
MOVEP'14 Summer School, Nantes, July 2014

Automated Verification of 
Probabilistic Real-time Systems 

  
Dave Parker  

  

University of Birmingham

2

Overview

•  Probabilistic model checking
−  example: FireWire protocol

•  Probabilistic timed automata (PTAs)
−  clocks, zones, syntax, semantics
−  property specification

•  Verification techniques for PTAs
−  region graphs + digital clocks + zone-based methods
−  abstraction-refinement

•  Tool support: PRISM
•  Verification vs. controller synthesis

−  example: task-graph scheduling

•  See: www.prismmodelchecker.org/lectures/movep14/
−  slides, tutorial papers, reference list, …

3

High-level 
model/design

Specification
(temporal logic)

System

System
 require-

ments

P<0.1 [F fail]

Probabilistic
model checker  

Low-level model
(states, transitions)

Probabilistic model checking

?

Verification
results

0.5
0.1

0.4

module A
 a : [0..N] init N;
 ab : [0..N] init 0;
 [r1] a>0 → k1*a :
(a’=a-1)&(ab’=ab+1);
 [r2] ab>0 → k2*ab : (a’=a
+1)&(ab’=ab-1);
 [r3] a>0 → k3*a : (a’=a-1);

Numerical
results

Probabilistic model checking

4

Reminder: Why probability?

•  Many real-world systems are inherently probabilistic…

•  Unreliable or unpredictable behaviour
−  failures of physical components
−  message loss in wireless communication

•  Use of randomisation (e.g. to break symmetry)
−  random back-off in communication protocols
−  in gossip routing to reduce flooding
−  in security protocols, e.g. for anonymity

•  And many others…
−  biological processes, e.g. DNA computation
−  quantum computing algorithms

5

Probabilistic real-time systems

•  Systems with probability, nondeterminism and real-time
−  e.g. wireless communication protocols
−  e.g. randomised security protocols

•  Randomised back-off schemes
−  Ethernet, WiFi (802.11), Zigbee (802.15.4)

•  Random choice of waiting time
−  Bluetooth device discovery phase
−  Root contention in IEEE 1394 FireWire

•  Random choice over a set of possible addresses
−  IPv4 dynamic configuration (link-local addressing)

•  Random choice of a destination
−  Crowds anonymity, gossip-based routing

6

Probabilistic models

Discrete
time

Continuous
time

Nondeterministic Fully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)

Probabilistic timed
automata (PTAs)

Probabilistic  
automata (PAs)

Interactive Markov 
chains (IMCs), …

7

Verifying probabilistic systems

•  Quantitative notions of correctness
−  “the probability of an airbag failing to deploy  

within 0.02 seconds of being triggered is at most 0.001”
−  in temporal logic: P≤0.001 [G≤0.02 !“deploy”]

•  Not just correctness
−  reliability, dependability, performance, resource usage (e.g.

battery life), security, privacy, trust, anonymity, …

•  Usually focus on numerical properties:
−  e.g.: P=? [G≤0.02 !“deploy”]
−  or P=? [G≤T !“deploy”] for varying T

•  Combine numerical + exhaustive aspects
−  i.e. worst-case (or best-case) probabilities
−  e.g.: Pmax=? [G≤0.02 !“deploy”]

8

Overview

•  Probabilistic model checking
−  example: FireWire protocol

•  Probabilistic timed automata (PTAs)
−  clocks, zones, syntax, semantics
−  property specification

•  Verification techniques for PTAs
−  region graphs + digital clocks + zone-based methods
−  abstraction-refinement

•  Tool support: PRISM
•  Verification vs. controller synthesis

−  example: task-graph scheduling

•  See: www.prismmodelchecker.org/lectures/movep14/
−  slides, tutorial papers, reference list, …

9

Case study: FireWire protocol

•  FireWire (IEEE 1394)
−  high-performance serial bus for networking 

multimedia devices; originally by Apple
−  "hot-pluggable" - add/remove  

devices at any time
−  no requirement for a single PC (but need acyclic topology)

•  Root contention protocol
−  leader election algorithm, when nodes join/leave
−  symmetric, distributed protocol
−  uses randomisation (electronic coin tossing) and timing delays
−  nodes send messages: "be my parent"
−  root contention: when nodes contend leadership
−  random choice: "fast"/"slow" delay before retry

10

FireWire leader election

R

Root
node

11

FireWire root contention

Root
contention

12

FireWire root contention

Root
contention

R

13

FireWire analysis

•  Detailed probabilistic model:
−  probabilistic timed automaton (PTA), including:

•  concurrency: messages between nodes and wires
•  timing delays taken from official standard
•  underspecification of delays (upper/lower bounds)

−  maximum model size: 170 million states 

•  Probabilistic model checking (with PRISM)
−  verified that root contention always 

resolved with probability 1
•  P≥1 [F (end ∧ elected)]

−  investigated worst-case expected time  
taken for protocol to complete

•  Rmax=? [F (end ∧ elected)]
−  investigated the effect of using biased coin

14

FireWire: Analysis results

“minimum probability
of electing leader

by time T”

15

FireWire: Analysis results

“minimum probability
of electing leader

by time T”

(short wire length)

Using a biased coin

16

FireWire: Analysis results

“maximum expected
time to elect a leader”

(short wire length)

Using a biased coin

17

FireWire: Analysis results

“maximum expected
time to elect a leader”

(short wire length)

Using a biased coin
is beneficial!

18

Overview

•  Probabilistic model checking
−  example: FireWire protocol

•  Probabilistic timed automata (PTAs)
−  clocks, zones, syntax, semantics
−  property specification

•  Verification techniques for PTAs
−  region graphs + digital clocks + zone-based methods
−  abstraction-refinement

•  Tool support: PRISM
•  Verification vs. controller synthesis

−  example: task-graph scheduling

•  See: www.prismmodelchecker.org/lectures/movep14/
−  slides, tutorial papers, reference list, …

19

Probabilistic models

Discrete
time

Continuous
time

Nondeterministic Fully probabilistic

Discrete-time
Markov chains

(DTMCs)

Continuous-time
Markov chains

(CTMCs)

Markov decision
processes (MDPs)

Probabilistic timed
automata (PTAs)

Probabilistic  
automata (PAs)

Interactive Markov 
chains (IMCs), …

20

Recap: DTMCs

•  Discrete-time Markov chains (DTMCs)
−  state-transition systems augmented with probabilities

•  Model checking, e.g. with PCTL
−  based on probability measure over paths
−  e.g. P<0.15 [F lost] – maximum probability of loss is < 0.15

init

0.1 0.05
lost

done

0.95

0.1

0.8 1

21

Recap: MDPs

•  Markov decision processes (MDPs) (or probabilistic automata)
−  mix probability and nondeterminism
−  states: nondeterministic choice over actions
−  each action leads to a probability  

distributions over successor states

•  Adversaries (schedulers, policies, …)
−  resolve nondeterministic choices based on history so far
−  properties quantify over all possible adversaries
−  e.g. P<0.15 [F lost] – maximum probability of loss is < 0.15

1
init

0.1 0.05

0.9
send

retry

lost

done

0.95

wait

done

1

22

Probabilistic timed automata (PTAs)

•  Probabilistic timed automata (PTAs)
−  Markov decision processes (MDPs) + real-valued clocks
−  or: timed automata + discrete probabilistic choice
−  model probabilistic, nondeterministic and timed behaviour

•  PTAs comprise:
−  clocks (increase simultaneously)
−  locations (labelled with invariants)
−  transitions (action + guard + 

probabilities + resets)

•  Semantics
−  PTA represents an infinite-state MDP
−  states are location/clock valuation pairs (l,v) ∈ Loc×ℝX
−  nondeterminism: choice of actions + elapse of time

init

0.1 0.05

x≤2

0.9

x≥2
send

x≥1

x:=0 x:=0

retry

lost
x≤3

done
true

0.95

x:=0

23

Time, clocks and clock valuations

•  Dense (continuous) time domain: non-negative reals ℝ≥0
−  from this point on, we will abbreviate ℝ≥0 to ℝ

•  Finite set of clocks x ∈ X
−  variables taking values from time domain ℝ

−  increase at the same rate as real time

•  A clock valuation is a tuple v ∈ ℝX. Some notation:
−  v(x) : value of clock x in v
−  v+t : time increment of t for v
−  v[Y:=0] : clock reset of clocks Y ⊆ X in v

24

Zones (clock constraints)

•  Zones (clock constraints) over clocks X, denoted Zones(X):

−  where x, y ∈ X and c, d ∈ ℕ
−  e.g.: x ≤ 2, x ≤ y, (x≥2)∧(x<3)∧(x≤y)

•  Can derive:
−  logical connectives, e.g. ζ1∧ζ2 ≡ ¬(¬ζ1∨¬ζ2)
−  strict inequalities, through negation, e.g. x>5 ≡ ¬(x≤5)…

•  Used for both:
−  syntax of PTAs/properties
−  algorithms/implementations for model checking

 ζ ::= x ≤ d | c ≤ x | x+c ≤ y+d | ¬ζ | ζ ∨ ζ

25

Zones and clock valuations

•  A clock valuation v satisfies a zone ζ, written v ⊲ ζ if
−  ζ resolves to true after substituting each clock x with v(x)

•  The semantics of a zone ζ ∈ Zones(X) is the set of clock
valuations which satisfy it (i.e. a subset of ℝX)
−  NB: multiple zones may have the same semantics
−  e.g. (x≤2)∧(y≤1)∧(x≤y+2) and (x≤2)∧(y≤1)∧(x≤y+3)
−  but we assume canonical ("tight") zones
−  allows us to use syntax for zones interchangeably with

semantic, set-theoretic operations

•  Some useful classes of zones:
−  closed: no strict inequalities (e.g. x>5)
−  diagonal-free: no comparisons between clocks (e.g. x≤y)
−  convex: define a convex set, efficient to manipulate

26

c-equivalence and c-closure

•  Clock valuations v and v’ are c-equivalent if for any x,y∈X
−  either v(x) = v’(x), or v(x) > c and v’(x) > c
−  either v(x)-v(y) = v’(x)-v’(y) or v(x)-v(y) > c and v’(x)-v’(y) > c

•  The c-closure of the zone ζ, denoted close(ζ,c), equals
−  the greatest zone ζ’⊇ ζ such that, for any v’ ∈ ζ’,

 there exists v ∈ ζ and v and v’ are c-equivalent
−  c-closure ignores all constraints which are greater than c
−  for a given c, there are only a finite number of c-closed zones

27

Operations on zones

•  Operations on zones:

•  Set-theoretic operations

•  Time operations
x

y

ζ1∩ζ2
ζ1∪ζ2

ζ1\ζ2

ζ1

ζ2

↗ ζ ↙ζ1ζ2 ζ2 [y:=0] close(ζ1,c)

28

Probabilistic timed automata - Syntax

•  A probabilistic timed automata (PTA) is:
−  a tuple (Loc, linit, Act, X, inv, prob, L)

•  where:
−  Loc is a finite set of locations
−  linit ∈ Loc is the initial location
−  Act is a finite set of actions
−  X is a finite set of clocks
−  inv : Loc → Zones(X)  

is the invariant condition
−  prob ⊆ Loc×Zones(X)×Dist(Loc×2X)  

is the probabilistic edge relation
−  L : Loc → 2AP is a labelling function

init

0.1 0.05

x≤2

0.9

x≥2
send

x≥1

x:=0 x:=0

retry

lost
x≤3

done
true

0.95

x:=0

{lost}

29

Probabilistic edge relation

•  Probabilistic edge relation
−  prob ⊆ Loc×Zones(X)×Act×Dist(Loc×2X)

•  Probabilistic edge (l,g,a,p) ∈ prob
−  l is the source location
−  g is the guard
−  a is the action
−  p target distribution

•  Edge (l,g,a,p,l’,Y)
−  from probabilistic edge (l,g,a,p) where p(l’,Y)>0
−  l’ is the target location
−  Y is the set of clocks to be reset (to zero)

init

0.1 0.05

x≤2

0.9

x≥2
send

x≥1

x:=0 x:=0

retry

lost
x≤3

done
true

0.95

x:=0

30

PTA - Example

•  Models a simple probabilistic communication protocol
−  starts in location init; after between 1 and 2 time units, the

protocol attempts to send the data:
•  with probability 0.9 data is sent correctly, move to location done
•  with probability 0.1 data is lost, move to location lost

−  in location lost, after 2 to 3 time units, attempts to resend
•  correctly sent with probability 0.95 and lost with probability 0.05

invariant

guard

clock reset action

init

0.1 0.05

x≤2

0.9

x≥2
send

x≥1

x:=0 x:=0

retry

lost
x≤3

done
true

0.95

x:=0

31

PTAs - Behaviour

•  A state of a PTA is a pair (l,v) ∈ Loc×ℝX such that v ⊲ inv(l)

•  Start in the initial location with all clocks set to zero
−  i.e. initial state is (linit,0)

•  For any state (l,v), there is nondeterministic choice between
making a discrete transition and letting time pass 

−  discrete transition (l,g,a,p) enabled if v ⊲ g and probability of

moving to location l’ and resetting the clocks Y equals p(l’,Y)  

−  time transition available only if invariant inv(l) is continuously
satisfied while time elapses

32

PTA – Example execution

(init,x=0)

1.1

(init,x=1.1)

send 0.1 0.9

(done,x=0) (lost,x=0)

2.7

(lost,x=2.7)

retry 0.05 0.95

(done,x=0) (lost,x=0)

8.66

(done,x=8.66)
⋮

⋮ ⋮

PTA: Example  
execution:

init

0.1 0.05

x≤2

0.9

x≥2
send

x≥1

x:=0 x:=0

retry

lost
x≤3

done
true

0.95

x:=0

33

PTAs - Formal semantics

•  Formally, the semantics of a PTA P is an infinite-state MDP
MP = (SP, sinit, αP, δP, LP) with:

•  States: SP = { (l,v) ∈ Loc × ℝX such that v ⊲ inv(l) }
•  Initial state: sinit = (linit, 0)

•  Actions: αP = Act∪ℝ
•  δP ⊆ SP × αP × Dist(SP) such that (s, a, µ) ∈ δP iff:

−  (time transition) a∈ℝ, µ(l,v+t)=1 and v+t’⊲inv(l) for all t’≤t
−  (discrete transition) a∈Act and there exists (l,g,a,p) ∈ prob  
 
such that v⊲g and, for any (l’,v’) ∈ SP:

•  Labelling: LP(l,v) = L(l)

€

µ(l',v') = p(l',Y)
Y⊆X∧v[Y:=0]=v'
∑

actions of MDP MP are the actions 
of PTA P or real time delays

multiple resets may give  
same clock valuation

34

Overview

•  Probabilistic model checking
−  example: FireWire protocol

•  Probabilistic timed automata (PTAs)
−  clocks, zones, syntax, semantics
−  property specification

•  Verification techniques for PTAs
−  region graphs + digital clocks + zone-based methods
−  abstraction-refinement

•  Tool support: PRISM
•  Verification vs. controller synthesis

−  example: task-graph scheduling

•  See: www.prismmodelchecker.org/lectures/movep14/
−  slides, tutorial papers, reference list, …

35

Properties of PTAs - PTCTL

•  PTCTL: Probabilistic timed computation tree logic [KNSS02]
−  derived from PCTL [BdA95] and TCTL [AD94]

•  Syntax:

−  φ ::= true | a | ζ | z. φ | φ ∧ φ | ¬φ | P~p [φ U φ]

•  where:

−  where Z is a set of formula clocks, ζ ∈ Zones(X∪Z), z ∈ Z,
−  a is an atomic proposition, p ∈ [0,1] and ~ ∈ {<,>,≤,≥}

•  Usual equivalences
−  e.g. F φ ≡ true U φ and G φ ≡ ¬F(¬φ)

“freeze quantifier” 
(formula clock z)

“zone over X∪Z”

 φ U φ is true with probability ~p  
(for all adversaries)

36

PTCTL - Examples

•  z . P>0.99 [F delivered ∧ (z<5)]
−  “with probability greater than 0.99, the system delivers the

packet within 5 time units”

•  z . P>0.95 [(x≤3) U (z=8)]
−  “with probability at least 0.95, the system clock x does not

exceed 3 before 8 time units elapse”

•  z . P≤0.1 [G (failure ∨ (z≤60))]
−  “the system fails after the first 60 time units have elapsed with

probability at most 0.01”

37

Properties of PTAs (PRISM)

•  PRISM property specification for PTAs [NPS13]
−  PCTL + zones + time bounds + expected rewards

•  Syntax:
−  φ ::= true | a | ζ | φ ∧ φ | ¬φ | P~p [ψ] | R~q [ρ]
−  ψ :: = φ U≤k φ | φ U φ
−  ρ ::= I=k | C≤k | F φ

•  Expected reward (costs/prices)
−  at time k (I=k)
−  cumulated up to time k (C≤k)
−  cumulated until a φ-state is reached (F φ)

•  Reward structures
−  location rewards (rate accumulated) + transition rewards

•  Also: numerical variants: Pmax=?, Rmin=?, etc.

r

expected reward ρ 
(for reward structure r)  

satisfies ~q  
(for all adversaries)

r

38

Examples

•  Examples
−  P≥0.8 [F≤k ackn] - “the probability that the sender has received

n acknowledgements within time k is at least 0.8”
−  trigger → P<0.0001 [G≤20 ¬deploy] – “the probability of the

airbag failing to deploy within 20 milliseconds of being
triggered is strictly less than 0.0001”

−  Pmax=? [¬sent U fail] – “what is the maximum probability of a
failure occurring before message transmission is complete?”

−  Rmax=? [F end] – “what is the maximum expected time for the
protocol to terminate?”

−  R<q [C≤60] – “the expected energy consumption during the
first 60 seconds is < q”

•  Property reductions [NPS13]
−  verification reduces to probabilistic reachability (P [F φ]) and

expected reachability (R[F φ]), e.g. by adding extra clocks

pwr

time

39

Time divergence

•  We restrict our attention to time divergent behaviour
−  a common restriction imposed in real-time systems
−  unrealisable behaviour (i.e. corresponding to time not

 advancing beyond a time bound) is disregarded
−  also called non-zeno behaviour

•  For a path ω=s0(a0,µ0)s1(a1,µ1)s2(a2,µ2)… in the MDP MP
−  Dω(n) denotes the duration up to state sn
−  i.e. Dω(n) = ∑ {| ai | 0≤i<n ∧ ai ∈ ℝ |}

•  A path ω is time divergent if, for any t∈ℝ≥0:

−  there exists j ∈ ℕ such that Dω(j)>t

•  Example of non-divergent path:
−  s0(1,µ0)s0(0.5,µ0)s0(0.25,µ0)s0(0.125,µ0)s0…

40

Time divergence

•  An adversary of MP is divergent if, for each state s ∈ SP:
−  the probability of divergent paths under A is 1
−  i.e PrA

s{ ω ∈ PathA(s) | ω is divergent } =1

•  Motivation for probabilistic definition of divergence:

−  in this PTA, any adversary has one non-divergent path:
•  takes the loop in l0 infinitely often, without 1 time unit passing

−  but the probability of such behaviour is 0
−  a stronger notion of divergence would mean no divergent

adversaries exist for this PTA

0.5

x≤1

0.5

l0
x≤1

l1
true

41

Overview

•  Probabilistic model checking
−  example: FireWire protocol

•  Probabilistic timed automata (PTAs)
−  clocks, zones, syntax, semantics
−  property specification

•  Verification techniques for PTAs
−  region graphs + digital clocks + zone-based methods
−  abstraction-refinement

•  Tool support: PRISM
•  Verification vs. controller synthesis

−  example: task-graph scheduling

•  See: www.prismmodelchecker.org/lectures/movep14/
−  slides, tutorial papers, reference list, …

42

PTA model checking - Summary

•  Several different approaches developed
−  basic idea: reduce to the analysis of a finite-state model
−  in most cases, this is a Markov decision process (MDP)

•  Region graph construction [KNSS02]

−  shows decidability, but gives exponential complexity
•  Digital clocks approach [KNPS06]

−  (slightly) restricted classes of PTAs
−  works well in practice, still some scalability limitations

•  Zone-based approaches:
−  (preferred approach for non-probabilistic timed automata)
−  forwards reachability [KNSS02]
−  backwards reachability [KNSW07]
−  game-based abstraction refinement [KNP09c]

43

The region graph

•  Region graph construction for PTAs [KNSS02]
−  adapts region graph construction for timed automata [ACD93]
−  partitions PTA states into a finite set of regions
−  based on notion of clock equivalence
−  construction is also dependent on PTCTL formula

•  For a PTA P and PTCTL formula φ
−  construct a time-abstract, finite-state MDP R(φ)
−  translate PTCTL formula φ to PCTL formula φ’
−  φ is preserved by region equivalence
−  i.e. φ holds in a state of MP if and only if φ’ holds in the

corresponding state of R(φ)
−  model check R(φ) using standard methods for MDPs

44

The region graph - Clock equivalence

•  Regions are sets of clock equivalent clock valuations

•  Some notation:
−  let c be largest constant appearing in PTA or PTCTL formula
−  let ⌊t⌋ denotes the integral part of t
−  t and t’ agree on their integral parts if and only if

 (1) ⌊t⌋ = ⌊t’⌋
 (2) t and t’ are both integers or neither is an integer

•  Clock valuations v and v’ are clock equivalent (v ≅ v’) if:
−  for all clocks x ∈ X, either:

•  v(x) and v’(x) agree on their integral parts
•  v(x)>c and v’(x)>c

−  for all clock pairs x,y ∈ X, either:
•  v(x) − v(x’) and v’(x) − v’(x’) agree on their integral parts
•  v(x) − v(x’) > c and v’(x) − v’(x’) > c

45

Region graph - Clock equivalence

•  Example regions (for 2 clocks x and y)

x

y

2

2

1

0 0 1

46

Region graph - Clock equivalence

•  Example regions (for 2 clocks x and y)

x=y ∧ 0<x<1

x=0 ∧ y=1

y=0 ∧ 1<x<2

x<y ∧ 1<x<2 ∧ 1<y<2

x

y

2

2

1

0 0 1

47

Region graph - Clock equivalence

•  Fundamental result: if v ≅ v’, then v ⊲ ζ ⇔ v’ ⊲ ζ
−  it follows that r ⊲ ζ is well defined for a region r

•  All regions (for 2 clocks x and y), max constant c=2:

2 0 1
x

y

2

1

0

4

3

4 3

48

Region graph - Clock equivalence

•  r’ is the (time) successor region of r, written succ(r) = r, if
−  for each v ∈ r, there exists t > 0 such that:
−  v+t ∈ r’ and v+t’ ∈ r∪r’ for all t’< t

•  Examples (region and successor):

•  Region graph: MDP over states (l,r) for location l, region r

x

y

2

2

1

0 0 1

49

The region graph

•  The region graph MDP is (SR,sinit,StepsR,LR) where…

−  the set of states SR comprises pairs (l,r) such that l is a
location and r is a region over X ∪ Z

−  the initial state is (linit, 0)
−  the set of actions is {succ} ∪ Act

•  succ is a unique action denoting passage of time
−  the probabilistic transition function StepsR is defined as:
−  SR × 2({succ}∪Act)×Dist(SR)
−  (succ,µ) ∈ StepsR(l,r) iff µ(l,succ(r))=1
−  (a,µ) ∈ StepsR(l,r) if and only if ∃ (l,g,a,p) ∈ prob such that 

 r ⊲ g and, for any (l’,r’) ∈ SR:

−  the labelling is given by: LR(l,r) = L(l)

€

µ(l',r') = p(l',Y)
Y⊆X∧r[Y:=0]=r'
∑

50

Region graph - Example

(init,x=z=0) (init,0<x=z<1) succ (init,x=z=1)
succ succ

(init,1<x=z<2)

(done,x=0∧z=1) (lost,x=0∧z=1)

0.9 0.1

init

0.1 0.05

x≤2

0.9

x≥2
send

x≥1

x:=0 x:=0

retry

lost
x≤3

done
true

0.95

x:=0

2 0 1
x

z

2

1

0

4

3

4 3

send

PTA:

PTCTL formula: z.P≤0.1 [F (done ∧ z<2)]

Region graph (fragment):

51

Region graph construction

•  Region graph
−  useful for establishing decidability of model checking
−  or proving complexity results for model checking algorithms

•  But…
−  the number of regions is exponential in the number of clocks

and the size of largest constant
−  so model checking based on this is extremely expensive
−  and so not implemented (even for timed automata)

•  Improved approaches based on:
−  digital clocks
−  zones (unions of regions)

52

Overview

•  Probabilistic model checking
−  example: FireWire protocol

•  Probabilistic timed automata (PTAs)
−  clocks, zones, syntax, semantics
−  property specification

•  Verification techniques for PTAs
−  region graphs + digital clocks + zone-based methods
−  abstraction-refinement

•  Tool support: PRISM
•  Verification vs. controller synthesis

−  example: task-graph scheduling

•  See: www.prismmodelchecker.org/lectures/movep14/
−  slides, tutorial papers, reference list, …

53

Digital clocks

•  Simple idea: Clocks can only take integer (digital) values
−  i.e. time domain is ℕ as opposed to ℝ
−  based on notion of ε-digitisation [HMP92]

•  Only applies to a restricted class of PTAs; zones must be:
−  closed – no strict inequalities (e.g. x>5)
−  diagonal-free: no comparisons between clocks (e.g. x≤y)

•  Digital clocks semantics yields a finite-state MDP
−  state space is a subset of Loc × ℕX, rather than Loc × ℝX
−  clocks bounded by cmax (max constant in PTA and formula)
−  then use standard techniques for finite–state MDPs

54

Example - Digital clocks

(init,x=z=0) (init,x=z=1) (init,x=z=2)

(done,x=0∧z=1) (lost,x=0∧z=1)

0.9 0.1

(lost,x=1∧z=2)

(lost,x=2∧z=3)

(done,x=0∧z=3) (lost,x=0∧z=3)

0.95 0.05

0.1
0.9

(done,x=0∧z=2)

init

0.1 0.05

x≤2

0.9

x≥2
send

x≥1

x:=0 x:=0

retry

lost
x≤3

sr
true

0.95

x:=0
PTA:

⋮ ⋮

MDP:  
(digital  
clocks)

55

Digital clocks

•  Digital clocks approach preserves:
−  minimum/maximum reachability probabilities
−  a subset of PTCTL properties

•  (no nesting, only closed zones in formulae)
−  only works for the initial state of the PTA

•  (but can be extended to any state with integer clock values)
−  also: expected rewards (priced PTAs)

•  In practice:
−  translation from PTA to MDP can often be done manually
−  (by encoding the PTA directly into the PRISM language)
−  automated translations exist: mcpta and PRISM
−  many case studies, despite “closed” restriction
−  potential problem: can lead to very large MDPs
−  alleviated partially by efficient symbolic model checking

56

Digital clocks do not preserve PTCTL

•  Consider the PTCTL formula φ=z.P<1 [F (a ∧ z≤1)]
−  a is an atomic proposition only true in location l1

•  Digital semantics:
−  no state satisfies φ since for any state we have

 ProbA(s,ℇ[z:=0], true U (a∧z≤1)) = 1 for some adversary A

−  hence P<1 [true U φ] is trivially true in all states

l0
x≤3

l1
true

x≥3

x≤1

{a}

57

Digital clocks do not preserve PTCTL

•  Consider the PTCTL formula φ=z.P<1 [F (a ∧ z≤1)]
−  a is an atomic proposition only true in location l1

•  Dense time semantics:
−  any state (l0,v) where v(x) ∈ (1,2) satisfies φ

 more than one time unit must pass before we can reach l1
−  hence P<1 [true U φ] is not true in the initial state

l0
x≤3

l1
true

x≥3

x≤1

{a}

58

Overview

•  Probabilistic model checking
−  example: FireWire protocol

•  Probabilistic timed automata (PTAs)
−  clocks, zones, syntax, semantics
−  property specification

•  Verification techniques for PTAs
−  region graphs + digital clocks + zone-based methods
−  abstraction-refinement

•  Tool support: PRISM
•  Verification vs. controller synthesis

−  example: task-graph scheduling

•  See: www.prismmodelchecker.org/lectures/movep14/
−  slides, tutorial papers, reference list, …

59

Zone-based approaches

•  An alternative is to use zones to construct an MDP

•  Conventional symbolic model checking relies on computing
−  post(S’) the states that can be reached from a state in S’ in a

single step
−  pre(S’) the states that can reach S’ in a single step

•  Extend these operators to include time passage
−  dpost[e](S’) the states that can be reached from a state in S’ by

traversing the edge e
−  tpost(S’) the states that can be reached from a state in S’ by

letting time elapse
−  pre[e](S’) the states that can reach S’ by traversing the edge e
−  tpre(S’) the states that can reach S’ by letting time elapse

60

Zone-based approaches

•  Symbolic states (l, ζ) where
−  l ∈ Loc (location)
−  ζ is a zone over PTA clocks and formula clocks
−  generally fewer zones than regions

•  tpost(l,ζ) = (l, ↗ζ∧inv(l))
−  ↗ζ can be reached from ζ by letting time pass
−  ↗ζ∧inv(l) must satisfy the invariant of the location l

•  tpre(l,ζ) = (l, ↙ζ∧inv(l))
−  ↙ ζ can reach ζ by letting time pass
−  ↙ ζ∧ inv(l) must satisfy the invariant of the location l

61

Zone-based approaches

•  For an edge e= (l,g,a,p,l’,Y) where
−  l is the source
−  g is the guard
−  a is the action
−  l’ is the target
−  Y is the clock reset

•  dpost[e](l,ζ) = (l’, (ζ∧g)[Y:=0])
−  ζ∧g satisfy the guard of the edge
−  (ζ∧g)[Y:=0] reset the clocks Y

•  dpre[e](l’,ζ’) = (l, [Y:=0]ζ’ ∧ (g ∧ inv(l)))
−  [Y:=0]ζ’ the clocks Y were reset
−  [Y:=0]ζ’ ∧ (g ∧ inv(l)) satisfied guard and invariant of l

62

Forwards reachability

•  Based on the operation post[e](l,ζ) = tpost(dpost[e](l,ζ))

−  (l’,v’) ∈ post[e](l,ζ) if there exists (l,v) ∈ (l,ζ) such that after

traversing edge e and letting time pass one can reach (l’,v’)

•  Forwards algorithm (part 1)
−  start with initial state SF={tpost((linit,0))} then iterate

 for each symbolic state (l,ζ) ∈ SF and edge e
 add post[e](l,ζ) to SF

−  until set of symbolic states SF does not change

•  To ensure termination need to take c-closure of each zone
encountered (c is the largest constant in the PTA)

63

Forwards reachability

•  Forwards algorithm (part 2)
−  construct finite state MDP (SF,(linit,0),StepsF,LF)

−  states SF (returned from first part of the algorithm)
−  LF(l,ζ)=L(l) for all (l,ζ) ∈ SF
−  µ ∈ StepsF(l,ζ) if and only if

 there exists a probabilistic edge (l,g,a,p) of PTA 
such that for any (l’, ζ’) ∈ Z:

summation over all the edges of (l,g,a,p) such that

applying post to (l,ζ) leads to the symbolic state (l’,ζ’)

54

Forwards reachability

•  Forwards algorithm (part 2)
−  construct finite state MDP (SF,(linit,0),StepsF,LF)

−  states SF (returned from first part of the algorithm)
−  LF(l,ζ)=L(l) for all (l,ζ) ∈ SF
−  µ ∈ StepsF(l,ζ) if and only if

 there exists a probabilistic edge (l,g,a,p) of PTA 
such that for any (l’, ζ’) ∈ Z:

summation over all the edges of (l,g,a,p) such that
applying post to (l,ζ) leads to the symbolic state (l’,ζ’)

64

Forwards reachability - Example

l1

0.5
x:=0

l2

l3

l0

0.5 true

x=0∧y=1 x=0∧y=0 y:=0

0.5

(l0,x=y)

0.5

(l1,x≤y) (l2,x=y)

(l3,x=y) PTA: MDP:

65

Forwards reachability - Limitations

•  Problem reduced to analysis of finite-state MDP, but…

•  Only obtain upper bounds on maximum probabilities
−  caused by when edges are combined

•  Suppose post[e1](l,ζ)=(l1,ζ1) and post[e2](l,ζ)=(l2, ζ2)
−  where e1 and e2 from the same probabilistic edge

•  By definition of post
−  there exists (l,vi) ∈ (l,ζ) such that a state in (li, ζi) can be

reached by traversing the edge ei and letting time pass
•  Problem

−  we combine these transitions but are (l,v1) and (l,v2) the same?
−  may not exist states in (l,ζ) for which both edges are enabled

66

Forwards reachability - Example

•  Maximum probability of reaching l3 is 0.5 in the PTA
−  for the left branch need to take the first transition when x=1
−  for the right branch need to take the first transition when x=0

•  However, in the forwards reachability graph probability is 1
−  can reach l3 via either branch from (l0,x=y)

l1

0.5
x:=0

l2

l3

l0

0.5 true

x=0∧y=1 x=0∧y=0 y:=0

0.5

(l0,x=y)

0.5

(l1,x≤y) (l2,x=y)

(l3,x=y) PTA: MDP:

67

Backwards reachability

•  An alternative zone-based method: backwards reachability
−  state-space exploration in opposite direction, from target to

initial states; uses pre rather than post operator
•  Basic ideas: (see [KNSW07] for details)

−  construct a finite-state MDP comprising symbolic states
−  need to keep track of branching structure and take

conjunctions of symbolic states if necessary
−  MDP yields maximum reachability probabilities for PTA
−  for min. probs, do graph-based analysis and convert to max.

•  Advantages:
−  gives (exact) minimum/maximum reachability probabilities
−  extends to full PTCTL model checking

•  Disadvantage:
−  operations to implement are expensive, limits applicability
−  (requires manipulation of non-convex zones)

68

Overview

•  Probabilistic model checking
−  example: FireWire protocol

•  Probabilistic timed automata (PTAs)
−  clocks, zones, syntax, semantics
−  property specification

•  Verification techniques for PTAs
−  region graphs + digital clocks + zone-based methods
−  abstraction-refinement

•  Tool support: PRISM
•  Verification vs. controller synthesis

−  example: task-graph scheduling

•  See: www.prismmodelchecker.org/lectures/movep14/
−  slides, tutorial papers, reference list, …

69

Abstraction

•  Very successful in (non-probabilistic) formal methods
−  essential for verification of large/infinite-state systems
−  hide details irrelevant to the property of interest
−  yields smaller/finite model which is easier/feasible to verify
−  loss of precision: verification can return “don’t know”

•  Construct abstract model of a concrete system
−  e.g. based on a partition of the concrete state space
−  an abstract state represents a set of concrete states

•  Automatic generation of abstractions using refinement
−  start with a simple coarse abstraction; iteratively refine

70

Abstraction of MDPs

•  Abstraction increases degree of nondeterminism [DDJL01]
−  i.e. minimum probabilities are lower and maximums higher

•  We build abstractions of MDPs as stochastic games [KNP06b]

−  yields lower/upper bounds for min/max probabilities 
 

0 1 ps
min ps

max

0 1 ps
min ps

max

11

0.2 0.8
0.5 0.1 0.8

1

0.5

1

0.1

1

abstract

71

Abstraction refinement

•  Consider (max) difference between lower/upper bounds
−  gives a quantitative measure of the abstraction’s precision

•  If the difference (“error”) is too great, refine the abstraction
−  a finer partition yields a more precise abstraction
−  lower/upper bounds can tell us where to refine (which states)
−  (memoryless) strategies can tell us how to refine

0 1 ps
min(F) ps

max(F)

72

Abstraction-refinement loop

•  Quantitative abstraction-refinement loop for MDPs

[error<ε]

Initial  
partition

Bounds and
strategies

[error≥ε]

model
check

abstract

refine

New 
partition

Return
bounds

Abstraction •  Refinements yield
strictly finer partition

•  Guaranteed to  
converge for finite
models 

•  Guaranteed to
converge for infinite
models with finite
bisimulation

73

Abstraction refinement: Applications

•  Examples (MDPs):

•  Applications
−  probabilistic software (C + probabilities) [qprover] [KKNP10]
−  concurrent probabilistic programs [PASS] [HHWZ10b]
−  probabilistic timed automata (exact) [PRISM] [KNP09c]

IJ90 self stabilisation alg.
(1,048,575 states abstracted to 627)

Zeroconf protocol
(838,905 states abstracted to 881)

74

Abstraction refinement for PTAs

•  Model checking for PTAs using abstraction refinement

[error<ε]

Initial  
partition

Bounds and
strategies

[error≥ε]

model
check

abstract

refine

New 
partition

Return
bounds

Abstraction
Initial

abstraction
from

forwards
reachability

Splitting of
zones (DBMs)

Guaranteed
convergence
for any ε≥0

Abstraction
computed
and stored
using zones

(DBMs)

75

Abstraction refinement for PTAs

•  Computes reachability probabilities in PTAs
−  minimum or maximum, exact values (“error” ε=0)
−  also time-bounded reachability, with extra clock

•  In practice, performs very well
−  implemented in PRISM (using DBMs)
−  faster than digital clocks or backwards on large example set
−  (sometimes by several orders of magnitude)
−  handles larger PTAs than the digital clocks approach

76

Overview

•  Probabilistic model checking
−  example: FireWire protocol

•  Probabilistic timed automata (PTAs)
−  clocks, zones, syntax, semantics
−  property specification

•  Verification techniques for PTAs
−  region graphs + digital clocks + zone-based methods
−  abstraction-refinement

•  Tool support: PRISM
•  Verification vs. controller synthesis

−  example: task-graph scheduling

•  See: www.prismmodelchecker.org/lectures/movep14/
−  slides, tutorial papers, reference list, …

77

The PRISM tool

•  PRISM: Probabilistic symbolic model checker
−  developed at Birmingham/Oxford University, since 1999
−  free, open source (GPL), runs on all major OSs

•  Support for:
−  models: DTMCs, CTMCs, MDPs, PAs, PTAs
−  (see also PRISM-games: stochastic multi-player games)
−  properties: PCTL, CSL, LTL, PCTL*, costs/rewards, numerical

extensions, multi-objective, …
•  Features:

−  simple but flexible high-level modelling language
−  user interface: editors, simulator, experiments, graph plotting
−  multiple efficient model checking engines (e.g. symbolic)
−  (mostly symbolic – BDDs; up to 1010 states, 107-108 on avg.)

•  See: http://www.prismmodelchecker.org/

78

The PRISM tool

79

Modelling PTAs in PRISM

•  PTA example: message transmission over faulty channel

init
x≤2

0.9

retry

done
true

lost
x≤5

fail
true

quit

send
x≥3

x:=0

0.1
x≥1∧tries≤N

tries:=0

tries>N

x:=0,  
tries:=tries+1

States
•  locations + data variables

Transitions
•  guards and action labels

Real-valued clocks
•  state invariants, guards, resets
Probability
•  discrete probabilistic choice

80

Modelling PTAs in PRISM

•  PRISM modelling language
−  textual language, based on guarded commands

pta
const int N;
module transmitter
 s : [0..3] init 0;
 tries : [0..N+1] init 0;
 x : clock;
 invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
 [send] s=0 & tries≤N & x≥1
 → 0.9 : (s’=3)
 + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
 [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
 [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards

81

Modelling PTAs in PRISM

•  PRISM modelling language
−  textual language, based on guarded commands

pta
const int N;
module transmitter
 s : [0..3] init 0;
 tries : [0..N+1] init 0;
 x : clock;
 invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
 [send] s=0 & tries≤N & x≥1
 → 0.9 : (s’=3)
 + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
 [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
 [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards

Basic ingredients:
•  modules
•  variables
•  commands

82

Modelling PTAs in PRISM

•  PRISM modelling language
−  textual language, based on guarded commands

pta
const int N;
module transmitter
 s : [0..3] init 0;
 tries : [0..N+1] init 0;
 x : clock;
 invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
 [send] s=0 & tries≤N & x≥1
 → 0.9 : (s’=3)
 + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
 [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
 [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards

For PTAs:
•  clocks
•  invariants
•  guards/resets

Basic ingredients:
•  modules
•  variables
•  commands

83

Modelling PTAs in PRISM

•  PRISM modelling language
−  textual language, based on guarded commands

For PTAs:
•  clocks
•  invariants
•  guards/resets

Basic ingredients:
•  modules
•  variables
•  commands

Also:
•  rewards 
 (i.e. costs, prices)
•  parallel composition

pta
const int N;
module transmitter
 s : [0..3] init 0;
 tries : [0..N+1] init 0;
 x : clock;
 invariant (s=0 ⇒ x≤2) & (s=1 ⇒ x≤5) endinvariant
 [send] s=0 & tries≤N & x≥1
 → 0.9 : (s’=3)
 + 0.1 : (s’=1) & (tries’=tries+1) & (x’=0);
 [retry] s=1 & x≥3 → (s’ =0) & (x’ =0);
 [quit] s=0 & tries>N → (s’ =2);
endmodule
rewards “energy” (s=0) : 2.5; endrewards

84

PRISM – Case studies

•  Randomised communication protocols
−  Bluetooth, FireWire, Zeroconf, 802.11, Zigbee, gossiping, …

•  Randomised distributed algorithms
−  consensus, leader election, self-stabilisation, …

•  Security protocols/systems
−  pin cracking, anonymity, quantum crypto, non-repudiation, …

•  Planning & controller synthesis
−  robotics, dynamic power management, task-graph scheduling

•  Performance & reliability
−  nanotechnology, cloud computing, manufacturing systems, …

•  Biological systems
−  cell signalling pathways, DNA computation, pacemakers, …

•  See: www.prismmodelchecker.org/casestudies

PTA

85

Overview

•  Probabilistic model checking
−  example: FireWire protocol

•  Probabilistic timed automata (PTAs)
−  clocks, zones, syntax, semantics
−  property specification

•  Verification techniques for PTAs
−  region graphs + digital clocks + zone-based methods
−  abstraction-refinement

•  Tool support: PRISM
•  Verification vs. controller synthesis

−  example: task-graph scheduling

•  See: www.prismmodelchecker.org/lectures/movep14/
−  slides, tutorial papers, reference list, …

86

Verification vs. Controller synthesis

•  Verification vs. synthesis
−  verification = check that a (model of) system satisfies a

specification of correctness
−  synthesis = build a "correct-by-construction" system directly

from a specification of correctness

•  Controller synthesis (for MDPs)
−  generate a controller/scheduler (an adversary) that chooses

actions such that a correctness specification is satisfied
−  dual problem to verification on MDPs

•  For example: P<0.01[F err]
−  verification: “the probability of an error is always < 0.01”
−  controller synthesis: “does there exist a controller (adversary)

for which the probability of an error occurring is < 0.01?”
−  or, optimise: “what is the minimum probability of an error?”

87

Controller synthesis

•  Controller synthesis (for MDPs)
−  nondeterminism: actions available to controller
−  probability: uncertainty about environment's behaviour

•  For example: robot controller

s0

s4 s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

88

Controller synthesis: Extensions

•  Multi-objective probabilistic model checking
−  investigate trade-offs between conflicting objectives
−  e.g. “is there a strategy such that the probability of message

transmission is > 0.95 and expected battery life > 10 hrs?”
−  e.g. “maximum probability of message transmission,

assuming expected battery life-time is > 10 hrs?”
−  e.g. "Pareto curve for maximising probability  

of transmission and expected battery life-time”

•  Controller synthesis with stochastic games
−  player 1 = controller (as for MDPs)
−  player 2 = environment ("uncontrollable" actions)

•  Multi-strategies
−  strategies (adversaries) which can choose between multiple

actions at each time step

obj1	

ob
j 2	

89

Controller synthesis - Applications

•  Examples of PRISM-based controller synthesis

 Synthesis of team 
formation strategies 

[CKPS11, FKP12]

Pareto curve:  
x="probability of 
completing task 1";
y="probability of 
completing task 2";
z="expected size of
successful team"

Synthesis of dynamic  
power management 
controllers [FKN+11]

Motion planning 
for a service robot 
using LTL [LPH14b]

Minimise energy  
consumption, subject 
to constraints on:
(i) expected job queue size;
(ii) expected number of lost jobs 

90

Example: Task-graph scheduling

•  Use probabilistic model checking of PTAs to solve
scheduling problems, e.g. for a task-graph
−  task-graph = tasks to complete + dependencies/ordering
−  for ex.: real-time scheduling, embedded systems controllers

•  Simple example: [adapted from BFLM11]
−  evaluate expression: D×(C×(A+B))+((A+B)+(C×D))
−  with subterms evaluated on one of two processors, P1 or P2

+
task1

×
task3

×
task5

×
task2

+
task4

+
task6

D

C

B

A

C D

91

Example: Task-graph scheduling

•  Task-graph scheduling
−  aim to find optimal (time, energy usage, etc.) schedulers
−  successful application of (non-probabilistic) timed automata
−  PTAs allow us to reason about uncertain delays + failures
−  optimal scheduler derived from optimal adversary

•  PTA model
−  parallel composition of 3 PTAs: one scheduler, two processors
−  for example, processor P1, with local clock x:

p1_done p1_done x=3

p1_mult p1_add

x=2

x:=0 x:=0
add x≤2 stby true mult x≤3

21

t=cesrf t=cesrf
yb_

t=coxmu t=cdee

ybP

yab4 yab4

dee
yP

true

oxmu
y_

(a) Processor P1

add
x2

p1_mult p1_add
x:=0 x:=0

p

1-p
x:=0

x:=0
x=3

p1_fail
x=0

stby
true

mult
x3

m_suc
x=0

m_fail
x=0

x=0
p1_done

p

1-p
x:=0

x:=0
x=2

a_suc
x=0

a_fail
x=0

p1_fail
x=0

x=0
p1_done

(b) Faulty version of processor P1

add1
x1

p1_mult p1_add
x:=0 x:=0

stby
true

mult1

x2





x:=0
x=1

add2

x2

a_suc
x=0

p1_done
x=0

add3
x3

x=2

x:=0
x=3








x=2
x:=0

mult2
x3

m_suc
x=0

x:=0 mult2

x4

x:=0

x=3 

x:=0
x=4



p1_done
x=0

(c) Processor P1 with random delays

Fig. 8 PTAs for the task-graph scheduling case study

structure, while each processor has a location reward equal to the current rate of energy
usage (as shown in Figure 7(a)) and has zero action rewards.

We built a PTA model for this case study using PRISM and, by applying the dig-
ital clocks method, calculated both the minimum (expected) time and energy consump-
tion for completion of all tasks. For this, we used the two quantitative reward properties
Rtimemin=?[F complete] and R

energy
min=? [F complete]. We also used PRISM to generate the corre-

sponding schedulers that achieve these optimal values. The results agree with those reported
in [27]. A scheduler that minimises the elapsed time requires 12 picoseconds to complete
all tasks and schedules the tasks as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task4 task6

P2 task2

On the other hand, a scheduler optimising the energy consumption requires 1.3200 nano-
joules (and 19 picoseconds) and makes the following scheduling decisions:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task4

P2 task2 task5 task6

Due to the additional energy consumption of processor P1, the first scheduler above, which
optimises the time for task completion, requires 1.3900 nanojoules.

Random Task Execution Times. Now, we extend the formalisation of the task-graph prob-
lem, making the time required for each processor to perform a task probabilistic (in a more
general setting, we can easily envisage situations where the exact time required to complete
a task is unknown, but can be represented by some probability distribution). More precisely,
we consider the following simple scenario. If, in the original problem the time for a proces-
sor to perform a task was k ∈N, we suppose now that the time taken is uniformly distributed
between the delays k−1, k and k+1, e.g. the time for P1 to perform a multiplication operation
is either 1, 2 or 3 and the probability of each execution time is 1

3 .
The PTA for processor P1 with random delays is presented in Figure 8(c) where, to

ease notation, we have omitted action labels if they do not synchronise. Additional locations

Locations also labelled  
with costs/rewards 
for time/energy usage

92

Example: Task-graph scheduling

•  Property specification:
−  Rmin=? [F complete] – minimise (expected) time
−  Rmin=? [F complete] – minimise (expected) energy usage

•  Model check with PRISM (digital clocks)
−  and extract optimal adversary/scheduler

•  Time optimal (12 picoseconds)

•  Energy optimal (1.32 nanojoules)

•  No probabilities yet…

21

t=cesrf t=cesrf
yb_

t=coxmu t=cdee

ybP

yab4 yab4

dee
yP

true

oxmu
y_

(a) Processor P1

add
x2

p1_mult p1_add
x:=0 x:=0

p

1-p
x:=0

x:=0
x=3

p1_fail
x=0

stby
true

mult
x3

m_suc
x=0

m_fail
x=0

x=0
p1_done

p

1-p
x:=0

x:=0
x=2

a_suc
x=0

a_fail
x=0

p1_fail
x=0

x=0
p1_done

(b) Faulty version of processor P1

add1
x1

p1_mult p1_add
x:=0 x:=0

stby
true

mult1

x2





x:=0
x=1

add2

x2

a_suc
x=0

p1_done
x=0

add3
x3

x=2

x:=0
x=3








x=2
x:=0

mult2
x3

m_suc
x=0

x:=0 mult2

x4

x:=0

x=3 

x:=0
x=4



p1_done
x=0

(c) Processor P1 with random delays

Fig. 8 PTAs for the task-graph scheduling case study

structure, while each processor has a location reward equal to the current rate of energy
usage (as shown in Figure 7(a)) and has zero action rewards.

We built a PTA model for this case study using PRISM and, by applying the dig-
ital clocks method, calculated both the minimum (expected) time and energy consump-
tion for completion of all tasks. For this, we used the two quantitative reward properties
Rtimemin=?[F complete] and R

energy
min=? [F complete]. We also used PRISM to generate the corre-

sponding schedulers that achieve these optimal values. The results agree with those reported
in [27]. A scheduler that minimises the elapsed time requires 12 picoseconds to complete
all tasks and schedules the tasks as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task4 task6

P2 task2

On the other hand, a scheduler optimising the energy consumption requires 1.3200 nano-
joules (and 19 picoseconds) and makes the following scheduling decisions:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task4

P2 task2 task5 task6

Due to the additional energy consumption of processor P1, the first scheduler above, which
optimises the time for task completion, requires 1.3900 nanojoules.

Random Task Execution Times. Now, we extend the formalisation of the task-graph prob-
lem, making the time required for each processor to perform a task probabilistic (in a more
general setting, we can easily envisage situations where the exact time required to complete
a task is unknown, but can be represented by some probability distribution). More precisely,
we consider the following simple scenario. If, in the original problem the time for a proces-
sor to perform a task was k ∈N, we suppose now that the time taken is uniformly distributed
between the delays k−1, k and k+1, e.g. the time for P1 to perform a multiplication operation
is either 1, 2 or 3 and the probability of each execution time is 1

3 .
The PTA for processor P1 with random delays is presented in Figure 8(c) where, to

ease notation, we have omitted action labels if they do not synchronise. Additional locations

21

t=cesrf t=cesrf
yb_

t=coxmu t=cdee

ybP

yab4 yab4

dee
yP

true

oxmu
y_

(a) Processor P1

add
x2

p1_mult p1_add
x:=0 x:=0

p

1-p
x:=0

x:=0
x=3

p1_fail
x=0

stby
true

mult
x3

m_suc
x=0

m_fail
x=0

x=0
p1_done

p

1-p
x:=0

x:=0
x=2

a_suc
x=0

a_fail
x=0

p1_fail
x=0

x=0
p1_done

(b) Faulty version of processor P1

add1
x1

p1_mult p1_add
x:=0 x:=0

stby
true

mult1

x2





x:=0
x=1

add2

x2

a_suc
x=0

p1_done
x=0

add3
x3

x=2

x:=0
x=3








x=2
x:=0

mult2
x3

m_suc
x=0

x:=0 mult2

x4

x:=0

x=3 

x:=0
x=4



p1_done
x=0

(c) Processor P1 with random delays

Fig. 8 PTAs for the task-graph scheduling case study

structure, while each processor has a location reward equal to the current rate of energy
usage (as shown in Figure 7(a)) and has zero action rewards.

We built a PTA model for this case study using PRISM and, by applying the dig-
ital clocks method, calculated both the minimum (expected) time and energy consump-
tion for completion of all tasks. For this, we used the two quantitative reward properties
Rtimemin=?[F complete] and R

energy
min=? [F complete]. We also used PRISM to generate the corre-

sponding schedulers that achieve these optimal values. The results agree with those reported
in [27]. A scheduler that minimises the elapsed time requires 12 picoseconds to complete
all tasks and schedules the tasks as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task4 task6

P2 task2

On the other hand, a scheduler optimising the energy consumption requires 1.3200 nano-
joules (and 19 picoseconds) and makes the following scheduling decisions:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task4

P2 task2 task5 task6

Due to the additional energy consumption of processor P1, the first scheduler above, which
optimises the time for task completion, requires 1.3900 nanojoules.

Random Task Execution Times. Now, we extend the formalisation of the task-graph prob-
lem, making the time required for each processor to perform a task probabilistic (in a more
general setting, we can easily envisage situations where the exact time required to complete
a task is unknown, but can be represented by some probability distribution). More precisely,
we consider the following simple scenario. If, in the original problem the time for a proces-
sor to perform a task was k ∈N, we suppose now that the time taken is uniformly distributed
between the delays k−1, k and k+1, e.g. the time for P1 to perform a multiplication operation
is either 1, 2 or 3 and the probability of each execution time is 1

3 .
The PTA for processor P1 with random delays is presented in Figure 8(c) where, to

ease notation, we have omitted action labels if they do not synchronise. Additional locations

time

energy

93

Adding probabilities

•  Faulty processors
−  add third processor P3: faster, but may fail to execute task

•  Probabilistic task execution times
−  simple example: (deterministic) delay of 3 in processor P1  

replaced by distribution: ⅓:2, ⅓:3, ⅓:4

21

t=cesrf t=cesrf
yb_

t=coxmu t=cdee

ybP

yab4 yab4

dee
yP

true

oxmu
y_

(a) Processor P1

add
x2

p1_mult p1_add
x:=0 x:=0

p

1-p
x:=0

x:=0
x=3

p1_fail
x=0

stby
true

mult
x3

m_suc
x=0

m_fail
x=0

x=0
p1_done

p

1-p
x:=0

x:=0
x=2

a_suc
x=0

a_fail
x=0

p1_fail
x=0

x=0
p1_done

(b) Faulty version of processor P1

add1
x1

p1_mult p1_add
x:=0 x:=0

stby
true

mult1

x2





x:=0
x=1

add2

x2

a_suc
x=0

p1_done
x=0

add3
x3

x=2

x:=0
x=3








x=2
x:=0

mult2
x3

m_suc
x=0

x:=0 mult2

x4

x:=0

x=3 

x:=0
x=4



p1_done
x=0

(c) Processor P1 with random delays

Fig. 8 PTAs for the task-graph scheduling case study

structure, while each processor has a location reward equal to the current rate of energy
usage (as shown in Figure 7(a)) and has zero action rewards.

We built a PTA model for this case study using PRISM and, by applying the dig-
ital clocks method, calculated both the minimum (expected) time and energy consump-
tion for completion of all tasks. For this, we used the two quantitative reward properties
Rtimemin=?[F complete] and R

energy
min=? [F complete]. We also used PRISM to generate the corre-

sponding schedulers that achieve these optimal values. The results agree with those reported
in [27]. A scheduler that minimises the elapsed time requires 12 picoseconds to complete
all tasks and schedules the tasks as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task4 task6

P2 task2

On the other hand, a scheduler optimising the energy consumption requires 1.3200 nano-
joules (and 19 picoseconds) and makes the following scheduling decisions:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task4

P2 task2 task5 task6

Due to the additional energy consumption of processor P1, the first scheduler above, which
optimises the time for task completion, requires 1.3900 nanojoules.

Random Task Execution Times. Now, we extend the formalisation of the task-graph prob-
lem, making the time required for each processor to perform a task probabilistic (in a more
general setting, we can easily envisage situations where the exact time required to complete
a task is unknown, but can be represented by some probability distribution). More precisely,
we consider the following simple scenario. If, in the original problem the time for a proces-
sor to perform a task was k ∈N, we suppose now that the time taken is uniformly distributed
between the delays k−1, k and k+1, e.g. the time for P1 to perform a multiplication operation
is either 1, 2 or 3 and the probability of each execution time is 1

3 .
The PTA for processor P1 with random delays is presented in Figure 8(c) where, to

ease notation, we have omitted action labels if they do not synchronise. Additional locations

21

t=cesrf t=cesrf
yb_

t=coxmu t=cdee

ybP

yab4 yab4

dee
yP

true

oxmu
y_

(a) Processor P1

add
x2

p1_mult p1_add
x:=0 x:=0

p

1-p
x:=0

x:=0
x=3

p1_fail
x=0

stby
true

mult
x3

m_suc
x=0

m_fail
x=0

x=0
p1_done

p

1-p
x:=0

x:=0
x=2

a_suc
x=0

a_fail
x=0

p1_fail
x=0

x=0
p1_done

(b) Faulty version of processor P1

add1
x1

p1_mult p1_add
x:=0 x:=0

stby
true

mult1

x2





x:=0
x=1

add2

x2

a_suc
x=0

p1_done
x=0

add3
x3

x=2

x:=0
x=3








x=2
x:=0

mult2
x3

m_suc
x=0

x:=0 mult2

x4

x:=0

x=3 

x:=0
x=4



p1_done
x=0

(c) Processor P1 with random delays

Fig. 8 PTAs for the task-graph scheduling case study

structure, while each processor has a location reward equal to the current rate of energy
usage (as shown in Figure 7(a)) and has zero action rewards.

We built a PTA model for this case study using PRISM and, by applying the dig-
ital clocks method, calculated both the minimum (expected) time and energy consump-
tion for completion of all tasks. For this, we used the two quantitative reward properties
Rtimemin=?[F complete] and R

energy
min=? [F complete]. We also used PRISM to generate the corre-

sponding schedulers that achieve these optimal values. The results agree with those reported
in [27]. A scheduler that minimises the elapsed time requires 12 picoseconds to complete
all tasks and schedules the tasks as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task4 task6

P2 task2

On the other hand, a scheduler optimising the energy consumption requires 1.3200 nano-
joules (and 19 picoseconds) and makes the following scheduling decisions:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task4

P2 task2 task5 task6

Due to the additional energy consumption of processor P1, the first scheduler above, which
optimises the time for task completion, requires 1.3900 nanojoules.

Random Task Execution Times. Now, we extend the formalisation of the task-graph prob-
lem, making the time required for each processor to perform a task probabilistic (in a more
general setting, we can easily envisage situations where the exact time required to complete
a task is unknown, but can be represented by some probability distribution). More precisely,
we consider the following simple scenario. If, in the original problem the time for a proces-
sor to perform a task was k ∈N, we suppose now that the time taken is uniformly distributed
between the delays k−1, k and k+1, e.g. the time for P1 to perform a multiplication operation
is either 1, 2 or 3 and the probability of each execution time is 1

3 .
The PTA for processor P1 with random delays is presented in Figure 8(c) where, to

ease notation, we have omitted action labels if they do not synchronise. Additional locations

94

Results (with faulty processor)

•  Compute optimal (time/energy) schedulers
−  (using same properties as before)

•  Results (for varying failure rates p of processor P3):
−  dotted red line shows original results (no failures)
−  conclusion: better performance for low values of failure

probability p; no benefit for higher values
23

(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].

Acknowledgments. David Parker is part supported by ERC Advanced Grant VERIWARE.
Jeremy Sproston is part supported by the project AMALFI (Advanced Methodologies for
the AnaLysis and management of the Future Internet, Università di Torino/Compagnia di
San Paolo). We thank the anonymous referees for various useful comments.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Proc. 19th
International Colloquium on Automata, Languages and Programming (ICALP’91), LNCS, vol. 510, pp.
115–136. Springer (1991)

2. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real time. Information and Computation
104(1), 2–34 (1993)

23

(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].

Acknowledgments. David Parker is part supported by ERC Advanced Grant VERIWARE.
Jeremy Sproston is part supported by the project AMALFI (Advanced Methodologies for
the AnaLysis and management of the Future Internet, Università di Torino/Compagnia di
San Paolo). We thank the anonymous referees for various useful comments.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Proc. 19th
International Colloquium on Automata, Languages and Programming (ICALP’91), LNCS, vol. 510, pp.
115–136. Springer (1991)

2. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real time. Information and Computation
104(1), 2–34 (1993)

Expected time Expected energy usage

95

Schedulers (with faulty processor)

•  Example (for p=0.5)
−  optimal scheduler to minimise energy consumption

•  Optimal scheduler again obtained from adversary
−  now, behaviour depends on outcome of task execution

22

are added to encode the random delays. For example, in the case of multiplication, with
probability 1

3 the task completes after 2 time units; with probability 2
3 , the PTA moves to a

location where, with probability 1
2 the task completes after 1 additional time unit (i.e., of a

total of 3 time units) or moves to a location where the task completes after 2 more time units
(i.e., 4 time units in total). When the task completes, the PTA moves to a location where no
time can pass (clock x is reset upon entering and the invariant of the location is x≤0) and
immediately notifies the scheduler the task is computed through action p1 done. To prevent
the scheduler from seeing into the future when making decisions, the probabilistic choice
for task completion is made on completion rather than on initialisation.

Analysing this model, we find that the optimal expected time and energy consumption to
complete all tasks equals 12.226 picoseconds and 1.3201 nanojoules, respectively. This im-
proves on the results obtained using the optimal schedulers for the original model, where the
expected time and energy consumption equal 13.1852 picoseconds and 1.3211 nanojoules.
Examining the optimal schedulers, we find that they change their decision based upon the
delays of previously completed tasks. For example, for elapsed time, the optimal scheduler
starts as for the non-probabilistic case, first scheduling task1 followed by task3 on P1 and
task2 on P2. However, it is now possible for task2 to complete before task3 (if the execution
times for task1, task2 and task3 are 3, 6 and 4 respectively), in which case the optimal sched-
uler now makes a different decision from the non-probabilistic case. Under one possible set
of execution times for the remaining tasks, the optimal scheduling is as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

Adding a Faulty Processor. As a second extension of the scheduling problem, we add a
third processor P3 which consumes the same energy as P2 but is faster (addition takes 3
picoseconds and multiplication 5 picoseconds). However, this comes at a cost: there is a
chance (probability p) that the processor fails and the computation must be rescheduled and
performed again.

In Figure 8(b), we show the PTA for the faulty version of processor P1. In this PTA, when
a task completes, there is a probabilistic choice between moving to a location corresponding
to successful completion and one to failure. In both cases, we move to a location where
no time can pass and immediate notify the scheduler of either the success or failure of the
computation. The automaton for the scheduler also changes for this model since it must
react to the failure signals from the processors. In addition, the reward structure energy is
extended to include the energy consumed by the additional processor.

The graphs in Figure 9 plot the optimal expected time and energy consumption for this
extended model as the failure probability p varies. The dashed lines show the optimal re-
sults for the original model, i.e., when not using the processor P3. As can be seen, once the
probability of failure becomes sufficiently large, there is no gain in using the processor P3

but, while when the probability of failure is small, it uses offers considerable gains in per-
formance. To illustrate this fact, below we give a scheduler that optimises (minimises) the
expected energy consumption when p=0.5. Dark boxes for tasks are used to denote proces-
sor P3 failing to complete a task correctly, meaning that the task needs to be rescheduled.

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task6

P2 task2 task5

P3 task1 task4

23

(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].

Acknowledgments. David Parker is part supported by ERC Advanced Grant VERIWARE.
Jeremy Sproston is part supported by the project AMALFI (Advanced Methodologies for
the AnaLysis and management of the Future Internet, Università di Torino/Compagnia di
San Paolo). We thank the anonymous referees for various useful comments.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Proc. 19th
International Colloquium on Automata, Languages and Programming (ICALP’91), LNCS, vol. 510, pp.
115–136. Springer (1991)

2. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real time. Information and Computation
104(1), 2–34 (1993)

23

(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].

Acknowledgments. David Parker is part supported by ERC Advanced Grant VERIWARE.
Jeremy Sproston is part supported by the project AMALFI (Advanced Methodologies for
the AnaLysis and management of the Future Internet, Università di Torino/Compagnia di
San Paolo). We thank the anonymous referees for various useful comments.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Proc. 19th
International Colloquium on Automata, Languages and Programming (ICALP’91), LNCS, vol. 510, pp.
115–136. Springer (1991)

2. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real time. Information and Computation
104(1), 2–34 (1993)

96

Multi-objective properties

•  Multi-objective controller synthesis
−  (on MDP generated via digital clocks approach)
−  explore trade-off between time/energy usage

•  Properties
−  e.g. minimise expected time,  

subject to bound on energy
−  or: Pareto curve for two  

objectives: time/energy
−  NB: both may generate  

randomised schedulers

Pareto Curves for Probabilistic Model Checking 15

K=2
-1.49960905 -16.5301783 1.499609053 16.53017833
-1.47516461 -16.7091907 1.475164609 16.70919067
-1.45757202 -17.0219479 1.457572016 17.02194787
-1.45183128 -17.2091907 1.451831276 17.20919067
-1.44516461 -17.8388203 1.445164609 17.8388203

K=3
-1.48187929 -16.2930956 1.481879287 16.29309556
-1.45360768 -16.5029721 1.453607682 16.50297211
-1.43237311 -16.9474166 1.432373114 16.94741655
-1.42694102 -17.3424783 1.426941015 17.34247828
-1.42694102 -19.1202561 1.426941015 19.12025606

K=5
-1.46511111 -16.0814815 1.465111111 16.08148148
-1.44311111 -16.2222222 1.443111111 16.22222222
-1.42481481 -16.4378601 1.424814815 16.43786008
-1.41866667 -16.5728395 1.418666667 16.57283951
-1.41244444 -16.9481481 1.412444444 16.94814815
-1.41051852 -20.6716049 1.410518519 20.67160494
-1.41051852 -21.2641975 1.410518519 21.26419753

K=10
-1.45206831 -15.9049383 1.452068308 15.90493827
-1.42132824 -16.1006714 1.421328237 16.10067145
-1.40943768 -16.2570447 1.409437679 16.25704467
-1.40422858 -16.4367766 1.404228578 16.43677664
-1.39577715 -20.3073502 1.395777155 20.30735018
-1.39544444 -21.023786 1.395444444 21.02378601

!"#$%

!"#"%

!"#&%

!'%

!'#(%

!'#$%

!'#"%

!'#&%

!&%

!#$$% !#$)% !#$"% !#$'% !#$&% !#$*% !#)% !#)!%
!"
#$

%&
$'

()
*
$(

!"#$%&$'($+$,-.(/01-$(

0 1 1 0
3.08E-04 0.999692421 0.999999963 1.03E-04
3.08E-04 0 0.999692421 2.05E-04

0 2.05E-04

!"

!#!!!!$"

!#!!!%"

!#!!!%$"

!#!!!&"

!#!!!&$"

!#'''&" !#'''(" !#''')" !#'''*" %"!"
#$

%&'
()
*&+
#&
,#
-.

/0
"1
&$
2&
31

(3
*)-

1&

!"#$($)*)+2&,#45#-1-+&(660457#-&6(76.13&

0.5

1

0.5

1

0.5

1

1.5

2

z

y

x

Fig. 3. Pareto curves from: (a) task-graph scheduler, K=2; (b) Zeroconf protocol,
K=2, T=10; (c) team formation protocol, N=3 (axes x/y/z = Probability of complet-
ing task 1/probability of completing task 2/expected size of successful team)

Acknowledgments. The authors are part supported by ERC Advanced Grant
VERIWARE and EPSRC grant EP/F001096/1. Vojtěch Forejt is also supported
by a Royal Society Newton Fellowship.

References

1. Altman, E.: Constrained Markov Decision Processes. Chapman & Hall/CRC (1999)
2. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA-A Platform and Program-

ming Language Independent Interface for Search Algorithms. In: EMO’03 (2003)
3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press (2004)
4. Brázdil, T., Brožek, V., Chatterjee, K., Forejt, V., Kučera, A.: Two views on

multiple mean-payo↵ objectives in Markov decision processes. In: LICS’11 (2011)
5. Chatterjee, K., Majumdar, R., Henzinger, T.: Markov decision processes with mul-

tiple objectives. In: Proc. STACS’06. pp. 325–336. Springer (2006)
6. Cĺımaco, J. (ed.): Multicriteria Analysis. Springer (1997)
7. Coello, C., Lamont, G., van Veldhuizen, D.: Evolutionary Algorithms for Solving

Multi-Objective Problems. Springer (2007)
8. Diakonikolas, I., Yannakakis, M.: Succinct approximate convex Pareto curves. In:

Proc. SODA’08. pp. 74–83. SIAM (2008)
9. Etessami, K., Kwiatkowska, M., Vardi, M., Yannakakis, M.: Multi-objective model

checking of Markov decision processes. LMCS 4(4), 1–21 (2008)
10. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-

niques for probabilistic systems. In: SFM’11. LNCS, vol. 6659. Springer (2011)
11. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-

objective verification for probabilistic systems. In: Proc. TACAS’11 (2011)
12. Forejt, V., Kwiatkowska, M., Parker, D.: http://arxiv.org/abs/1206.6295
13. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. Springer (1976)
14. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic

real-time systems. In: Proc. CAV’11. LNCS, vol. 6806, pp. 585–591. Springer (2011)
15. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification

for probabilistic systems. In: Proc. TACAS’10. pp. 23–37. Springer (2010)
16. Legriel, J., Cotton, S., Maler, O.: On universal search strategies for multi-criteria

optimization using weighted sums. In: Proc. CEC’11. pp. 2351–2358 (2011)
17. Legriel, J., Guernic, C.L., Cotton, S., Maler, O.: Approximating the Pareto front

of multi-criteria optimization problems. In: Proc. TACAS’10. pp. 69–83 (2010)
18. Papadimitriou, C., Yannakakis, M.: On the approximability of trade-o↵s and op-

timal access of web sources. In: Proc. FOCS’00. pp. 86–92 (2000)
19. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming. John Wiley and Sons (1994)

97

Overview

•  Probabilistic model checking
−  probabilistic real-time systems 

•  Probabilistic timed automata (PTAs)

−  probability + nondeterminism + (dense) time
−  property specification; PTCTL, PCTL, …

•  Model checking techniques for PTAs
−  region graphs + digital clocks
−  zone-based methods + abstraction-refinement
−  tool support: PRISM
−  verification vs. controller synthesis

More info here:
www.prismmodelchecker.org/lectures/movep14/

Thanks for your attention

