component)

•  So, verifying M1 || M2 ⊨ P≥pG [G] requires:
−  premise 1: M1 ⊨ P≥pA [A] (standard model checking)
−  premise 2: ⟨A⟩≥pA

 M2 ⟨G⟩≥pG
 (multi-objective model checking)

•  Potentially much cheaper if |A| much smaller than |M1|

⟨true⟩ M1 ⟨A⟩≥pA
⟨A⟩≥pA

 M2 ⟨G⟩≥pG

⟨true⟩ M1 || M2 ⟨G⟩≥pG

(ASYM)

Running example

•  Does probabilistic safety property P≥0.98 [G] hold in M1||M2?

MDP M2 (“device”) MDP M1 (“controller”)

t1

0.1

warn

t2 t3

shutdown 0.9
shutdown

t0

fail off

s0

0.2

detect

s3

s1 0.8
shutdown

warn

off

s2

G (“a fail action 
never occurs”)

fail

fail

q0

q1

Running example

•  Does probabilistic safety property P≥0.98 [G] hold in M1||M2?

•  Use AG with assumption 
⟨A⟩≥0.8 about M1

MDP M2 (“device”) MDP M1 (“controller”)

t1

0.1

warn

t2 t3

shutdown 0.9
shutdown

t0

fail off

s0

0.2

detect

s3

s1 0.8
shutdown

warn

off

s2

G (“a fail action 
never occurs”)

fail

fail

q0

q1

A (“warn occurs 
before shutdown”) shutdown warn

a0

a2 a1 warn,  
shutdown

warn,  
shutdown

⟨true⟩ M1 ⟨A⟩≥0.8
⟨A⟩≥0.8 M2 ⟨G⟩≥0.98

⟨true⟩ M1 || M2 ⟨G⟩≥0.98

Running example

•  Premise 1: Does M1 ⊨ P≥0.8 [A] hold? (same as earlier ex.)

MDP M1 (“controller”) A (“warn occurs 
before shutdown”)

shutdown warn

q0

q2 q1 warn,  
shutdown

warn,  
shutdown

Product MDP M1⊗Aerr

s0

0.2

detect

s3

s1 0.8
shutdown

warn

off

s2

 PrM1
min(A)

 = 1 – PrM1⊗Aerr
max(◊errA)

 = 1 – 0.2
 = 0.8
 → M1 ⊨ P≥0.8 [A]

s0,q0

0.2
detect

0.8

shutdown

warn
s1,q0

s2,q0

s2,q1 s3,q1

shutdown

off

off

s3,q2

{errA}

Running example

•  Premise 2: Does ⟨A⟩≥0.8 M2 ⟨G⟩≥0.98 hold?

A (“warn occurs 
before shutdown”)

shutdown warn

a0

a2 a1 warn,  
shutdown

warn,  
shutdown

G (“a fail action 
never occurs”)

fail

fail

q0

q1

MDP M2 (“device”)

t1

0.1

warn

t2 t3

shutdown 0.9
shutdown

t0

fail off

Product MDP
M’ = M2[αA]⊗Aerr⊗Gerr

t0,a0,q0
warn shutdown

t1,a1,q0

t3,a2,q0 fail
t2,a2,q0

fail

t2,a1,q0

shutdown

off

off
0.9

0.1

t3,a2,q1

{errA}

{errA,  
errG}

{errA}

Running example

•  Premise 2: Does ⟨A⟩≥0.8 M2 ⟨G⟩≥0.98 hold?

•  ∃ an adversary of M2 satisfying PrM
σ (A)≥0.8 but not PrM

σ (G)≥0.98 ? 
 ⇔
•  ∃ an an adversary of M’ with PrM’

σ’ (◊errA)≤0.2 and PrM’
σ’ (◊errG)>0.02 ?

•  To satisfy PrM’
σ’ (◊errA)≤0.2, adversary σ’ must choose shutdown 

 in initial state with probability ≤ 0.2, which means PrM’
σ’ (◊errG)≤0.02

•  So, there is no such adversary and ⟨A⟩≥0.8 M2 ⟨G⟩≥0.98 does hold  

Product MDP
M’ = M2[αA]⊗Aerr⊗Gerr

t0,a0,q0
warn shutdown

t1,a1,q0

t3,a2,q0 fail
t2,a2,q0

fail

t2,a1,q0

shutdown

off

off
0.9

0.1

t3,a2,q1

{errA}

{errA,  
errG}

{errA}

Other assume-guarantee rules

Multiple assumptions:
⟨true⟩ M1 ⟨A1,…,Ak⟩≥p1,…,pk
⟨A1,…,Ak⟩≥p1,…,pk

 M2 ⟨G⟩≥pG

⟨true⟩ M1 || M2 ⟨G⟩≥pG

Circular rule:

⟨true⟩ M2 ⟨A1⟩≥p2

⟨A2⟩≥p2
 M1 ⟨A1⟩≥p1

⟨A1⟩≥p1
 M2 ⟨G⟩≥pG

⟨true⟩ M1 || M2 ⟨G⟩≥pG

Multiple components (chain):
⟨true⟩ M1 ⟨A1⟩≥p1

⟨A1⟩≥p1
 M2 ⟨A2⟩≥p2

…
⟨An⟩≥pn

 Mn ⟨G⟩≥pG

⟨true⟩ M1 || … || Mn ⟨G⟩≥pG

Asynchronous components:
⟨A1⟩≥p1 M1 ⟨G1⟩≥q1

⟨A2⟩≥p2 M2 ⟨G2⟩≥q2

⟨A1,A2⟩≥p1p2 M1 || M2 ⟨G1∨G2⟩≥(q1+q2-q1q2)

A quantitative approach

•  For (non-compositional) probabilistic verification
−  prefer quantitative properties: PrM

min(G), not M ⊨ P≥pG
[G]

−  can we do this for compositional verification?

•  Consider, for example, AG rule (ASYM)
−  this proves PrM1∥M2

min(G) ≥ pG 
for certain values of pG

−  i.e. gives lower bound for PrM1∥M2
min(G)

−  for a fixed assumption A, we can compute the maximal lower
bound obtainable, through a simple adaption of the multi-
objective model checking problem

−  we can also compute upper bounds using generated
adversaries as witnesses

−  furthermore: can explore trade-offs in parameterised models
by approximating Pareto curves

⟨true⟩ M1 ⟨A⟩≥pA
⟨A⟩≥pA

 M2 ⟨G⟩≥pG

⟨true⟩ M1 || M2 ⟨G⟩≥pG

Implementation + Case studies

•  Prototype extension of PRISM model checker
−  already supports LTL for Markov decision processes
−  automata can be encoded in modelling language
−  added support for multi-objective LTL model checking, using

LP solvers (ECLiPSe/COIN-OR CBC)

•  Two large case studies
−  randomised consensus algorithm (Aspnes & Herlihy)

•  minimum probability consensus reached by round R
−  Zeroconf network protocol

•  maximum probability network configures incorrectly
•  minimum probability network configured by time T

Case study: Randomised consensus

•  Distributed consensus protocol
−  algorithm run by a collection of distributed processes
−  processes each have some (nondeterministic) initial value
−  processes must eventually terminate, agreeing on same value

•  Aspnes/Herlihy randomised distributed consensus [AH90]
−  consensus algorithm for N processes, operates in rounds
−  each round uses a shared coin protocol, parameterised by K

•  We check:
−  “minimum probability consensus reached by round R”
−  captured as a probabilistic safety property with DFA

representing any run where a process enters round R+1

Case study: Randomised consensus

•  Model structure: parallel composition of:
−  N MDPs, each representing one process
−  R MDPs, one for the shared coin protocol of each round

•  Compositional verification:
−  model check a probabilistic safety property for each coin

protocol from rounds 1, . . . , R−2
−  safety property: minimum probability that the coin protocol

returns the same coin value for all processes
−  combine these results through R−2 applications of of the

“asynchronous” rule, proving a probabilistic safety property
about the parallel composition of the R-2 coin protocols

−  this probabilistic safety property is used as the assumption for
an application of the (ASYM) rule, yielding the final property

Experimental results

Case study
[parameters]

Non-compositional Compositional
States Time (s) LP size Time (s)

Randomised
consensus

(3 processes)
[R,K]

3, 2 1,418,545 18,971 40,542 29.6
3, 20 39,827,233 time-out 40,542 125.3
4, 2 150,487,585 78,955 141,168 376.1

4, 20 2,028,200,209 mem-out 141,168 471.9

ZeroConf
[K]

4 313,541 103.9 20,927 21.9
6 811,290 275.2 40,258 54.8
8 1,892,952 592.2 66,436 107.6

ZeroConf
time-bounded

[K, T]

2, 10 65,567 46.3 62,188 89.0
2, 14 106,177 63.1 101,313 170.8
4, 10 976,247 88.2 74,484 170.8
4, 14 2,288,771 128.3 166,203 430.6

Experimental results

Case study
[parameters]

Non-compositional Compositional
States Time (s) LP size Time (s)

Randomised
consensus

(3 processes)
[R,K]

3, 2 1,418,545 18,971 40,542 29.6
3, 20 39,827,233 time-out 40,542 125.3
4, 2 150,487,585 78,955 141,168 376.1

4, 20 2,028,200,209 mem-out 141,168 471.9

ZeroConf
[K]

4 313,541 103.9 20,927 21.9
6 811,290 275.2 40,258 54.8
8 1,892,952 592.2 66,436 107.6

ZeroConf
time-bounded

[K, T]

2, 10 65,567 46.3 62,188 89.0
2, 14 106,177 63.1 101,313 170.8
4, 10 976,247 88.2 74,484 170.8
4, 14 2,288,771 128.3 166,203 430.6

•  Faster than conventional model checking in a number of cases

Experimental results

Case study
[parameters]

Non-compositional Compositional
States Time (s) LP size Time (s)

Randomised
consensus

(3 processes)
[R,K]

3, 2 1,418,545 18,971 40,542 29.6
3, 20 39,827,233 time-out 40,542 125.3
4, 2 150,487,585 78,955 141,168 376.1

4, 20 2,028,200,209 mem-out 141,168 471.9

ZeroConf
[K]

4 313,541 103.9 20,927 21.9
6 811,290 275.2 40,258 54.8
8 1,892,952 592.2 66,436 107.6

ZeroConf
time-bounded

[K, T]

2, 10 65,567 46.3 62,188 89.0
2, 14 106,177 63.1 101,313 170.8
4, 10 976,247 88.2 74,484 170.8
4, 14 2,288,771 128.3 166,203 430.6

•  Verified instances where conventional model checking is infeasible

Experimental results

Case study
[parameters]

Non-compositional Compositional
States Time (s) LP size Time (s)

Randomised
consensus

(3 processes)
[R,K]

3, 2 1,418,545 18,971 40,542 29.6
3, 20 39,827,233 time-out 40,542 125.3
4, 2 150,487,585 78,955 141,168 376.1

4, 20 2,028,200,209 mem-out 141,168 471.9

ZeroConf
[K]

4 313,541 103.9 20,927 21.9
6 811,290 275.2 40,258 54.8
8 1,892,952 592.2 66,436 107.6

ZeroConf
time-bounded

[K, T]

2, 10 65,567 46.3 62,188 89.0
2, 14 106,177 63.1 101,313 170.8
4, 10 976,247 88.2 74,484 170.8
4, 14 2,288,771 128.3 166,203 430.6

•  LP problem generally much smaller than full state space
(but still the limiting factor)

Overview (Part 3)

•  Compositional verification
−  assume-guarantee reasoning 

•  Markov decision processes
−  probabilistic safety properties
−  multi-objective model checking 

•  Probabilistic assume guarantee
−  semantics, model checking
−  assume-guarantee proof rules
−  quantitative approaches
−  implementation & experimental results
−  assumption generation with learning

Generating assumptions

•  We can verify M1||M2 compositionally
−  but this relies on the existence  

of a suitable assumption ⟨A⟩≥pA

•  1. Does such an assumption always exist?
•  2. When it does exist, can we generate it automatically?

•  One possibility: use algorithmic learning techniques
−  inspired by non-probabilistic AG work of [Pasareanu et al.]
−  uses L* algorithm to learn finite automata for assumptions
−  successful implementations using Boolean functions [Chen/

Clarke/et al.] and BDD-based techniques [Alur et al.]

•  We use a modified version of L*
−  to learn probabilistic assumptions for rule (ASYM)

⟨true⟩ M1 ⟨A⟩≥pA
⟨A⟩≥pA

 M2 ⟨G⟩≥pG

⟨true⟩ M1 || M2 ⟨G⟩≥pG

L* for assume-guarantee

•  L* algorithm [Angluin] – learns regular languages (as a DFA)
−  relies on existence of a “teacher” to guide the learning
−  answers two type of queries: “membership” and “conjecture”
−  membership: “is word w in the target language L?”
−  conjecture: “does automata A accept the target language L”?
−  if not, teacher must return counterexample w’
−  L* produces minimal DFA, runs in polynomial time

•  Successfully applied to the of learning assumptions for AG
−  uses notion of “weakest assumption” about a component that

suffices for compositional verification (always exists)
−  weakest assumption is the target regular language
−  model checker plays role of teacher, returns counterexamples
−  in practice, can usually stop early: either with a simpler

(stronger) assumption or by refuting the property

Key steps of (modified) L*

•  Key idea: learn probabilistic assumption ⟨A⟩≥pA
−  via non-probabilistic assumption A

•  “Membership” query (for trace t):
−  does t || M2 ⊨ P≥pG

[G] hold? 

•  “Conjecture” query (for assumption A)
−  1. compute lowest value of pA such that ⟨A⟩≥pA

 M2 ⟨G⟩≥pG
holds

•  if no such value, need to refine A
−  2. check if M1 ⊨ P≥pA

[A] holds
•  if yes, successfully verified ⟨G⟩≥pG

for M1 || M2 (with ⟨A⟩≥pA
)

−  3. check if counterexample from 2 is real
•  if yes, have refuted ⟨G⟩≥pG

 for M1 || M2
•  if no, need to refine A

−  (use probabilistic counterexamples [HK07] to “refine A”)

⟨true⟩ M1 ⟨A⟩≥pA
⟨A⟩≥pA

 M2 ⟨G⟩≥pG

⟨true⟩ M1 || M2 ⟨G⟩≥pG

Experimental results (learning)

Case study
[parameters]

Component sizes Compositional
|M2⊗Gerr| |M1| |A| Time (s)

Client-server
(N failures)

[N]

3 229 16 4 6.6
4 1,121 25 5 13.1
5 5,397 36 6 87.5

Randomised
consensus

[N,R,K]

2, 3, 20 391 3,217 5 24.2
2, 4, 2 573 113,569 10 108.4
3, 3, 2 8,843 4,065 14 681.7

3, 3, 20 8,843 38,193 14 863.8

Sensor
network

[N]

1 42 72 2 3.5
2 42 1,184 2 3.7
3 42 10,662 2 4.6

Experimental results (learning)

Case study
[parameters]

Component sizes Compositional
|M2⊗Gerr| |M1| |A| Time (s)

Client-server
(N failures)

[N]

3 229 16 4 6.6
4 1,121 25 5 13.1
5 5,397 36 6 87.5

Randomised
consensus

[N,R,K]

2, 3, 20 391 3,217 5 24.2
2, 4, 2 573 113,569 10 108.4
3, 3, 2 8,843 4,065 14 681.7

3, 3, 20 8,843 38,193 14 863.8

Sensor
network

[N]

1 42 72 2 3.5
2 42 1,184 2 3.7
3 42 10,662 2 4.6

•  Successfully learnt (small) assumptions in all cases

Experimental results (learning)

Case study
[parameters]

Component sizes Compositional
|M2⊗Gerr| |M1| |A| Time (s)

Client-server
(N failures)

[N]

3 229 16 4 6.6
4 1,121 25 5 13.1
5 5,397 36 6 87.5

Randomised
consensus

[N,R,K]

2, 3, 20 391 3,217 5 24.2
2, 4, 2 573 113,569 10 108.4
3, 3, 2 8,843 4,065 14 681.7

3, 3, 20 8,843 38,193 14 863.8

Sensor
network

[N]

1 42 72 2 3.5
2 42 1,184 2 3.7
3 42 10,662 2 4.6

•  In some cases, learning + compositional verification is faster
(than non-compositional verification, using PRISM)

Summary (Part 3)

•  Compositional verification, e.g. assume-guarantee
−  decompose verification problem based on system structure

•  Compositional probabilistic verification based on:
−  Markov decision processes, with arbitrary parallel composition
−  assumptions/guarantees are probabilistic safety properties
−  reduction to multi-objective model checking
−  multiple proof rules; adapted to quantitative approach
−  automatic generation of assumptions: L* learning

•  Can work well in practice
−  verified safety/performance on several large case studies
−  cases where infeasible using non-compositional verification

•  For further detail, see [KNPQ10], [FKP10]

•  Next: Probabilistic timed automata (PTAs)

