Automated Verification of
Probabilistic Real-time Systems

Dave Parker

University of Birmingham

MOVEP'14 Summer School, Nantes, July 2014

Overview

Probabilistic model checking
— example: FireWire protocol
Probabilistic timed automata (PTAS)
— clocks, zones, syntax, semantics
- — property specification
- Verification techniques for PTAs
— region graphs + digital clocks + zone-based methods
— abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
— example: task-graph scheduling

AN

See: www.prismmodelchecker.org/lectures/movep14/
— slides, tutorial papers, reference list, ...

Probabilistic model checking

High-level Probabilistic model checking
System model/design
- Probabilistic »Verréfs'fj?tt;"”
— BE model checker
Pl @ :]a—al>)&0(;3'k:aab.+ 1);
" [r,] ab’>Oa klz*ab:(a’:a / x
= *Y:;Zi;i';;a s(@'=a-1); 0 . 5 O - 4
0.1 e

0:: —) [P [Ffail]

Q .
° Numerical
-4
| System Specification Low-leve| mode| results
require-) (states, transitions)
(temporal logic)
ments

Reminder: Why probability?

Many real-world systems are inherently probabilistic...

- - Unreliable or unpredictable behaviour
— failures of physical components
=i — message loss in wireless communication

Use of randomisation (e.g. to break symmetry)
— random back-off in communication protocols
— in gossip routing to reduce flooding
— in security protocols, e.g. for anonymity

A

- And many others...
— biological processes, e.g. DNA computation
— quantum computing algorithms

Probabilistic real-time systems

- Systems with probability, nondeterminism and real-time

— e.g. wireless communication protocols
— e.g. randomised security protocols

Randomised back-off schemes
— Ethernet, WiFi (802.11), Zigbee (802.15.4)
Random choice of waiting time
— Bluetooth device discovery phase
— Root contention in IEEE 1394 FireWire
Random choice over a set of possible addresses
— IPv4 dynamic configuration (link-local addressing)
Random choice of a destination
— Crowds anonymity, gossip—-based routing

AN

Probabilistic models

Fully probabilistic

Nondeterministic

Discrete-time

Markov decision
processes (MDPs)

Dltqcrete Markov chains
Ime (DTMCs) Probabilistic
automata (PAs)
@bilistic timed
: Continuous-time automata (PTAS)
Contiimléous Markov chains

(CTMCs)

Interactive Markov
chains (IMCs), ...

Verifying probabilistic systems

- Quantitative notions of correctness

— “the probability of an airbag failing to deploy
within 0.02 seconds of being triggered is at most 0.001”

— in temporal logic: P_, 5o, [G=0-92 I“deploy”]

. - Not just correctness

— reliability, dependability, performance, resource usage (e.g.
battery life), security, privacy, trust, anonymity, ...

Usually focus on numerical properties:
— e.g.: P_,[G=0-02 I"deploy”]
— or P_,[G=T I“deploy”] for varying T

AN

- Combine numerical + exhaustive aspects
— i.e. worst-case (or best-case) probabilities
— e.9.: P, [G=0-02 I“deploy”]

Overview

— example: FireWire protocol

AN

Case study: FireWire protocol

FireWire (IEEE 1394)

— high-performance serial bus for networking
multimedia devices; originally by Apple

— "hot-pluggable” - add/remove
devices at any time

&

— no requirement for a single PC (but need acyclic topology)

Root contention protocol
— leader election algorithm, when nodes join/leave
— symmetric, distributed protocol
— uses randomisation (electronic coin tossing) and timing delays
— nodes send messages: "be my parent”
— root contention: when nodes contend leadership
— random choice: "fast"/"slow" delay before retry

FireWire leader election

FireWire root contention

11

FireWire root contention

12

FireWire analysis

- Detailed probabilistic model:
— probabilistic timed automaton (PTA), including:

; . concurrency: messages between nodes and wires
- . timing delays taken from official standard
- . underspecification of delays (upper/lower bounds)
'8 : : -
¥ — maximum model size: 170 million states ()
i -m
. Probabilistic model checking (with PRISM) = - B
— verified that root contention always e ™))\ \ed
resolved with probability 1 =D = W m“
. P_, [F (end A elected)] G /A
> — investigated worst-case expected time - R I
: taken for protocol to complete L T
. Rz [F (end A elected)] =

didie |)

— investigated the effect of using biased coin

FireWire: Analysis results

l_
.)
o
- =)
2 (4]
208
(4]
- = “minimum probability
¥ B0s of electing leader
G by time T~
S]
204
=
(4]
0
o
a0.2
% - shor wire
- £ — |ong wire
. S 0
: = 2 4 g A 10
T (10° ns)

14

FireWire: Analysis results

'—
> 1
o)
< 308 “minimum probability
) Q .
¥ 205. | of electing leader
5 by time T
o 04-
o)
©
5 0.2+ _
5 (short wire length)
£ 0
£ 1

10 Using a biased coin

15

FireWire: Analysis results

: 2 x10
L T
)2 (]
E o
kS
o 8 ‘ .
=< 15 maximum expected
¥ - time to elect a leader”
S 6
O
£
o 4 _
I3 (short wire length)
Q.
>
o 2
é Using a biased coin
‘j -g 0 1
£ 0.2 0.4 0.6 0.8

probability of choosing fast

16

FireWire: Analysis results

R
S
N 93850
. 0
~ 3800
W T “maximum expected
g © time to elect a leader”
2 3750}
()]
£
g 3700
&é (short wire length)
X 3650(
E : Using a biased coin
| E 3600f is beneficiall
| E 045 05 055 06 065 0.7

probability of choosing fast

17

Overview

; - Probabilistic timed automata (PTASs)
— clocks, zones, syntax, semantics
=g — property specification

18

AN

Probabilistic models

Fully probabilistic

Nondeterministic

Discrete-time

Markov decision
processes (MDPs)

Dltqcrete Markov chains
Ime (DTMCs) Probabilistic
automata (PAs)
@bilistic timed
: Continuous-time automata (PTAS)
Contiimléous Markov chains

(CTMCs)

Interactive Markov
chains (IMCs), ...

19

Recap: DTMCs

Discrete-time Markov chains (DTMCs)
— state-transition systems augmented with probabilities

Model checking, e.g. with PCTL
— based on probability measure over paths
— e.9. P_y 5[F lost] - maximum probability of loss is < 0.15

20

Recap: MDPs

- Markov decision processes (MDPs) (or probabilistic automata)
— mix probability and nondeterminism
— states: nondeterministic choice over actions

— each action leads to a probability
distributions over successor states

- Adversaries (schedulers, policies, ...)
— resolve nondeterministic choices based on history so far

AN

— properties quantify over all possible adversaries
— e.g. P_y s [Flost] - maximum probability of loss is < 0.15
21

Probabilistic timed automata (PTAS)

Probabilistic timed automata (PTAs)
— Markov decision processes (MDPs) + real-valued clocks
— or: timed automata + discrete probabilistic choice
— model probabilistic, nondeterministic and timed behaviour

PTAs comprise:
— clocks (increase simultaneously)

— locations (labelled with invariants)

— transitions (action + guard +
probabilities + resets)

AN

Semantics
— PTA represents an infinite-state MDP
— states are location/clock valuation pairs (I,v) € LocxRX
— nondeterminism: choice of actions + elapse of time 22

Time, clocks and clock valuations

Dense (continuous) time domain: non-negative reals R_,,
— from this point on, we will abbreviate R_,to R

Finite set of clocks x € X
=< — variables taking values from time domain R
— increase at the same rate as real time

- A clock valuation is a tuple v € RX. Some notation:
— v(x) : value of clock x in v
— v+t : time increment of t for v
— v[Y:=0] : clock reset of clocks Y € X inv

AN

23

Zones (clock constraints)

- Zones (clock constraints) over clocks X, denoted Zones(X):

; Ci=x<d|c<x |[x+c<y+d | =T | TV

»
— wherex,ye Xandc,d e N &
B —e.g.X <2, X<y, (Xx=2)AX<3)A(X<Y)

- Can derive:
— logical connectives, e.g. C,AT, = —(—=C,V—0C,)
— strict inequalities, through negation, e.g. x>5 = —(x<5)...

& - Used for both:

— syntax of PTAs/properties
— algorithms/implementations for model checking

24

Zones and clock valuations

-+ A clock valuation v satisfies a zone T, written v > T if
— T resolves to true after substituting each clock x with v(x)

- The semantics of a zone T € Zones(X) is the set of clock
= valuations which satisfy it (i.e. a subset of RX)

— NB: multiple zones may have the same semantics
— e.g. X<=2)A(Y=T)A(X=<y+2) and (X<2)A(Y=<T)A(x<y+3)
— but we assume canonical ("tight") zones

— allows us to use syntax for zones interchangeably with
semantic, set-theoretic operations

WA

Some useful classes of zones:
— closed: no strict inequalities (e.g. x>5)
— diagonal-free: no comparisons between clocks (e.g. x<y)
— convex: define a convex set, efficient to manipulate 25

c-equivalence and c-closure

. Clock valuations v and v’ are c-equivalent if for any x,yeX
— either v(x) = v'(x), or v(x) > cand v'(x) > c
— either v(x)-v(y) = v(x)-Vv’(y) or v(x)-v(y) > c and v’ (x)-Vv’(y) > ¢

=< - The c-closure of the zone T, denoted close(T,c), equals
— the greatest zone T'2 T such that, for any v’ € T,
there exists v € T and v and v’ are c-equivalent
— c—closure ignores all constraints which are greater than c
— for a given ¢, there are only a finite number of c-closed zones

26

Operations on zones

- Operations on zones: T
- Set-theoretic operations /§
2
(_,1 mt_,z ‘C_,] UCZ C] \CZ >

AN

27

Probabilistic timed automata - Syntax

- A probabilistic timed automata (PTA) is:
— a tuple (Loc, |, Act, X, inv, prob, L)

- where:

— Loc is a finite set of locations
¥ — | € Loc is the initial location
— Act is a finite set of actions
— X is a finite set of clocks

— inv : Loc — Zones(X)
is the invariant condition

— prob € LocxZones(X)xDist(Locx2X)
is the probabilistic edge relation

— L: Loc — 2APis a labelling function

AN

28

- Probabilistic edge (l,g9,a,p) € prob

Probabilistic edge relation

Probabilistic edge relation
— prob € LocxZones(X)xActxDist(Locx2X)

— | is the source location
— g is the guard

— a is the action

— p target distribution

Edge (1,9,a,p,!’,Y)
— from probabilistic edge (l,g,a,p) where p(I’,Y)>0
— |’ is the target location
— Y is the set of clocks to be reset (to zero)

29

PTA - Example

- Models a simple probabilistic communication protocol

— starts in location init; after between 1 and 2 time units, the
protocol attempts to send the data:

. with probability 0.9 data is sent correctly, move to location done
. with probability 0.1 data is lost, move to location lost

¥ — in location lost, after 2 to 3 time units, attempts to resend

. correctly sent with probability 0.95 and lost with probability 0.05

retry

x>2 4/ guard

AN

30

PTAs - Behaviour

- A state of a PTA is a pair (I,v) € LocxRX such that v > inv(l)

| - Startin the initial location with all clocks set to zero
— i.e. initial state is (l.,,0)

For any state (l,v), there is nondeterministic choice between
making a discrete transition and letting time pass

— discrete transition (I,g,a,p) enabled if v > g and probability of
moving to location I’ and resetting the clocks Y equals p(I’,Y)

AN

— time transition available only if invariant inv(l) is continuously
satisfied while time elapses

31

AN

PTA:

PTA - Example execution

Example (init,x=0)
execution:
lu
(init,x=1.1)
0.9
send 0.1

(done,x=0) (lost,x=0)

18.66 lz.y

(done,x=8.66) (lost,x=2.7)

0.95 0.05
retry

(done,x=0) (lost,x=0)

32

PTAs - Formal semantics

- Formally, the semantics of a PTA P is an infinite-state MDP
MP — (SP’ Sinit’ O(P, 6P, LP) Wlth

- States: Sp; ={ (l,v) € Loc X RX such that v > inv(l) }

. - Initial state: siy; = (I, 0) S 5
4 . actions of MDP M; are the actions

_ ; of PTA P or real time delays :

- 0p S Sp X op X Dist(Sp) such that (s, a, u) € op iff:
— (time transition) aeR, u(,v+t)=1 and v+t’>inv(l) for all t’<t
— (discrete transition) a€Act and there exists (I,g,a,p) € prob

such that vi>g and, for any (I',v’) € Sp: u(l',v') = 2 p(l',Y)

/ YCXavV[Y:=0]=V'

multiple resets may give
same clock valuation

- Labelling: Ly(I,v) = L(I)
33

Overview

=g — property specification

34

Properties of PTAs - PTCTL

- PTCTL: Probabilistic timed computation tree logic [KNSS02]
— derived from PCTL [BdA95] and TCTL [AD94]

. Syntax: / “zone over XUZ” :

i —¢b=truefa|Clz.d|dAd| [P, [dUD]

o AR - :

“freeze quantifier” é U ¢ is true with probability ~p

. (formulaclockz) : (for all adversaries) _
- where:
— where Z is a set of formula clocks, T € Zones(XuZ), z € Z,
3 — a is an atomic proposition, p € [0,1] and ~ € {<,>,<,>}

- Usual equivalences

—e.g.F b=trueUod and G = —F(—d)
35

PTCTL - Examples

« Z.P_yg9 [F delivered A (z<5)]

— “with probability greater than 0.99, the system delivers the
packet within 5 time units”

- 7. P [(x<3) U (z=8)]

— “with probability at least 0.95, the system clock x does not
exceed 3 before 8 time units elapse”

+ 7.P_y,[G (failure v (z<60))]

— “the system fails after the first 60 time units have elapsed with
probability at most 0.01”

36

Properties of PTAs (PRISM)

- PRISM property specification for PTAs [NPS13]
— PCTL + zones + time bounds + expected rewards

~ . Syntax:
—du=true|alTldAd|-d [P [W]IIR, [p]

¥ mwr=elU=elelUe N

—pu=17k|C=k|F ¢ expected reward p

. (for reward structure r)
- Expected reward (costs/prices) I —

— at time k (I7%) (for all adversaries)
_ cumulated up to time K (Coky mm——
— cumulated until a ¢-state is reached (F)

- Reward structures
— location rewards (rate accumulated) + transition rewards

- Also: numerical variants: P, .._,, Rl._;, etc. 37

Examples

Examples

— P_y, s [F=<ack,] - “the probability that the sender has received
n acknowledgements within time k is at least 0.8”

— trigger — P_; 9001 [G520 —deploy] - “the probability of the
airbag failing to deploy within 20 milliseconds of being
s triggered is strictly less than 0.0001"

— P...—, [—sent U fail] - “what is the maximum probability of a
failure occurring before message transmission is complete?”

— RU™e__ [F end] - “what is the maximum expected time for the
protocol to terminate?’

— REJ[C=60] - “the expected energy consumption during the
first 60 seconds is < @’

AR

Property reductions [NPS13]

— verification reduces to probabilistic reachability (P [F ¢]) and

expected reachability (R[F ¢]), e.g. by adding extra clocks 38

Time divergence

- We restrict our attention to time divergent behaviour
— a common restriction imposed in real-time systems
— unrealisable behaviour (i.e. corresponding to time not
advancing beyond a time bound) is disregarded
— also called non-zeno behaviour

For a path w=sy(ay,Hy)s;(a;,M;)s,(a5,M5)... in the MDP M,
— D,(n) denotes the duration up to state s,
—i.e.Dy(n) =2{| a; | O<i<n A a; € R |}

- A path w is time divergent if, for any teR_,:
— there exists j € N such that D (j)>t

AN

Example of non-divergent path:

39

Time divergence

- An adversary of M; is divergent if, for each state s € S;:
— the probability of divergent paths under A is 1
— i.e PrA{ w € PathA(s) | w is divergent } =1

~ ™ . Motivation for probabilistic definition of divergence:
. 0.5

— in this PTA, any adversary has one non-divergent path:
. takes the loop in |, infinitely often, without 1 time unit passing
— but the probability of such behaviour is O

— a stronger notion of divergence would mean no divergent
adversaries exist for this PTA 40

AN

Overview

- Verification techniques for PTAs

— region graphs + digital clocks + zone-based methods
— abstraction-refinement

41

PTA model checking - Summary

- Several different approaches developed

— basic idea: reduce to the analysis of a finite-state model
— in most cases, this is a Markov decision process (MDP)

Region graph construction [KNSS02]

— shows decidability, but gives exponential complexity
Digital clocks approach [KNPS06]

— (slightly) restricted classes of PTAs

— works well in practice, still some scalability limitations

- Zone-based approaches:

— (preferred approach for non-probabilistic timed automata)
— forwards reachability [KNSS02]
— backwards reachability [KNSWO07]

— game-based abstraction refinement [KNPOO9c]
42

The region graph

Region graph construction for PTAs [KNSS02]
— adapts region graph construction for timed automata [ACD93]
— partitions PTA states into a finite set of regions
— based on notion of clock equivalence

. — construction is also dependent on PTCTL formula

For a PTA P and PTCTL formula ¢
— construct a time-abstract, finite-state MDP R(¢)
— translate PTCTL formula ¢ to PCTL formula ¢’
— ¢ is preserved by region equivalence

._‘ — i.e. ¢ holds in a state of M; if and only if ¢’ holds in the
: corresponding state of R(d)

— model check R(¢) using standard methods for MDPs

43

The region graph - Clock equivalence

Regions are sets of clock equivalent clock valuations

Some notation:
— let c be largest constant appearing in PTA or PTCTL formula
— let [t| denotes the integral part of t

: — tand t’ agree on their integral parts if and only if

(1) [t] =[]

(2) t and t’ are both integers or neither is an integer

- Clock valuations v and v’ are clock equivalent (v = v") if:
— for all clocks x € X, either:
. v(x) and v’(x) agree on their integral parts
. v(X)>c and v'(x)>c
— for all clock pairs x,y € X, either:
- v(X) — v(x’) and v'(x) — V’(x’) agree on their integral parts
- v(X) — v(xX’) > cand v(xX) — Vv(X’) > c

AN

44

Region graph - Clock equivalence

- Example regions (for 2 clocks x and y)

AY

| 90— O@0—0—
|/ .

oe o o >
o 1 2

45

Region graph - Clock equivalence

- Example regions (for 2 clocks x and y)

XY A T<x<2 A 1T<y<2

o 2'_1217 -

... 1 e—0—0—— Cy=0AT<x<2
X:y/\0<x<.l ------ |/‘M ...
oe o o
0] 2

46

Region graph - Clock equivalence

- Fundamental result: if v= v ,thenv> T < Vv > T
— it follows that r > T is well defined for a region r

- All regions (for 2 clocks x and y), max constant c=2:

47

Region graph - Clock equivalence

- 1 is the (time) successor region of r, written succ(r) = r, if

— for each v € r, there exists t > 0 such that:
—v+ter and v+t erur’ forallt’< t

- Examples (region and successor):

AY
NI
Y

® [(|
14 -
(0 [C
0)]

- Region graph: MDP over states (I,r) for location |, region r

The region graph

- The region graph MDP is (Sg,Sii.»Stepsg,Lg) where...

— the set of states Sy comprises pairs (I,r) such that | is a
location and r is a region over X U Z

— the initial state is (l.,;;;, 0)
— the set of actions is {succ} U Act
. succ is a unique action denoting passage of time
— the probabilistic transition function Steps; is defined as:
— Sy X 2UsucclUACxDist(Sg)
— (succ,u) € Stepsg(l,r) iff pu(l,succ(r))=1
— (a,M) € Stepsi(l,r) if and only if 3 (I,g,a,p) € prob such that

r > g and, forany (I',r') € Sp. u(l',r") = z p(l',Y)
Y CXAar[Y:=0]=r'
— the labelling is given by: Lg(l,r) = L(l)
49

Region graph - Example

SN
N\

N\
N\
N\
N\

JAA T,

Region graph (fragment):

SUucCc SUcCc
(init,x=2=0) —<p (init,0<x=z<1) —— (init,x=z=1) —— (init,1 <x=z<2)

O%N

(done,x=0Az=1) (lost,x=0Az=1) 50

Region graph construction

Region graph
— useful for establishing decidability of model checking
— or proving complexity results for model checking algorithms

- 8 - But...

— the number of regions is exponential in the number of clocks
and the size of largest constant

— so model checking based on this is extremely expensive
— and so not implemented (even for timed automata)

Improved approaches based on:
— digital clocks
— zones (unions of regions)

51

Overview

- Verification techniques for PTAs

— region graphs + digital clocks + zone-based methods
— abstraction-refinement

52

AN

Digital clocks

- Simple idea: Clocks can only take integer (digital) values

— i.e. time domain is N as opposed to R
— based on notion of e-digitisation [HMP92]

- Only applies to a restricted class of PTAs; zones must be:

— closed - no strict inequalities (e.g. x>5)
— diagonal-free: no comparisons between clocks (e.g. x<y)

Digital clocks semantics yields a finite-state MDP
— state space is a subset of Loc x NX, rather than Loc x RX
— clocks bounded by c,,., (max constant in PTA and formula)
— then use standard techniques for finite-state MDPs

53

Example - Digital clocks

MDP: (init,x=2z=0) ——» (init,x=z=1) —» (init,x=z=2)
(digital

= clocks) OE)/\ 0. 9%
3

(done,x=0Az=1) (lost,x=0Az=1) (done,x=0Az=2)

. v v v
¥ (lost,x=1Az=2)

v

(lost,x=2Az=3) —»

0.9N5

(done,x=0Az=3) (lost,x=0Az=3)

! v

54

Digital clocks

Digital clocks approach preserves:
— minimum/maximum reachability probabilities

— a subset of PTCTL properties
. (no nesting, only closed zones in formulae)
— only works for the initial state of the PTA
= . (but can be extended to any state with integer clock values)
r — also: expected rewards (priced PTAS)

In practice:
— translation from PTA to MDP can often be done manually
— (by encoding the PTA directly into the PRISM language)
— automated translations exist: mcpta and PRISM
— many case studies, despite “closed” restriction
— potential problem: can lead to very large MDPs
— alleviated partially by efficient symbolic model checking

AR

55

Digital clocks do not preserve PTCTL

- Consider the PTCTL formula ¢=z.P_,[F (@ A z<1)]

— a is an atomic proposition only true in location [,

- Digital semantics:

— no state satisfies ¢ since for any state we have
ProbA(s,E[z:=0], true U (aAz<1)) = 1 for some adversary A
— hence P_, [true U &] is trivially true in all states

56

Digital clocks do not preserve PTCTL

- Consider the PTCTL formula ¢=z.P_,[F (@ A z<1)]

— a is an atomic proposition only true in location [,

- Dense time semantics:

— any state (l,,v) where v(x) € (1,2) satisfies ¢
more than one time unit must pass before we can reach I,
— hence P_, [true U ¢] is not true in the initial state

57

Overview

- Verification techniques for PTAs

— region graphs + digital clocks + zone-based methods
— abstraction-refinement

58

/one-based approaches

- An alternative is to use zones to construct an MDP

- - Conventional symbolic model checking relies on computing

— post(S’) the states that can be reached from a state in S’ in a
= single step

— pre(S’) the states that can reach S’ in a single step

Extend these operators to include time passage

— dpost[e](S’) the states that can be reached from a state in S’ by
traversing the edge e

— tpost(S’) the states that can be reached from a state in S’ by
letting time elapse

— pre[e](S’) the states that can reach S’ by traversing the edge e
— tpre(S’) the states that can reach S’ by letting time elapse

59

/one-based approaches

- Symbolic states (I, T) where
— | € Loc (location)
— T is a zone over PTA clocks and formula clocks
— generally fewer zones than regions

- tpost(l,T) = (I, #/TAinv(l))
— 7T can be reached from T by letting time pass
— /TCAinv(l) must satisfy the invariant of the location |

- tpre(,0) = (I, vTAinv(l))
3 — v T can reach T by letting time pass
: — v TA inv(l) must satisfy the invariant of the location |

60

/one-based approaches

- For an edge e= (l,g,a,p,l’,Y) where
— | is the source
— g is the guard
— a is the action
— |’ is the target
¥ — Y is the clock reset

- dpost[e](1,0) = (I', (TAg)[Y:=0])
— TAg satisfy the guard of the edge
— (CTAQ)[Y:=0] reset the clocks Y

- dprele](I",T) = (I, [Y:=0]T" A (g A inv(]))
: — [Y:=0]T’ the clocks Y were reset
— [Y:=0]T’ A (g A inv(l)) satisfied guard and invariant of |

61

Forwards reachability

- Based on the operation post[e](l,C) = tpost(dpost[e](l,T))

— (I’,v’) € post[e]l(l,Q) if there exists (I,v) € (I,©) such that after
traversing edge e and letting time pass one can reach (I’',v’)

- Forwards algorithm (part 1)

— start with initial state Si={tpost((l;,;,0))} then iterate
for each symbolic state (I,C) € S; and edge e
add post[e](l,C) to S;

— until set of symbolic states S¢ does not change

- To ensure termination need to take c-closure of each zone

encountered (c is the largest constant in the PTA)

62

Forwards reachability

- Forwards algorithm (part 2)
— construct finite state MDP (S, (l,,;,0),Stepsg,Ly)

— states S; (returned from first part of the algorithm)
. — Le(1,©)=L() for all (1,T) € S¢

o -
£ — u € Steps(1,0) if and only if
there exists a probabilistic edge (l,g,a,p) of PTA
such that for any (I’, T’) € Z:
ul', T = 2 {lp(,X)1(,9,0,p,I',X) Eedges(p) A post[e](,T) = (', T") |}
] summat|onoveralltheedgesof(lgap)suchthat

. applying post to (I,C) leads to the symbolic state (I',T)

63

Forwards reachability - Example

MDP: (I5,x=Y)

/N

(l,,x<y) (l,,x=y)

0.5 0.5

(|0,XZY)

64

Forwards reachability - Limitations

- Problem reduced to analysis of finite-state MDP, but...

+ Only obtain upper bounds on maximum probabilities

— caused by when edges are combined

- Suppose post[e,](1,0)=(l,,C,) and post[e,](,0)=(l,, T,)

— where e, and e, from the same probabilistic edge

- By definition of post

— there exists (I,v;) € (I,0) such that a state in (I, T) can be
reached by traversing the edge e; and letting time pass

- Problem

— we combine these transitions but are (I,v,) and (l,v,) the same?
— may not exist states in (I,C) for which both edges are enabled

65

Forwards reachability - Example

- Maximum probability of reaching I is 0.5 in the PTA
— for the left branch need to take the first transition when x=1
— for the right branch need to take the first transition when x=0

- However, in the forwards reachability graph probability is 1
- — can reach |5 via either branch from (l5,x=y)

MDP: (I3,x=y)

/N

(I;,x=<y) (I,,x=y)

0.5 0.5
(lo,x=y)

66

Backwards reachability

- An alternative zone-based method: backwards reachability

— state-space exploration in opposite direction, from target to
initial states; uses pre rather than post operator

Basic ideas: (see [KNSWO07] for details)

= — construct a finite-state MDP comprising symbolic states

— need to keep track of branching structure and take
conjunctions of symbolic states if necessary

— MDP yields maximum reachability probabilities for PTA
— for min. probs, do graph-based analysis and convert to max.
- Advantages:
— gives (exact) minimum/maximum reachability probabilities
— extends to full PTCTL model checking
Disadvantage:
— operations to implement are expensive, limits applicability
— (requires manipulation of non-convex zones) 67

qTAY

Overview

- Verification techniques for PTAs

— region graphs + digital clocks + zone-based methods
— abstraction-refinement

68

Abstraction

- Very successful in (non-probabilistic) formal methods

— essential for verification of large/infinite-state systems

— hide details irrelevant to the property of interest

— vyields smaller/finite model which is easier/feasible to verify
- — loss of precision: verification can return “don’t know”
. Construct abstract model of a concrete system

— e.g. based on a partition of the concrete state space

— an abstract state represents a set of concrete states

-
N () N
—
§ y,
L5 v
e)
." L
3 — \ J)

- Automatic generation of abstractions using refinement

— start with a simple coarse abstraction; iteratively refine
69

Abstraction of MDPs

- Abstraction increases degree of nondeterminism [DDJLO1]
— i.e. minimum probabilities are lower and maximums higher

= I | l
. |]

0 psmin psmax]

- We build abstractions of MDPs as stochastic games [KNP06b]
!

(=
= A
D) I (| ()

v v

0 psmin psmax 1

Abstraction refinement

Consider (max) difference between lower/upper bounds
— gives a quantitative measure of the abstraction’s precision

+—>

¥ 0 p,min(F) p,"X(F) 1

If the difference (“error”) is too great, refine the abstraction
— a finer partition yields a more precise abstraction
— lower/upper bounds can tell us where to refine (which states)
— (memoryless) strategies can tell us how to refine

AN

/1

AN

Abstraction-refinement loop

- Quantitative abstraction-refinement loop for MDPs

Initial
partition

New
partition

abstract

[error>€]

refine

Abstraction

model
check

Bounds and
strategies

1 [error<e]

Return
bounds

- Refinements yield
strictly finer partition

- Guaranteed to
converge for finite
models

- Guaranteed to
converge for infinite
models with finite
bisimulation

72

Abstraction refinement: Applications

- Examples (MDPs):

- 1J90 self stabilisation alg. Zeroconf protocol
5 (1,048,575 states abstracted to 627) (838,905 states abstracted to 881)
02— . - 5 0.15
£ = - - - upper bound £ -~ - upper bound
= = —actual value . o —actual value
: 4 e} 015' ----- |Ower bound 'O : : """ |0wel' bound
3 € 017, : *
2 8 : :
5 o7 5 @
@ < i
2 5 0.05/
o 0.05: o '
5 e .
S e S 0 R -
= 80 90 100 110 120 = 10 12 14
T (time units) T (seconds)

AN

- Applications
— probabilistic software (C + probabilities) [gprover] [KKNP10]
— concurrent probabilistic programs [PASS] [HHWZ10b]
— probabilistic timed automata (exact) [PRISM] [KNP0O9c] 73

Abstraction refinement for PTAs

Model checking for PTAs using abstraction refinement

Abstraction

L abstract
il 7o posraction | +— TP
nitia
g8 abstraction using zones
£ from model (DBMs)
forwards check
reachability .
New lerror=€] | poynds and
partition strategies
refine
/ 1 [error<e] \
: o Ret Guaranteed
Splitting of bounds convergence
zones (DBMs) for any €>0

/74

Abstraction refinement for PTAs

- Computes reachability probabilities in PTAs
— minimum or maximum, exact values (“error” €=0)
— also time-bounded reachability, with extra clock

In practice, performs very well
% — implemented in PRISM (using DBMs)
— faster than digital clocks or backwards on large example set
— (sometimes by several orders of magnitude)
— handles larger PTAs than the digital clocks approach

/5

Overview

- Tool support: PRISM

76

AR

The PRISM tool

PRISM: Probabilistic symbolic model checker
— developed at Birmingham/Oxford University, since 1999
— free, open source (GPL), runs on all major OSs ‘

- Support for:

— models: DTMCs, CTMCs, MDPs, PAs, PTAs
— (see also PRISM-games: stochastic multi-player games)

— properties: PCTL, CSL, LTL, PCTL*, costs/rewards, numerical
extensions, multi-objective, ...

Features:
— simple but flexible high-level modelling language
— user interface: editors, simulator, experiments, graph plotting
— multiple efficient model checking engines (e.g. symbolic)
— (mostly symbolic - BDDs; up to 1010 states, 107-108 on avg.)

- See: http://www.prismmodelchecker.orqg/

/7

The PRISM tool

8006 PRISM 4.1 eno PRISM 4.1
Ele Edit Model Properties Simulator Log Options Ele Edit Model Properties Simulator Log Options
bl Ed R [l 4 ale| e LIRS
PRISM Model File: _policyl.sm
Automatic exploration Manual exploration (| (S abets | (]
o ¥ Model: power_policyL.sm | ¢ P —_———— !
. Tyt CTV |2 © Simulate] Rate | | 3¢ init
@ £ Modules 11|// service gueue (50) e~] " =i jo006 = 2 X deadiock
12|// Stores requests which arrive Into the system to be processed. e — Right 0.002 right_n' minimum
e s Backracking Line 2.06-4 line_n'=false % premium
// Woxinum queve size | i) e
- 15| const int o nax = 20; @ sackack olef 25€ olefn
= 6 [startLeft] 10.0 left=true, r=true ||
17|// Request arrival Steps ~|[
18 const double rate_arrive = 1/0.72; // (mean inter-arrival tine is 0.72 seconds)
19 =
28| module 50 Path
— 21
- 2 // q = number of requests currently in queue Step ne | Toleft | ToRight
2 ¢ [0..qmax] init 0; Action line_n | _toleft | toleft_n|_toright | oright_
) 2 (@se) | (e
2 // A request arrives ==
26, [request] true -> rate_arrive : (q'=min(q+1,q_max)); !
e - 27, // A request is served ToRight
& 9 raw.s2i: double 28 [serve] ¢>1 -> (q'=q-1); [startRight]
@ rate_2s : double 2 // Last request is served [repairRighy
© 9 q_trigger : int E [serve_tast] g=1 -> (q'=q-1); =
3
32| endnodule Left
) Left
34)//- Left
E
— 36|// Service Provider (SP) Right
37|// Processes requests from service queve. [starttef]
38|// The SP has 3 power states: sleep, idle and busy repairtefi
9
| 48| // Rate of service (average service tine = 0.0085) Isurtef]
: 41/ const double rate_serve = 1/0.008; (repairteft]
Built Model 42|// Rate of switching from sleep to idle (average transition time = 1.65) Right
Statas: 42 8 const gouble rate_s21 ~ L Consition © e Right
X / Rate of switching fron idle to sleep (average transition time = 0.675
Cife—==d 45 const double rate_i2s = 1/0.67; Rt
Transitions: 81 46
Loading mod

8006 PRISM 4.1
File Edit Model Properties Simulator Log Options

ls[Olelm]

Properties list: I
Properties <[Bxperiments
b

=7 (FIT.T) a=a_max))
Property | Defined Const..| _Progress Sas | Method
R=7[1=T] [T=0:1:40 Done Verification
i R=7[1=T] |q_trigger=3:3... Done Verification
o R=7[1=T] |q_trigger=5.T... Done \Verification
R R<2(S] R 1 T [Done \Verification
1 Done \Verification
1. 49 Stopped \Verification

/hat is the long-run expected size of the queue?

Constams G Grenz |

o Name I Type Value | Expected queue size at time T
. T int
H - q_trigger=3
5 = q_trigger=6
Labels & -+ q_trigger=9
Name Definition -4 = _trigger=12
3 -+ q_trigger=15
q_trigger=18

78

AN

Modelling PTAs in PRISM

- PTA example: message transmission over faulty channel

tries:=0

quit
tries>N

tries:=tries+1

States
e locations + data variables

Transitions
« guards and action labels

Real-valued clocks
* state invariants, guards, resets

Probability
 discrete probabilistic choice

79

Modelling PTAs in PRISM

- PRISM modelling language
— textual language, based on guarded commands

pta

const int N;

s module transmitter

- s : [0..3] init O;

tries : [0..N+1] init O;

X : clock;

invariant (s=0 = x<2) & (s=1 = x<5) endinvariant

[send] s=0 & tries<N & x=>1
— 0.9 : (s’=3)
+ 0.1 :(s’=1) & (tries’=tries+1) & (x’=0);
[retry] s=1 & x=3 — (s’ =0) & (X’ =0);
[quit] s=0 & tries>N — (s’ =2);
endmodule

rewards “energy” (s=0) : 2.5; endrewards

AN

80

Modelling PTAs in PRISM

- PRISM modelling language
— textual language, based on guarded commands

pta Basic ingredients:
const int N;
5 _ « modules
s module transmitter <«— _ « variables
' s : [0..3] init O; / - commands
tries : [0..N+1] init O; /
X : clock;

invariant (s=0 = x<2) & (s=1 = x<5) endinvariant
[send] s=0 & tries<N & x>1
— 0.9 :(s’=3)
+ 0.1 :(s’=1) & (tries’=tries+1) & (x’=0);
[retry] s=1 & x=3 — (s’ =0) & (x’ =0);
[quit] s=0 & tries>N — (s’ =2);
endmodule

rewards “energy” (s=0) : 2.5; endrewards

AN

81

Modelling PTAs in PRISM

- PRISM modelling language
— textual language, based on guarded commands

pta Basic ingredients:
const int N;
« modules
el module transmitter variables
: s : [0..3] init O; « commands
tries : [0..N+1] init O;
x : clock; «— For PTASs:

invariant (s=0 = x<2) & (s=1 = x<5) endinvariant . ¢|ocks

[send] s=0 & tries<N & x=1 q\‘\‘ * invariants
- 0.9:(s’=3) =+ guards/resets
+ 0.1 :(s’=1) & (tries’=tries+1) & (xX’=0); “«— J /
[retry] s=1 & x=3 — (s’ =0) & (x’ =0);
[quit] s=0 & tries>N — (s’ =2);

endmodule
rewards “energy” (s=0) : 2.5; endrewards

AN

82

AR

Modelling PTAs in PRISM

- PRISM modelling language
— textual language, based on guarded comma

nds

pta
const int N;
module transmitter

s : [0..3] init O;
tries : [0..N+1] init O;

x : clock;
invariant (s=0 = x<2) & (s=1 = x<5) endinvariant
[send] s=0 & tries<N & x=>1

— 0.9:(s’=3)

+ 0.1 :(s’=1) & (tries’=tries+1) & (x’=0);
[retry] s=1 & x=3 — (s’ =0) & (x’ =0);
[quit] s=0 & tries>N — (s’ =2);

Basic ingredients:

« modules
e variables
e commands

For PTAs:

* clocks
* invariants
* guards/resets

Also:

_ » rewards
(i.e. costs, prices)

endmodule /
rewards “energy” (s=0) : 2.5; endrewards

« parallel comp085,3ition

PRISM - Case studies

Randomised communication protocols

— Bluetooth, gossiping, ...
Randomised distributed algorithms

— consensus, leader election, self-stabilisation, ...
™ . Security protocols/systems
s — pin cracking, anonymity, quantum crypto,@repudia@...
Planning & controller synthesis

— robotics, dynamic power management@—graph schedu@
Performance & reliability

— nanotechnology, cloud computing, manufacturing systems, ...
Biological systems

— cell signalling pathways, DNA computation, pacemakers, ...

AN

See: www.prismmodelchecker.org/casestudies

84

Overview

- Verification vs. controller synthesis
- — example: task-graph scheduling

85

Verification vs. Controller synthesis

- Verification vs. synthesis

— verification = check that a (model of) system satisfies a
specification of correctness

— synthesis = build a "correct-by-construction” system directly
from a specification of correctness

Controller synthesis (for MDPs)

— generate a controller/scheduler (an adversary) that chooses
actions such that a correctness specification is satisfied

— dual problem to verification on MDPs

For example: P_, o[F err]
— verification: “the probability of an error is always < 0.01”

— controller synthesis: “does there exist a controller (adversary)
for which the probability of an error occurring is < 0.017”

— or, optimise: “what is the minimum probability of an error?”
86

WA

Controller synthesis

- Controller synthesis (for MDPs)
— nondeterminism: actions available to controller
— probability: uncertainty about environment's behaviour

- For example: robot controller

AN

87

Controller synthesis: Extensions

Multi-objective probabilistic model checking
— investigate trade-offs between conflicting objectives

— e.g. “is there a strategy such that the probability of message
transmission is > 0.95 and expected battery life > 10 hrs?”

— e.g. “maximum probability of message transmission,
¥ assuming expected battery life-time is > 10 hrs?”

— e.g. "Pareto curve for maximising probability
of transmission and expected battery life-time” Za
o

O

~e,
Controller synthesis with stochastic games co N
— player 1 = controller (as for MDPs) . g\\‘
e — player 2 = environment ("uncontrollable" actions) : ;E
3 I

Multi-strategies

— strategies (adversaries) which can choose between multiple
actions at each time step 38

Controller synthesis - Applications

- Examples of PRISM-based controller synthesis

- Synthesis of dynamic Motion planning Synthesis of team
3 power management for a service robot formation strategies
controllers [FKN+11] using LTL [LPH14b] [CKPST1, FKP12]
- Ay

N
v
o
o

N
o
o
o

min power consumption

2.0

Pareto curve:
x="probability of
completing task 1"
y="probability of
(i) expected job queue size; completing task 2"

(ii) expected number of lost jobs z="expected size of
successful team" 89

Minimise energy
consumption, subject
to constraints on:

AN

Example: Task-graph scheduling

Use probabilistic model checking of PTAs to solve

scheduling problems, e.g. for a task-graph
— task-graph = tasks to complete + dependencies/ordering
— for ex.: real-time scheduling, embedded systems controllers

- Simple example: [adapted from BFLM11]

— evaluate expression: DX(Cx(A+B))+((A+B)+(CxD))
— with subterms evaluated on one of two processors, P, or P,

task, task; task:
—i
A X (X P 5
C D + 2 picoseconds | 5 picoseconds
X 3 picoseconds | 7 picoseconds
C—> idle 10 Watts 20 Watts
D—> X > T >+ active 90 Watts 30 Watts
task, task, task,

90

Example: Task-graph scheduling

- Task-graph scheduling
— aim to find optimal (time, energy usage, etc.) schedulers
— successful application of (non-probabilistic) timed automata
— PTAs allow us to reason about uncertain delays + failures

. — optimal scheduler derived from optimal adversary

- PTA model
— parallel composition of 3 PTAs: one scheduler, two processors
— for example, processor P,, with local clock x:

AN

Locations also labelled
with costs/rewards
for time/energy usage

91

AR

Example: Task-graph scheduling

Property specification:
— RI™e . [F complete] - minimise (expected) time

in=?

— RSYT F complete] - minimise (expected) energy usage

min=?

Model check with PRISM (digital clocks)
— and extract optimal adversary/scheduler

- Time optimal (12 picoseconds)

[tme [1[2[3 45678010 11 [12] 13 1415161718] 19] 20 |
| A | taskl | task3 | task5 | task4 | task6 | | | | | | | | |
I task2 N N A N N

Energy optimal (1.32 nanojoules)

[tme [T [2 [3[4[5[6]7[8[9[10111213][141516] 17] 18] 19 | 20 |
| A [taskl | task3 Jwk4d | [[[| [[[[[[| [|
| P~ | task?2 | task5 ‘ task6 | |

No probabilities yet... 9>

Adding probabilities

- Faulty processors
— add third processor P;: faster, but may fail to execute task

pl_fail pl_fail

- a_fail m_fail
. =0
add lpl_add stby
x<2 x:=0 | true x:=0 0
— .’ a_suc X‘:M \X:O m_suc
: 3 x=0 pl_done pl_done x=0

- Probabilistic task execution times

— simple example: (deterministic) delay of 3 in processor P,
replaced by distribution: ¥5:2, V3:3, ¥5:4

AN

stby
true

93

Results (with faulty processor)

- Compute optimal (time/energy) schedulers
— (using same properties as before)

| - Results (for varying failure rates p of processor Ps):
— dotted red line shows original results (no failures)

x — conclusion: better performance for low values of failure
probability p; no benefit for higher values

Expected time Expected energy usage
1.7
12
v & 1.6
£
- 11.5 v 1.5
g 3
- 9 S 14
~ x 11 a
(] X
e v 1.3
2 g
E 10.5 E 1.2
= S 1.1
10
1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1 94

p p

Schedulers (with faulty processor)

- Example (for p=0.5)
— optimal scheduler to minimise energy consumption

- Optimal scheduler again obtained from adversary
— now, behaviour depends on outcome of task execution
i

4 [tme [T [2[3[4[5[6[7[8[9[I0O[II 2314151617]I18]19]20]
LA | | [| wk3 | | [| | [[[[ke [[[| |

[P] task2 | task5 | | | | | | |
T T [[wk T T [T T T T T

[time [T 23 L4567 [8[9[10| I [12[13[4 [I15[16[17][18]19[20]

| A | | | | taskl | task3 | task | | task6 | | | | | | |

(P] task2 | task T T T T T T T]

= taskl L] I N R
: [tme [1 [2[3[4[5[6][7[8[9[10L I [12[I3[14151617 18] 1920 |
LA [| | | wk3 [| | | | takd | | | take | | | | |

| P | task2 | task5 | | | | | | |

| A | taskl | [| | I I R R I

95

Multi-objective properties

Multi-objective controller synthesis
— (on MDP generated via digital clocks approach)
— explore trade-off between time/energy usage

4 Properties 18
¥ — e.g. minimise expected time, 17.8 "\
subject to bound on energy . 176 \
£
— or: Pareto curve for two = 1;‘2‘ \
objectives: time/energy — § L
— NB: both may generate 5 es ™~
randomised schedulers 16.6 \\\,
16.4

AN

144 145 146 147 148 149 15 151

Expected energy usage

96

Overview

Probabilistic model checking
— probabilistic real-time systems

Probabilistic timed automata (PTAS)
— probability + nondeterminism + (dense) time
— property specification; PTCTL, PCTL, ...

Model checking techniques for PTAs
— region graphs + digital clocks
— zone-based methods + abstraction-refinement
— tool support: PRISM
— verification vs. controller synthesis

AN

97

Thanks for your attention

More info here:
www.prismmodelchecker.org/lectures/movep14/

